Given an n x n
binary matrix grid
, return the length of the shortest clear path in the matrix. If there is no clear path, return -1
.
A clear path in a binary matrix is a path from the top-left cell (i.e., (0, 0)
) to the bottom-right cell (i.e., (n - 1, n - 1)
) such that:
- All the visited cells of the path are
0
. - All the adjacent cells of the path are 8-directionally connected (i.e., they are different and they share an edge or a corner).
The length of a clear path is the number of visited cells of this path.
Input: grid = [[0,1],[1,0]] Output: 2
Input: grid = [[0,0,0],[1,1,0],[1,1,0]] Output: 4
Input: grid = [[1,0,0],[1,1,0],[1,1,0]] Output: -1
n == grid.length
n == grid[i].length
1 <= n <= 100
grid[i][j] is 0 or 1
use std::collections::HashSet;
use std::collections::VecDeque;
impl Solution {
pub fn shortest_path_binary_matrix(grid: Vec<Vec<i32>>) -> i32 {
let n = grid.len();
let mut seen = vec![(0, 0)].into_iter().collect::<HashSet<_>>();
let mut cells = vec![(0, 0, 1)].into_iter().collect::<VecDeque<_>>();
if grid[0][0] == 1 || grid[n - 1][n - 1] == 1 {
return -1;
}
while let Some((x, y, length)) = cells.pop_front() {
if x == n - 1 && y == n - 1 {
return length;
}
for x_ in x.saturating_sub(1)..(x + 2).min(n) {
for y_ in y.saturating_sub(1)..(y + 2).min(n) {
if grid[x_][y_] == 0 && !seen.contains(&(x_, y_)) {
seen.insert((x_, y_));
cells.push_back((x_, y_, length + 1));
}
}
}
}
-1
}
}