In a given grid, each cell can have one of three values:
- the value
0
representing an empty cell; - the value
1
representing a fresh orange; - the value
2
representing a rotten orange.
Every minute, any fresh orange that is adjacent (4-directionally) to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1
instead.
Input: [[2,1,1],[1,1,0],[0,1,1]] Output: 4
Input: [[2,1,1],[0,1,1],[1,0,1]] Output: -1 Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
Input: [[0,2]] Output: 0 Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
1 <= grid.length <= 10
1 <= grid[0].length <= 10
grid[i][j]
is only0
,1
, or2
.
impl Solution {
pub fn oranges_rotting(grid: Vec<Vec<i32>>) -> i32 {
let mut prev = grid;
for minute in 0..59 {
let mut no_fresh = true;
let mut new = prev.clone();
for j in 0..prev.len() {
for k in 0..prev[0].len() {
match prev[j][k] {
1 => no_fresh = false,
2 => {
if j > 0 && prev[j - 1][k] == 1 {
new[j - 1][k] = 2;
}
if k > 0 && prev[j][k - 1] == 1 {
new[j][k - 1] = 2;
}
if j < prev.len() - 1 && prev[j + 1][k] == 1 {
new[j + 1][k] = 2;
}
if k < prev[0].len() - 1 && prev[j][k + 1] == 1 {
new[j][k + 1] = 2;
}
},
_ => (),
};
}
}
if no_fresh {
return minute;
}
prev = new;
}
-1
}
}