You are given an integer array arr
. From some starting index, you can make a series of jumps. The (1st, 3rd, 5th, ...) jumps in the series are called odd-numbered jumps, and the (2nd, 4th, 6th, ...) jumps in the series are called even-numbered jumps. Note that the jumps are numbered, not the indices.
You may jump forward from index i
to index j
(with i < j
) in the following way:
- During odd-numbered jumps (i.e., jumps 1, 3, 5, ...), you jump to the index
j
such thatarr[i] <= arr[j]
andarr[j]
is the smallest possible value. If there are multiple such indicesj
, you can only jump to the smallest such indexj
. - During even-numbered jumps (i.e., jumps 2, 4, 6, ...), you jump to the index j such that
arr[i] >= arr[j]
andarr[j]
is the largest possible value. If there are multiple such indicesj
, you can only jump to the smallest such indexj
. - It may be the case that for some index
i
, there are no legal jumps.
A starting index is good if, starting from that index, you can reach the end of the array (index arr.length - 1
) by jumping some number of times (possibly 0 or more than once).
Return the number of good starting indices.
Input: arr = [10,13,12,14,15] Output: 2 Explanation: From starting index i = 0, we can make our 1st jump to i = 2 (since arr[2] is the smallest among arr[1], arr[2], arr[3], arr[4] that is greater or equal to arr[0]), then we cannot jump any more. From starting index i = 1 and i = 2, we can make our 1st jump to i = 3, then we cannot jump any more. From starting index i = 3, we can make our 1st jump to i = 4, so we have reached the end. From starting index i = 4, we have reached the end already. In total, there are 2 different starting indices i = 3 and i = 4, where we can reach the end with some number of jumps.
Input: arr = [2,3,1,1,4] Output: 3 Explanation: From starting index i = 0, we make jumps to i = 1, i = 2, i = 3: During our 1st jump (odd-numbered), we first jump to i = 1 because arr[1] is the smallest value in [arr[1], arr[2], arr[3], arr[4]] that is greater than or equal to arr[0]. During our 2nd jump (even-numbered), we jump from i = 1 to i = 2 because arr[2] is the largest value in [arr[2], arr[3], arr[4]] that is less than or equal to arr[1]. arr[3] is also the largest value, but 2 is a smaller index, so we can only jump to i = 2 and not i = 3 During our 3rd jump (odd-numbered), we jump from i = 2 to i = 3 because arr[3] is the smallest value in [arr[3], arr[4]] that is greater than or equal to arr[2]. We can't jump from i = 3 to i = 4, so the starting index i = 0 is not good. In a similar manner, we can deduce that: From starting index i = 1, we jump to i = 4, so we reach the end. From starting index i = 2, we jump to i = 3, and then we can't jump anymore. From starting index i = 3, we jump to i = 4, so we reach the end. From starting index i = 4, we are already at the end. In total, there are 3 different starting indices i = 1, i = 3, and i = 4, where we can reach the end with some number of jumps.
Input: arr = [5,1,3,4,2] Output: 3 Explanation: We can reach the end from starting indices 1, 2, and 4.
1 <= arr.length <= 2 * 104
0 <= arr[i] < 105
from sortedcontainers import SortedList, SortedKeyList
class Solution:
def oddEvenJumps(self, arr: List[int]) -> int:
n = len(arr)
asc = SortedList()
desc = SortedKeyList(key=lambda x: [-x[0], x[1]])
dp = [[False, False] for _ in range(n)]
dp[n - 1] = [True, True]
ret = 0
for i in range(n)[::-1]:
j = asc.bisect_left([arr[i], 0])
j = asc[j][1] if j < len(asc) else n
dp[i][0] |= j < n and dp[j][1]
j = desc.bisect_left([arr[i], 0])
j = desc[j][1] if j < len(desc) else n
dp[i][1] |= j < n and dp[j][0]
asc.add([arr[i], i])
desc.add([arr[i], i])
if dp[i][0]:
ret += 1
return ret