Given an integer array arr
, and an integer target
, return the number of tuples i, j, k
such that i < j < k
and arr[i] + arr[j] + arr[k] == target
.
As the answer can be very large, return it modulo 109 + 7
.
Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8 Output: 20 Explanation: Enumerating by the values (arr[i], arr[j], arr[k]): (1, 2, 5) occurs 8 times; (1, 3, 4) occurs 8 times; (2, 2, 4) occurs 2 times; (2, 3, 3) occurs 2 times.
Input: arr = [1,1,2,2,2,2], target = 5 Output: 12 Explanation: arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times: We choose one 1 from [1,1] in 2 ways, and two 2s from [2,2,2,2] in 6 ways.
Input: arr = [2,1,3], target = 6 Output: 1 Explanation: (1, 2, 3) occured one time in the array so we return 1.
3 <= arr.length <= 3000
0 <= arr[i] <= 100
0 <= target <= 300
use std::collections::HashMap;
impl Solution {
pub fn three_sum_multi(arr: Vec<i32>, target: i32) -> i32 {
let mut hashmap = HashMap::new();
let mut ret = 0;
for j in 0..arr.len() {
ret = (ret + hashmap.get(&(target - arr[j])).unwrap_or(&0)) % 1_000_000_007;
for i in 0..j {
hashmap
.entry(arr[i] + arr[j])
.and_modify(|c| *c += 1)
.or_insert(1);
}
}
ret
}
}