Skip to content

Latest commit

 

History

History
49 lines (39 loc) · 1.5 KB

File metadata and controls

49 lines (39 loc) · 1.5 KB

714. Best Time to Buy and Sell Stock with Transaction Fee

You are given an array prices where prices[i] is the price of a given stock on the ith day, and an integer fee representing a transaction fee.

Find the maximum profit you can achieve. You may complete as many transactions as you like, but you need to pay the transaction fee for each transaction.

Note:

  • You may not engage in multiple transactions simultaneously (i.e., you must sell the stock before you buy again).
  • The transaction fee is only charged once for each stock purchase and sale.

Example 1:

Input: prices = [1,3,2,8,4,9], fee = 2
Output: 8
Explanation: The maximum profit can be achieved by:
- Buying at prices[0] = 1
- Selling at prices[3] = 8
- Buying at prices[4] = 4
- Selling at prices[5] = 9
The total profit is ((8 - 1) - 2) + ((9 - 4) - 2) = 8.

Example 2:

Input: prices = [1,3,7,5,10,3], fee = 3
Output: 6

Constraints:

  • 1 <= prices.length <= 5 * 104
  • 1 <= prices[i] < 5 * 104
  • 0 <= fee < 5 * 104

Solutions (Rust)

1. Solution

impl Solution {
    pub fn max_profit(prices: Vec<i32>, fee: i32) -> i32 {
        let (mut x, mut y) = (0, -prices[0] - fee);

        for i in 1..prices.len() {
            (x, y) = (x.max(y + prices[i]), y.max(x - prices[i] - fee));
        }

        x
    }
}