Nearly everyone has used the Multiplication Table. The multiplication table of size m x n
is an integer matrix mat
where mat[i][j] == i * j
(1-indexed).
Given three integers m
, n
, and k
, return the kth
smallest element in the m x n
multiplication table.
Input: m = 3, n = 3, k = 5 Output: 3 Explanation: The 5th smallest number is 3.
Input: m = 2, n = 3, k = 6 Output: 6 Explanation: The 6th smallest number is 6.
1 <= m, n <= 3 * 104
1 <= k <= m * n
impl Solution {
pub fn find_kth_number(m: i32, n: i32, k: i32) -> i32 {
let (mut m, mut n) = (m, n);
let mut lo = 1;
let mut hi = m * n;
let mut flag = false;
let mut count = 0;
if m > n {
(m, n) = (n, m);
}
while lo < hi {
let mi = (lo + hi) / 2;
flag = false;
count = 0;
for i in 1..=m {
count += n.min(mi / i);
flag |= mi % i == 0 && mi / i <= n;
}
if count < k {
lo = mi + 1;
} else {
hi = mi;
}
}
if flag {
hi
} else if count == k {
(1..=m)
.map(|i| n.min(hi / i + 1) * i)
.filter(|&x| x > hi)
.min()
.unwrap()
} else {
(1..=m).map(|i| n.min(hi / i) * i).max().unwrap()
}
}
}