A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Input: A = [5,4,0,3,1,6,2] Output: 4 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2. One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
- N is an integer within the range [1, 20,000].
- The elements of A are all distinct.
- Each element of A is an integer within the range [0, N-1].
# @param {Integer[]} nums
# @return {Integer}
def array_nesting(nums)
ret = 1
(0...nums.size).each do |i|
next if nums[i] < 0
length = 0
j = i
while nums[j] >= 0
nums[j] = -nums[j] - 1
length += 1
j = -nums[j] - 1
end
ret = [ret, length].max
end
ret
end
impl Solution {
pub fn array_nesting(mut nums: Vec<i32>) -> i32 {
let mut ret = 1;
for i in 0..nums.len() {
if nums[i] < 0 {
continue;
}
let mut length = 0;
let mut j = i;
while nums[j] >= 0 {
nums[j] = -nums[j] - 1;
length += 1;
j = (-nums[j] - 1) as usize;
}
ret = ret.max(length);
}
ret
}
}