Given four lists A, B, C, D of integer values, compute how many tuples (i, j, k, l)
there are such that A[i] + B[j] + C[k] + D[l]
is zero.
To make problem a bit easier, all A, B, C, D have same length of N where 0 ≤ N ≤ 500. All integers are in the range of -228 to 228 - 1 and the result is guaranteed to be at most 231 - 1.
Input: A = [ 1, 2] B = [-2,-1] C = [-1, 2] D = [ 0, 2] Output: 2 Explanation: The two tuples are: 1. (0, 0, 0, 1) -> A[0] + B[0] + C[0] + D[1] = 1 + (-2) + (-1) + 2 = 0 2. (1, 1, 0, 0) -> A[1] + B[1] + C[0] + D[0] = 2 + (-1) + (-1) + 0 = 0
use std::collections::HashMap;
impl Solution {
pub fn four_sum_count(a: Vec<i32>, b: Vec<i32>, c: Vec<i32>, d: Vec<i32>) -> i32 {
let mut ans = 0;
let mut map = HashMap::new();
for num_a in &a {
for num_b in &b {
*map.entry(num_a + num_b).or_insert(0) += 1;
}
}
for num_c in &c {
for num_d in &d {
ans += map.get(&-(num_c + num_d)).unwrap_or(&0);
}
}
ans
}
}