You are given n
balloons, indexed from 0
to n - 1
. Each balloon is painted with a number on it represented by an array nums
. You are asked to burst all the balloons.
If you burst the ith
balloon, you will get nums[i - 1] * nums[i] * nums[i + 1]
coins. If i - 1
or i + 1
goes out of bounds of the array, then treat it as if there is a balloon with a 1
painted on it.
Return the maximum coins you can collect by bursting the balloons wisely.
Input: nums = [3,1,5,8] Output: 167 Explanation: nums = [3,1,5,8] --> [3,5,8] --> [3,8] --> [8] --> [] coins = 3*1*5 + 3*5*8 + 1*3*8 + 1*8*1 = 167
Input: nums = [1,5] Output: 10
n == nums.length
1 <= n <= 300
0 <= nums[i] <= 100
from functools import cache
class Solution:
def maxCoins(self, nums: List[int]) -> int:
@cache
def subarrayMaxCoins(i: int, j: int) -> int:
if i >= j:
return 0
ret = 0
for k in range(i, j):
coins = nums[k]
if i > 0:
coins *= nums[i - 1]
if j < len(nums):
coins *= nums[j]
coins += subarrayMaxCoins(i, k) + subarrayMaxCoins(k + 1, j)
ret = max(ret, coins)
return ret
return subarrayMaxCoins(0, len(nums))