Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
impl Solution {
pub fn minimum_total(triangle: Vec<Vec<i32>>) -> i32 {
let mut triangle = triangle;
for r in 1..triangle.len() {
triangle[r][0] += triangle[r - 1][0];
triangle[r][r] += triangle[r - 1][r - 1];
for i in 1..(triangle[r].len() - 1) {
triangle[r][i] += triangle[r - 1][i - 1].min(triangle[r - 1][i])
}
}
*triangle.last().unwrap().iter().min().unwrap()
}
}