- 一、引言
- 二、简单数字的奇特技巧
- 三、文本数据:展开、过滤和分块
- 四、特征缩放的效果:从词袋到 TF-IDF
- 五、类别特征:机器鸡时代的鸡蛋计数
- 六、降维:使用 PCA 压缩数据集
- 七、非线性特征提取和模型堆叠
- 八、自动化特征提取器:图像特征提取和深度学习
- 九、回到特征:将它们放到一起(备注:代码还在测试)
- 附录、线性模型和线性代数基础
内容简介
第 1 章从数字数据的基本特征工程开始:过滤,合并,缩放,日志转换和能量转换以及交互功能。
第 2 章和第 3 章深入探讨了自然文本的特征工程:bag-of-words,n-gram 和短语检测。
第 4 章将 tf-idf 作为特征缩放的例子,并讨论它的工作原理。
第 5 章讨论分类变量的高效编码技术,包括特征哈希和 bin-counting。
第 6 章中进行主成分分析,我们深入机器学习的领域。
第 7 章将 k-means 看作一种特征化技术,它说明了模型堆叠的有效理论。
第 8 章都是关于图像的,在特征提取方面比文本数据更具挑战性。在得出深度学习是最新图像特征提取技术的解释之前,我们着眼于两种手动特征提取技术 SIFT 和 HOG。
第 9 章中完成了一个端到端示例中的几种不同技术,为学术论文数据集创建了一个推荐器。
代码修改和整理:黄海广,原文修改成jupyter notebook格式,并增加和修改了部分代码,测试全部通过,所有数据集已经放在百度云下载。
该选择器基于python编写,有五种方法来标识要删除的特征:
- 缺失值
- 唯一值
- 共线特征
- 零重要性特征
- 低重要性特征
如果需要引用这个Repo:
格式: fengdu78, Data-Science-Notes, (2019), GitHub repository, https://github.com/fengdu78/Data-Science-Notes