Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

UnicodeEncodeError: 'charmap' codec can't encode character '\u2264' in position 30: character maps to <undefined> #50

Open
lordegeology opened this issue Oct 30, 2023 · 2 comments

Comments

@lordegeology
Copy link

lordegeology commented Oct 30, 2023

from timeshap.explainer import global_report
sequence_id_feat = 'id'
time_feat = 'Date'
#pos_dataset = d_test_normalized[d_test_normalized['label'] == 1]
schema = schema = list(trial.columns)
pruning_dict = {'tol': [ 0.025, 0.05],'path': 'prun_all_tf.csv'}
event_dict = {'path': 'event_all_tf.csv', 'rs': 42, 'nsamples': 32000}
feature_dict = {'path': 'feature_all_tf.csv','rs': 42, 'nsamples': 32000, 'feature_names': model_features, 'plot_features': plot_feats}
prun_stats, global_plot = global_report(f, trial, pruning_dict, event_dict, feature_dict, average_event, model_features, schema, sequence_id_feat, time_feat, )
prun_stats

While running the above code, I am getting the following error related to encoding:

UnicodeEncodeError Traceback (most recent call last)
~\AppData\Local\Temp\ipykernel_14916\4246322402.py in
7 event_dict = {'path': 'event_all_tf.csv', 'rs': 42, 'nsamples': 32000}
8 feature_dict = {'path': 'feature_all_tf.csv','rs': 42, 'nsamples': 32000, 'feature_names': model_features, 'plot_features': plot_feats}
----> 9 prun_stats, global_plot = global_report(f, trial, pruning_dict, event_dict, feature_dict, average_event, model_features, schema, sequence_id_feat, time_feat, )
10 prun_stats

c:\programdata\anaconda3\lib\site-packages\timeshap\explainer\global_methods.py in global_report(f, data, pruning_dict, event_dict, feature_dict, baseline, model_features, schema, entity_col, time_col, append_to_files, max_instances, verbose)
294 """
295 prun_indexes, event_data, feat_data =
--> 296 calc_global_explanations(f, data, pruning_dict, event_dict,
297 feature_dict, baseline, model_features,
298 schema, entity_col, time_col, append_to_files,

c:\programdata\anaconda3\lib\site-packages\timeshap\explainer\global_methods.py in calc_global_explanations(f, data, pruning_dict, event_dict, feature_dict, baseline, model_features, schema, entity_col, time_col, append_to_files, max_instances, verbose)
209 else:
210 print("Calculating pruning algorithm")
--> 211 prun_indexes = prune_all(f, data, pruning_dict, baseline,
212 model_features_index, schema, entity_col_index,
213 time_col_index, append_to_files, verbose)

c:\programdata\anaconda3\lib\site-packages\timeshap\explainer\pruning.py in prune_all(f, data, pruning_dict, baseline, model_features, schema, entity_col, time_col, append_to_files, verbose)
414 with open(file_path, 'a', newline='') as file:
415 writer = csv.writer(file, delimiter=',')
--> 416 writer.writerows(local_pruning_data.values)
417
418 prun_data = pd.DataFrame(np.concatenate(ret_prun_data), columns=names)

c:\programdata\anaconda3\lib\encodings\cp1252.py in encode(self, input, final)
17 class IncrementalEncoder(codecs.IncrementalEncoder):
18 def encode(self, input, final=False):
---> 19 return codecs.charmap_encode(input,self.errors,encoding_table)[0]
20
21 class IncrementalDecoder(codecs.IncrementalDecoder):

UnicodeEncodeError: 'charmap' codec can't encode character '\u2264' in position 30: character maps to

Is the issue while writing to the csv or vice versa? I am pretty lost here.

@daniegr
Copy link

daniegr commented Mar 21, 2024

I am also experiencing this global_report issue with recommended dependencies (except downgrade of shap to 0.42.1 due to renaming of explainers: #56). Any progress on this?

@GabrielWeisser96
Copy link

Any progress ?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants