Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add pytorch implementations for jagged operations #137

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
196 changes: 196 additions & 0 deletions generative_recommenders/ops/pytorch/jagged.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#!/usr/bin/env python3

# pyre-strict

from typing import Tuple

import torch


def pytorch_jagged_dense_bmm(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
) -> torch.Tensor:
padded_jagged = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged,
offsets=[seq_offsets],
max_lengths=[max_seq_len],
padding_value=0.0,
)
bmm_out = torch.bmm(padded_jagged, dense)
jagged_bmm_out = torch.ops.fbgemm.dense_to_jagged(bmm_out, [seq_offsets])[0]

return jagged_bmm_out


def pytorch_jagged_dense_broadcast_add(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
) -> torch.Tensor:
padded_jagged = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged,
offsets=[seq_offsets],
max_lengths=[max_seq_len],
padding_value=0.0,
)
out = padded_jagged + dense.unsqueeze(1)
jagged_out = torch.ops.fbgemm.dense_to_jagged(out, [seq_offsets])[0]
return jagged_out


def pytorch_jagged_dense_bmm_broadcast_add(
max_seq_len: int,
seq_offsets: torch.Tensor,
jagged: torch.Tensor,
dense: torch.Tensor,
bias: torch.Tensor,
) -> torch.Tensor:
jagged = pytorch_jagged_dense_bmm(max_seq_len, seq_offsets, jagged, dense)
return pytorch_jagged_dense_broadcast_add(
max_seq_len=max_seq_len,
seq_offsets=seq_offsets,
jagged=jagged,
dense=bias,
)


@torch.fx.wrap
def _arange(len: int, device: torch.device) -> torch.Tensor:
return torch.arange(len, device=device)


def pytorch_concat_2D_dense_jagged(
jagged_max_seq_len: int,
jagged_offsets: torch.Tensor,
jagged_values: torch.Tensor,
dense_values: torch.Tensor,
) -> torch.Tensor:
B, dense_size, D = dense_values.size()
jagged_dense = torch.ops.fbgemm.jagged_to_padded_dense(
values=jagged_values,
offsets=[jagged_offsets],
max_lengths=[jagged_max_seq_len],
padding_value=0.0,
)
concatted_dense = torch.cat([dense_values, jagged_dense], dim=1)
concatted_offsets = (
dense_size * _arange(B + 1, device=jagged_offsets.device) + jagged_offsets
)
return torch.ops.fbgemm.dense_to_jagged(
concatted_dense,
[concatted_offsets],
)[0]


def pytorch_concat_2D_jagged_jagged(
max_seq_len_left: int,
offsets_left: torch.Tensor,
values_left: torch.Tensor,
max_seq_len_right: int,
offsets_right: torch.Tensor,
values_right: torch.Tensor,
n_prefix_from_right: int,
) -> torch.Tensor:
_, D = values_left.shape
max_seq_len = max_seq_len_left + max_seq_len_right
B = offsets_left.shape[0] - 1

lengths_a = offsets_left[1:] - offsets_left[:-1]
lengths_b = offsets_right[1:] - offsets_right[:-1]
dense_a = torch.ops.fbgemm.jagged_to_padded_dense(
values=values_left,
offsets=[offsets_left],
max_lengths=[max_seq_len_left],
padding_value=0.0,
)
dense_b = torch.ops.fbgemm.jagged_to_padded_dense(
values=values_right,
offsets=[offsets_right],
max_lengths=[max_seq_len_right],
padding_value=0.0,
)
dense_b_prefix, dense_b_suffix = torch.split(
dense_b, [n_prefix_from_right, max_seq_len_right - n_prefix_from_right], dim=1
)
dense = torch.cat([dense_b_prefix, dense_a, dense_b_suffix], dim=1)
mask = _arange(max_seq_len, device=offsets_left.device).expand(B, max_seq_len)
mask = torch.logical_or(
mask < lengths_a.view(B, 1) + n_prefix_from_right,
torch.logical_and(
mask >= max_seq_len_left + n_prefix_from_right,
mask < max_seq_len_left + lengths_b.view(B, 1),
),
)
return dense.view(-1, D)[mask.view(-1), :]


def pytorch_jagged_remove_first_or_last_1D(
values: torch.Tensor,
lengths: torch.Tensor,
offsets: torch.Tensor,
max_seq_len: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
values = values.view(-1, 1)
shrunk_lengths = lengths - 1
k_lengths = torch.stack([shrunk_lengths, torch.ones_like(lengths)], dim=1).view(-1)
q_lengths = torch.stack([torch.ones_like(lengths), shrunk_lengths], dim=1).view(-1)
all_indices = torch.arange(
start=0, end=q_lengths.numel(), device=values.device
).reshape(-1, 2)
q_indices, k_indices = all_indices[:, 1], all_indices[:, 0]
values_no_first, _ = torch.ops.fbgemm.jagged_index_select(
values, q_lengths, q_indices
)
values_no_last, _ = torch.ops.fbgemm.jagged_index_select(
values, k_lengths, k_indices
)
return values_no_first.squeeze(), values_no_last.squeeze()


def pytorch_replace_last_n_with_jagged(
max_seq_len_left: int,
offsets_left: torch.Tensor,
values_left: torch.Tensor,
offsets_right: torch.Tensor,
values_right: torch.Tensor,
) -> torch.Tensor:
B = offsets_left.shape[0] - 1
lengths_a = offsets_left[1:] - offsets_left[:-1]
lengths_b = offsets_right[1:] - offsets_right[:-1]
dense_a = torch.ops.fbgemm.jagged_to_padded_dense(
values=values_left,
offsets=[offsets_left],
max_lengths=[max_seq_len_left],
padding_value=0.0,
)
raw_mask = torch.arange(max_seq_len_left, device=offsets_left.device).expand(
B, max_seq_len_left
)
mask = torch.logical_and(
raw_mask >= (lengths_a - lengths_b).unsqueeze(1),
raw_mask < lengths_a.unsqueeze(1),
)
dense_a[mask] = values_right
jagged_a = torch.ops.fbgemm.dense_to_jagged(
dense_a,
[offsets_left],
)[0]
return jagged_a