Skip to content

Latest commit

 

History

History
307 lines (254 loc) · 11.3 KB

README.md

File metadata and controls

307 lines (254 loc) · 11.3 KB

gasper

CRAN_Status_Badge CRAN Downloads CRAN Downloads

Graph signal processing in R.

Download and Install

Install the devtools package if you haven’t already.

install.packages("devtools")

To install the development package, type the following at the R command line:

devtools::install_github("fabnavarro/gasper")
library(gasper)

To install the CRAN version of the package, type the following:

install.packages("gasper")

To obtain the complete list of package functions, simply type

help(package = "gasper")

Getting Started

See the package vignette or documentation for more details. You could also build and see the vignette associated with the package using the following lines of code

devtools::install_github("fabnavarro/gasper", build_vignettes = TRUE)
library(gasper)

Then, to view the vignette

vignette("gasper_vignette")

For an illustration of the features of the package, you can also refer to the following repo SGWT-SURE which provides an effective generalization of the Stein Unbiased Risk Estimate (SURE) for signal denoising/regression on graphs using Spectral Graph Wavelet Transform.

Interface to the SuiteSparse Matrix Collection

The package also provides an interface to the SuiteSparse Matrix Collection, which is a large and actively growing set of sparse matrix benchmarks gathered from a broad spectrum of applications (for details see https://sparse.tamu.edu/).

Included in the package, the SuiteSparseData dataset contains data from the SuiteSparse Matrix Collection. The structure of this dataframe mirrors the structure presented on the SuiteSparse Matrix Collection website, allowing users to query and explore the dataset directly within R.

Here is a sample of the SuiteSparseData dataset, showing the first 15 rows of the table:

SuiteSparseData_subset <- head(SuiteSparseData, 15)
ID Name Group Rows Cols Nonzeros Kind Date
1 1138_bus HB 1138 1138 4054 Power Network Problem 1985
2 494_bus HB 494 494 1666 Power Network Problem 1985
3 662_bus HB 662 662 2474 Power Network Problem 1985
4 685_bus HB 685 685 3249 Power Network Problem 1985
5 abb313 HB 313 176 1557 Least Squares Problem 1974
6 arc130 HB 130 130 1037 Materials Problem 1974
7 ash219 HB 219 85 438 Least Squares Problem 1974
8 ash292 HB 292 292 2208 Least Squares Problem 1974
9 ash331 HB 331 104 662 Least Squares Problem 1974
10 ash608 HB 608 188 1216 Least Squares Problem 1974
11 ash85 HB 85 85 523 Least Squares Problem 1974
12 ash958 HB 958 292 1916 Least Squares Problem 1974
13 bcspwr01 HB 39 39 131 Power Network Problem 1981
14 bcspwr02 HB 49 49 167 Power Network Problem 1981
15 bcspwr03 HB 118 118 476 Power Network Problem 1981

Here’s an example to retrieve all undirected weighted graphs with the number of columns and rows between 50 and 150:

filtered_mat <- SuiteSparseData[SuiteSparseData$Kind == "Undirected Weighted Graph" & 
                                SuiteSparseData$Rows >= 50 & SuiteSparseData$Rows <= 150 &
                                SuiteSparseData$Cols >= 50 & SuiteSparseData$Cols <= 150, ]
ID Name Group Rows Cols Nonzeros Kind Date
1506 1506 Journals Pajek 124 124 12068 Undirected Weighted Graph 2000
1519 1519 Sandi_authors Pajek 86 86 248 Undirected Weighted Graph 1999
2400 2400 lesmis Newman 77 77 508 Undirected Weighted Graph 1993
2858 2858 breasttissue_10NN ML_Graph 106 106 1412 Undirected Weighted Graph 2020
2872 2872 iris_dataset_30NN ML_Graph 150 150 5518 Undirected Weighted Graph 2020

The download_graph function allows to download a test matrix from this collection. For example:

matrixname <- "usroads-48"
groupname <- "Gleich"
download_graph(matrixname,groupname)
attributes(`usroads-48`)
#> $names
#> [1] "sA"   "xy"   "dim"  "temp"

usroads-48 is composed of the sparse matrix sA (in compressed sparse column format), coordinates xy (if present, in a data.frame), dim the number of rows, columns and numerically nonzero elements and temp path to the temporary directory where the matrix and downloaded files (including singular values if requested) are stored. Information about the matrix can be display via file.show(paste(usroads-48$temp,"usroads-48",sep="")) or in the console:

cat(readLines(paste(`usroads-48`$temp,"usroads-48",sep="")), sep = "\n")
#> %%MatrixMarket matrix coordinate pattern symmetric
#> %-------------------------------------------------------------------------------
#> % UF Sparse Matrix Collection, Tim Davis
#> % http://www.cise.ufl.edu/research/sparse/matrices/Gleich/usroads-48
#> % name: Gleich/usroads-48
#> % [Continental US road network (with xy coordinates)]
#> % id: 2332
#> % date: 2010
#> % author: D. Gleich
#> % ed: T. Davis
#> % fields: name title A id date author ed kind aux
#> % aux: coord
#> % kind: undirected graph
#> %-------------------------------------------------------------------------------
#> 126146 126146 161950

download_graph function has an optional svd argument; setting “svd = TRUE” downloads a “.mat” file containing the singular values of the matrix, if available. To access the temporary folder use, for example,

list.files(`usroads-48`$temp)
#> [1] "usroads-48"           "usroads-48_coord.mtx" "usroads-48.mtx"

In addition, the get_graph_info function allows to retrieve detailed information about the matrix from the SuiteSparse Matrix Collection website (rvest package needs to be installed to use it). This function extracts and formats various properties and metadata associated with the matrix (i.e., it fetches the two to three tables with “MatrixInformation,” “MatrixProperties” and, if available, “SVDStatistics”), providing a convenient way to access this overview of the graph directly within R. Here is how you can use it:

graph_info <- get_graph_info(matrixname, groupname)
graph_info
MatrixInformation
Name usroads-48
Group Gleich
Matrix ID 2332
Num Rows 126,146
Num Cols 126,146
Nonzeros 323,900
Pattern Entries 323,900
Kind Undirected Graph
Symmetric Yes
Date 2010
Author D. Gleich
Editor T. Davis
MatrixProperties
Structural Rank
Structural Rank Full
Num Dmperm Blocks
Strongly Connect Components 1
Num Explicit Zeros 0
Pattern Symmetry 100%
Numeric Symmetry 100%
Cholesky Candidate no
Positive Definite no
Type binary

The download_graph function has an optional argument add_info which, when set to TRUE, automatically calls get_graph_info and appends the retrieved information to the output of download_graph. This makes it easy to get both the graph data and its associated information in a single function call.

downloaded_graph <- download_graph(matrixname, groupname, add_info = TRUE)
downloaded_graph$info

It is also possible to plot a (planar) graph and plot signals defined on top of it. For example:

f <- sin(rnorm(nrow(`usroads-48`$xy)))
plot_graph(`usroads-48`, size = 0.05)
plot_signal(`usroads-48`, f, size = f/4)

In cases where these coordinates are not supplied, plot_graph employs simple spectral graph embedding to calculate some node coordinates (nodes that are connected or share structural similarities in the graph are placed close to each other in the spectral drawing). This is done using the function spectral_coords, which computes the spectral coordinates based on the eigenvectors associated with the smallest non-zero eigenvalues of the graph’s Laplacian.

matrixname <- "delaunay_n10"
groupname <- "DIMACS10"
download_graph(matrixname,groupname)
attributes(delaunay_n10)
#> $names
#> [1] "sA"   "dim"  "temp"
plot_graph(delaunay_n10)
plot_signal(delaunay_n10,
            cos(1:nrow(delaunay_n10$sA)))

graph_info <- get_graph_info(matrixname, groupname)
graph_info
SVDStatistics
Structural Rank
Structural Rank Full
Num Dmperm Blocks
Strongly Connect Components 1
Num Explicit Zeros 0
Pattern Symmetry 100%
Numeric Symmetry 100%
Cholesky Candidate no
Positive Definite no
Type binary
SVD Statistics
Matrix Norm 6.293702e+00
Minimum Singular Value 1.875512e-03
Condition Number 3.355724e+03
Rank 1,024
sprank(A)-rank(A)
Null Space Dimension 0
Full Numerical Rank? yes