Skip to content

Time Series Analysis of Airline Passenger Data, In this time series forecasting, taking data from kaggle site and applying ARIMA and SARIMAX model to evaluate seasional trends of passenger travelling via airlines.

Notifications You must be signed in to change notification settings

ekanshojha/Time-Series-Analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

Time-Series-Analysis

Airline Passenger

#Estimation Time Series Decomposition (ETS) import numpy as np import matplotlib.pyplot as plt from sklearn.neighbors import KNeighborsClassifier from statsmodels.tsa.seasonal import seasonal_decompose import pandas as pd
from pmdarima import auto_arima dataset=pd.read_csv("AirPassengers.csv",index_col='Month',parse_dates=True) result=seasonal_decompose(dataset['#Passengers'],model='multiplicative') result.plot() plt.show() print(dataset) result=auto_arima(dataset['#Passengers'],start_p=1,start_q=1,max_p=3,max_q=3,m=12,start_P=0,seasonal=True,d=None,D=1,trace=True,stepwise=True)

result.summary()

result.plot()

plt.show()

print(dataset)

#SARIMAX from statsmodels.tsa.statespace.sarimax import SARIMAX train=dataset.iloc[:len(dataset)-12] test=dataset.iloc[len(dataset)-12:] model=SARIMAX(train['#Passengers'],order=(0,1,1),seasonal_order=(2,1,1,12)) result=model.fit() result.summary() start=len(train) end=len(train)+len(test)-1 pred=result.predict(start,end,typ='levels').rename('prediction') pred.plot(legend=True) test['#Passengers'].plot(legend=True) plt.show()

About

Time Series Analysis of Airline Passenger Data, In this time series forecasting, taking data from kaggle site and applying ARIMA and SARIMAX model to evaluate seasional trends of passenger travelling via airlines.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages