-
Notifications
You must be signed in to change notification settings - Fork 6
/
mlp_electricity_us.py
204 lines (158 loc) · 8.22 KB
/
mlp_electricity_us.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import sys
import numpy as np
import pandas
import math
import matplotlib.pylab as plt
# import talib
seed = 7
np.random.seed(seed) # for reproducibility
from processing import *
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Dropout
from keras.optimizers import SGD, Adam
from keras.callbacks import CSVLogger, EarlyStopping, ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras import regularizers
start_time = time.time()
# USD-BRL
dataframe = pandas.read_csv('total-electricity-consumption-us.csv', sep=',', engine='python', header=0)
dataset_original = dataframe['kwh(million)']
batch_size = 64
nb_epoch = 1000
patience = 1000
TARGET_TIME = 1
LAG_SIZE = 1
EMB_SIZE = 1
def evaluate_model(model, name, n_layers, ep, normalization, TRAIN_SIZE, dataset, ewm_dolar):
# X_train, X_test, Y_train, Y_test = dataset
# X_trainp, X_testp, Y_trainp, Y_testp = dadosp
if (normalization == 'AN'):
X_train, X_test, Y_train, Y_test, scaler, shift_train, shift_test, X_trainp, X_testp, Y_trainp, Y_testp = nn_an(
dataset, ewm_dolar, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
if (normalization == 'SW'):
X_train, X_test, Y_train, Y_test, scaler_train, scaler_test, X_trainp, X_testp, Y_trainp, Y_testp = nn_sw(
dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
if (normalization == 'MM'):
X_train, X_test, Y_train, Y_test, scaler = nn_mm(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
if (normalization == 'ZS'):
X_train, X_test, Y_train, Y_test, scaler = nn_zs(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
if (normalization == 'DS'):
X_train, X_test, Y_train, Y_test, maximum = nn_ds(dataset, TRAIN_SIZE, TARGET_TIME, LAG_SIZE)
csv_logger = CSVLogger('output/%d_layers/%s_%s.csv' % (n_layers, name, normalization))
reduce_lr = ReduceLROnPlateau(monitor='val_loss')
es = EarlyStopping(monitor='val_loss', patience=patience)
# mcp = ModelCheckpoint('output/mnist_adaptative_%dx800/%s.checkpoint' % (n_layers, name), save_weights_only=True)
# tb = TensorBoard(log_dir='output/mnist_adaptative_%dx800' % n_layers, histogram_freq=1, write_graph=False, write_images=False)
# sgd = SGD(lr=0.01, momentum=0.9, nesterov=True)
# sgd = SGD(lr=0.64, momentum=0.8, nesterov=False)
# optimizer = sgd
# optimizer = Adam(lr=0.002)
optimizer = 'adam'
# optimizer = "adadelta"
# optimizer = "nadam"
model.compile(loss='mean_squared_error', optimizer=optimizer)
history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=ep, verbose=0, validation_split=0.1,
callbacks=[csv_logger, es])
# plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
# plt.title('model loss')
# plt.ylabel('loss')
# plt.xlabel('epoch')
# plt.legend(['train', 'test'], loc='upper left')
# plt.show()
# trainScore = model.evaluate(X_train, Y_train, verbose=0)
# print('Train Score: %f MSE (%f RMSE)' % (trainScore, math.sqrt(trainScore)))
# testScore = model.evaluate(X_test, Y_test, verbose=0)
# print('Test Score: %f MSE (%f RMSE)' % (testScore, math.sqrt(testScore)))
# make predictions (scaled)
trainPredict = model.predict(X_train)
testPredict = model.predict(X_test)
# invert predictions (back to original)
if (normalization == 'AN'):
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_an_den(X_train, X_test, trainPredict, testPredict,
scaler, shift_train, shift_test)
if (normalization == 'SW'):
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_sw_den(X_train, X_test, trainPredict, testPredict,
scaler_train, scaler_test)
if (normalization == 'MM'):
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_mm_den(X_train, X_test, trainPredict, testPredict,
scaler)
if (normalization == 'ZS'):
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_zs_den(X_train, X_test, trainPredict, testPredict,
scaler)
if (normalization == 'DS'):
X_trainp3, X_testp3, new_train_predicted, new_predicted = nn_ds_den(X_train, X_test, trainPredict, testPredict,
maximum)
# np.savetxt("output/previsto.csv", new_predicted)
# np.savetxt("output/real.csv", Y_testp)
# np.savetxt("output/previsto_treino.csv", new_train_predicted)
# np.savetxt("output/real_treino.csv", Y_trainp)
# np.savetxt("output/x_test-meu.csv", X_testp)
# np.savetxt("output/y_test-meu.csv", Y_testp)
# np.savetxt("output/x_treino-meu.csv", X_trainp)
# np.savetxt("output/y_treino-meu.csv", Y_trainp)
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(new_train_predicted, Y_trainp))
# print('Train Score: %f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(new_predicted, Y_testp))
# print('Test Score: %f RMSE' % (testScore))
epochs = len(history.epoch)
# fig = plt.figure()
# plt.plot(Y_test[:150], color='black') # BLUE - trained RESULT
# plt.plot(testPredict[:150], color='blue') # RED - trained PREDICTION
# plt.plot(Y_testp[:150], color='green') # GREEN - actual RESULT
# plt.plot(new_predicted[:150], color='red') # ORANGE - restored PREDICTION
# plt.show()
return trainScore, testScore, epochs, optimizer
def __main__(argv):
n_layers = int(argv[0])
print(n_layers, 'layers')
# nonlinearities = ['aabh', 'abh', 'ah', 'sigmoid', 'relu', 'tanh']
nonlinearities = ['sigmoid', 'relu', 'tanh']
# nonlinearities = ['relu']
# normalizations = ['AN', 'SW', 'MM', 'ZS', 'DS']
normalizations = ['AN', 'SW']
with open("output/%d_layers/compare.csv" % n_layers, "a") as fp:
fp.write("-ELECTRICITY-US/MLP NN\n")
hals = []
# best parameters without outlier removal: TRAIN_SIZE= 7 k=25
# with outlier removal: TRAIN_SIZE=4 k=3
for o in range(2, 16):
for p in range(2, 30):
TRAIN_SIZE = o
k = p
ewm_dolar = dataset_original.ewm(span=k, min_periods=k).mean()
# removendo NaN
dataset = np.array(dataset_original.iloc[k - 1:])
ewm_dolar = np.array(ewm_dolar.iloc[k - 1:])
# for name in nonlinearities:
for normalization in normalizations:
# for f in range(1,2):
name = 'tanh'
model = Sequential()
model.add(Dense(12, input_shape=(TRAIN_SIZE,), kernel_initializer='glorot_uniform',
kernel_regularizer=regularizers.l2(0.01)))
model.add(Activation(name))
model.add(Dropout(0.25))
for l in range(n_layers):
model.add(Dense(12, input_shape=(TRAIN_SIZE,)))
model.add(Activation(name))
# model.add(Dropout(0.25))
model.add(Dense(1))
model.add(Activation(name))
# model.summary()
trainScore, testScore, epochs, optimizer = evaluate_model(model, name, n_layers, nb_epoch,
normalization, TRAIN_SIZE, dataset, ewm_dolar)
# if(testScore_aux > testScore):
# testScore_aux=testScore
# f_aux = f
elapsed_time = (time.time() - start_time)
with open("output/%d_layers/compare.csv" % n_layers, "a") as fp:
# fp.write("%i,%s,%f,%f,%d,%s --%s seconds\n" % (f, name, trainScore, testScore, epochs, optimizer, elapsed_time))
fp.write("w=%i,k=%i,%s,%s,%f,%f,%d,%s --%s seconds\n" % (
o, p, name, normalization, trainScore, testScore, epochs, optimizer, elapsed_time))
model = None
if __name__ == "__main__":
__main__(sys.argv[1:])