-
Notifications
You must be signed in to change notification settings - Fork 1
/
naive_bayes.py
46 lines (36 loc) · 1.58 KB
/
naive_bayes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
# Gaussian Naive Bayes
class NaiveBayes:
def fit(self, X, y):
n_samples, n_features = X.shape
self._classes = np.unique(y)
n_classes = len(self._classes)
# initialize mean, var, and prior for each class with zeros
self._mean = np.zeros((n_classes, n_features), dtype=np.float64)
self._var = np.zeros((n_classes, n_features), dtype=np.float64)
self._priors = np.zeros(n_classes, dtype=np.float64)
# calculate mean, var, and prior for each class
for idx, c in enumerate(self._classes):
X_c = X[y == c]
self._mean[idx, :] = X_c.mean(axis=0)
self._var[idx, :] = X_c.var(axis=0)
self._priors[idx] = X_c.shape[0] / float(n_samples)
def predict(self, X):
y_pred = [self._predict(x) for x in X]
return np.array(y_pred)
def _predict(self, x):
posteriors = []
# calculate posterior probability for each class
for idx, c in enumerate(self._classes):
prior = np.log(self._priors[idx])
posterior = np.sum(np.log(self.calculate_word_prop(idx, x)))
posterior = prior + posterior
posteriors.append(posterior)
# return class with highest posterior probability
return self._classes[np.argmax(posteriors)]
def calculate_word_prop(self, class_idx, x):
mean = self._mean[class_idx]
var = self._var[class_idx]
numerator = np.exp(- (x - mean) ** 2 / (2 * var))
denominator = np.sqrt(2 * np.pi * var)
return numerator / denominator