-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyze.py
419 lines (310 loc) · 13.7 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
from audioop import reverse
import time
from algorithm import Algorithm
from ciphers.transpositionCipher import TranspositionCipher
from plain_text import get_plain_text
from key import random_key
CIPHER_LENGTHS = [100, 500, 1000, 2000]
KEY_LENGTHS = [5, 6, 7, 8]
POPULATION_SIZES = [10, 50, 100]
MAX_ITERATIONS = [100, 200, 300, 400, 500]
OBSERVATION_NUMBER = 3
def cipher_length_vs_execution_time(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"CIPHER LENGTH VS EXECUTION TIME ({algo_str})")
print("-------------------------------------")
global CIPHER_LENGTHS
# parameters
population_size = 100
max_iteration = 100
key_length = 8
key = ''.join(str(k) for k in random_key(key_length))
for cipher_length in CIPHER_LENGTHS:
# Encrypt the plaintext using the key
text = get_plain_text(cipher_length)
cipher = TranspositionCipher().encrypt(text, key)
execution_time_list: list[float] = list()
for _ in range(OBSERVATION_NUMBER):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
# start clock
start_time = time.time()
algo_obj.run()
# end clock
end_time = time.time()
# calculate time taken
time_taken = end_time - start_time
execution_time_list.append(time_taken)
execution_time = sum(execution_time_list) / len(execution_time_list)
print(f"Cipher length: {cipher_length}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Average Execution Time = {execution_time}")
print("----------------------------")
best_execution_time = sorted(execution_time_list)[0]
print(f"Best Execution Time = {best_execution_time}")
print("------------***-------------")
def key_length_vs_execution_time(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"KEY LENGTH VS EXECUTION TIME ({algo_str})")
print("-------------------------------------")
global KEY_LENGTHS
# parameters
population_size = 100
max_iteration = 100
cipher_length = 500
text = get_plain_text(cipher_length)
for key_length in KEY_LENGTHS:
# create random key of length key_length
key = ''.join(str(k) for k in random_key(key_length))
# Encrypt the plaintext using the key
cipher = TranspositionCipher().encrypt(text, key)
execution_time_list: list[float] = list()
for _ in range(OBSERVATION_NUMBER):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
# start clock
start_time = time.time()
algo_obj.run()
# end clock
end_time = time.time()
# calculate time taken
time_taken = end_time - start_time
execution_time_list.append(time_taken)
execution_time = sum(execution_time_list) / len(execution_time_list)
print(f"Key length: {key_length}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Average Execution Time = {execution_time}")
print("----------------------------")
best_execution_time = sorted(execution_time_list)[0]
print(f"Best Execution Time = {best_execution_time}")
print("------------***-------------")
def population_size_vs_execution_time(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"POPULATION SIZE VS EXECUTION TIME ({algo_str})")
print("-------------------------------------")
global POPULATION_SIZES
# parameters
max_iteration = 100
cipher_length = 500
key_length = 8
text = get_plain_text(cipher_length)
# create random key of length key_length
key = ''.join(str(k) for k in random_key(key_length))
# Encrypt the plaintext using the key
cipher = TranspositionCipher().encrypt(text, key)
for population_size in POPULATION_SIZES:
execution_time_list: list[float] = list()
for _ in range(3):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
# start clock
start_time = time.time()
algo_obj.run()
# end clock
end_time = time.time()
# calculate time taken
time_taken = end_time - start_time
execution_time_list.append(time_taken)
execution_time = sum(execution_time_list) / len(execution_time_list)
print(f"Population Size: {population_size}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Execution Time = {execution_time}")
print("----------------------------")
best_execution_time = sorted(execution_time_list)[0]
print(f"Best Execution Time = {best_execution_time}")
print("------------***-------------")
def max_iteration_vs_execution_time(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"MAX ITERATION VS EXECUTION TIME ({algo_str})")
print("-------------------------------------")
global MAX_ITERATIONS
# parameters
population_size = 100
cipher_length = 500
key_length = 8
text = get_plain_text(cipher_length)
key = random_key(key_length)
key = ''.join(str(k) for k in key)
# Encrypt the plaintext using the key
cipher = TranspositionCipher().encrypt(text, key)
for max_iteration in MAX_ITERATIONS:
execution_time_list: list[float] = list()
for _ in range(OBSERVATION_NUMBER):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
# start clock
start_time = time.time()
algo_obj.run()
# end clock
end_time = time.time()
# calculate time taken
time_taken = end_time - start_time
execution_time_list.append(time_taken)
execution_time = sum(execution_time_list) / len(execution_time_list)
print(f"Max Iteration: {max_iteration}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Average Execution Time = {execution_time}")
print("----------------------------")
best_execution_time = sorted(execution_time_list)[0]
print(f"Best Execution Time = {best_execution_time}")
print("------------***-------------")
def cipher_length_vs_accuracy(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"CIPHER LENGTH VS ACCURACY ({algo_str})")
print("-------------------------------------")
global CIPHER_LENGTHS
# parameters
population_size = 100
max_iteration = 100
key_length = 8
key = ''.join(str(k) for k in random_key(key_length))
for cipher_length in CIPHER_LENGTHS:
text = get_plain_text(cipher_length)
# Encrypt the plaintext using the key
cipher = TranspositionCipher().encrypt(text, key)
correct_characters_list: list[int] = list()
for _ in range(OBSERVATION_NUMBER):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
best_individual = algo_obj.run()
# Decrypt the ciphertext using the key
key = "".join([str(i) for i in best_individual.key])
decrypt = TranspositionCipher().decrypt(cipher, key)
# count no. of correct characters
correct = 0
for i in range(len(text)):
if text[i] == decrypt[i]:
correct += 1
# calculate accuracy
correct_characters_list.append(correct)
correct_characters = sum(correct_characters_list) / \
len(correct_characters_list)
accuracy = (correct_characters / cipher_length) * 100
print(f"Cipher length: {cipher_length}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Correct characters: {correct_characters}")
print(f"Accuracy = {accuracy}%")
print("----------------------------")
best_correct_character_count = sorted(
correct_characters_list, reverse=True)[0]
best_accuracy = best_correct_character_count / cipher_length * 100
print(f"Best Correct Character Count = {best_correct_character_count}")
print(f"Best Accuracy = {best_accuracy}%")
print("------------***-------------")
def population_size_vs_accuracy(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"POPULATION SIZE VS ACCURACY ({algo_str})")
print("-------------------------------------")
global POPULATION_SIZES
# parameters
max_iteration = 100
cipher_length = 500
key_length = 8
text = get_plain_text(cipher_length)
key = ''.join(str(k) for k in random_key(key_length))
# Encrypt the plaintext using the key
cipher = TranspositionCipher().encrypt(text, key)
for population_size in POPULATION_SIZES:
correct_characters_list: list[float] = list()
for _ in range(OBSERVATION_NUMBER):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
best_individual = algo_obj.run()
# Decrypt the ciphertext using the key
key = "".join([str(i) for i in best_individual.key])
decrypt = TranspositionCipher().decrypt(cipher, key)
# count no. of correct characters
correct = 0
for i in range(len(text)):
if text[i] == decrypt[i]:
correct += 1
# calculate accuracy
correct_characters_list.append(correct)
correct_characters = sum(correct_characters_list) / \
len(correct_characters_list)
accuracy = (correct_characters / cipher_length) * 100
print(f"Population Size: {population_size}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Average Correct characters: {correct_characters}")
print(f"Average Accuracy = {accuracy}%")
print("----------------------------")
best_correct_character_count = sorted(
correct_characters_list, reverse=True)[0]
best_accuracy = best_correct_character_count / cipher_length * 100
print(f"Best Correct Character Count = {best_correct_character_count}")
print(f"Best Accuracy = {best_accuracy}%")
print("------------***-------------")
def max_iteration_vs_accuracy(algo: Algorithm):
# identify the algorithm
algo_str: str = Algorithm.get_algo(algo)
print(f"MAX ITERATION VS ACCURACY ({algo_str})")
print("-------------------------------------")
global MAX_ITERATIONS
# parameters
population_size = 100
cipher_length = 500
key_length = 8
text = get_plain_text(cipher_length)
key = random_key(key_length)
key = ''.join(str(k) for k in random_key(key_length))
# Encrypt the plaintext using the key
cipher = TranspositionCipher().encrypt(text, key)
for max_iteration in MAX_ITERATIONS:
correct_characters_list: list[float] = list()
for _ in range(OBSERVATION_NUMBER):
# create algorithm object
algo_obj = Algorithm.get_algo_obj(
algo, cipher, population_size, max_iteration, key_length)
best_individual = algo_obj.run()
# Decrypt the ciphertext using the key
key = "".join([str(i) for i in best_individual.key])
decrypt = TranspositionCipher().decrypt(cipher, key)
# count no. of correct characters
correct = 0
for i in range(len(text)):
if text[i] == decrypt[i]:
correct += 1
# calculate accuracy
correct_characters_list.append(correct)
correct_characters = sum(correct_characters_list) / \
len(correct_characters_list)
accuracy = (correct_characters / cipher_length) * 100
print(f"Max Iteration: {max_iteration}")
print(f"Total no. of observations: {OBSERVATION_NUMBER}")
print("----------------------------")
print(f"Average Correct characters: {correct_characters}")
print(f"Average Accuracy = {accuracy}%")
print("----------------------------")
best_correct_character_count = sorted(
correct_characters_list, reverse=True)[0]
best_accuracy = best_correct_character_count / cipher_length * 100
print(f"Best Correct Character Count = {best_correct_character_count}")
print(f"Best Accuracy = {best_accuracy}%")
print("------------***-------------")
if __name__ == "__main__":
algo: Algorithm = Algorithm.JAYA
# cipher_length_vs_execution_time(algo)
# key_length_vs_execution_time(algo)
# population_size_vs_execution_time(algo)
# max_iteration_vs_execution_time(algo)
# population_size_vs_accuracy(algo)
# max_iteration_vs_accuracy(algo)
cipher_length_vs_accuracy(algo)