-
Notifications
You must be signed in to change notification settings - Fork 0
/
NnAlgorithm.py
91 lines (72 loc) · 2.98 KB
/
NnAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import random
"""
This file contains the core of the Neural Network Algorithm. Its constructed following the multilayer architecture
* Still in construction
"""
def sigmoid(z):
"""
Activation function, it would be sigmoid function, ReLu or any other activation function
"""
sig = 1.0 / (1.0 + np.exp(-z))
return sig
def sigmoid_prime(z):
sig_prime = sigmoid(z) * (1 - sigmoid(z))
return sig_prime
class Network(object):
def __init__(self, sizes):
self.num_layers = len(sizes)
self.sizes = sizes
self.weights = [np.random.randn(y + 1, x + 1) for x, y in zip(sizes[:-2], sizes[1:])]
self.weights.append(np.random.randn(sizes[-1], sizes[-2]+1))
def feedforward(self, a):
for w in self.weights:
a = sigmoid(np.dot(w, a))
return a
def gradient_descent(self, train_data, epochs, mini_batch_size, eta, test_data=None):
training_data = list(train_data)
n = len(training_data)
n_test = 0
if test_data:
test_data = list(test_data)
n_test = len(test_data)
for j in range(epochs):
random.shuffle(training_data)
mini_batches = [training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(mini_batch, eta)
if test_data:
print("Epoch {} : {}% - {}/{}".format(j, self.evaluate(test_data)*100/n_test, self.evaluate(test_data),
n_test))
else:
print("Epoch {} complete".format(j))
def update_mini_batch(self, mini_batch, eta):
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_w = self.backprop(x, y)
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)]
def backprop(self, x, y):
nabla_w = [np.zeros(w.shape) for w in self.weights]
activation = x
activations = [x]
zs = []
for w in self.weights:
z = np.dot(w, activation)
zs.append(z)
activation = sigmoid(z)
activations.append(activation)
delta = self.cost_derivative(activations[-1], y)
nabla_w[-1] = np.dot(delta, activations[-2].transpose())
for i in range(2, self.num_layers):
z = zs[-i]
sp = sigmoid_prime(z)
delta = np.dot(self.weights[-i+1].transpose(), delta) * sp
nabla_w[-i] = np.dot(delta, activations[-i-1].transpose())
return nabla_w
def evaluate(self, test_data):
test_results = [(np.argmax(self.feedforward(x)), y) for (x, y) in test_data]
return sum(int(x == y) for (x, y) in test_results)
@staticmethod
def cost_derivative(output_activations, y):
return output_activations-y