Skip to content

Latest commit

 

History

History
109 lines (78 loc) · 8.95 KB

15.4_TCP原理介绍.md

File metadata and controls

109 lines (78 loc) · 8.95 KB

15.4 TCP原理介绍

TCP协议头解释

tcp协议头格式如下:

tcp头

详细解析 16位源端口号和16位目的端口号。 32位序号:一次TCP通信过程中某一个传输方向上的字节流的每个字节的编号,通过这个来确认发送的数据有序,比如现在序列号为1000,发送了1000,下一个序列号就是2000。 32位确认号:用来响应TCP报文段,给收到的TCP报文段的序号加1,三握时还要携带自己的序号。 4位头部长度:标识该TCP头部有多少个4字节,共表示最长15*4=60字节。同IP头部。 6位保留。6位标志。URG(紧急指针是否有效)ACK(表示确认号是否有效)PSH(提示接收端应用程序应该立即从TCP接收缓冲区读走数据)RST(表示要求对方重新建立连接)SYN(表示请求建立一个连接)FIN(表示通知对方本端要关闭连接) 16位窗口大小:TCP流量控制的一个手段,用来告诉对端TCP缓冲区还能容纳多少字节。 16位校验和:由发送端填充,接收端对报文段执行CRC算法以检验TCP报文段在传输中是否损坏。 16位紧急指针:一个正的偏移量,它和序号段的值相加表示最后一个紧急数据的下一字节的序号。

TCP建立连接的三次握手

三次握手

为什么需要三次握手?

三次握手: “喂,你听得到吗?” “我听得到呀,你听得到我吗?” “我能听到你,今天balabala……”

两次握手: “喂,你听得到吗?” “我听得到呀” “喂喂,你听得到吗?” “草,我听得到呀!!!!” “你TM能不能听到我讲话啊!!喂!” “……”

四次握手: “喂,你听得到吗?” “我听得到呀,你听得到我吗?” “我能听到你,你能听到我吗?” “……不想跟傻逼说话”

TCP作为一种可靠传输控制协议,其核心思想:既要保证数据可靠传输,又要提高传输的效率,而用三次恰恰可以满足以上两方面的需求!TCP可靠传输的精髓:TCP连接的一方A,由操作系统动态随机选取一个32位长的序列号(Initial Sequence Number),假设A的初始序列号为1000,以该序列号为原点,对自己将要发送的每个字节的数据进行编号,1001,1002,1003…,并把自己的初始序列号ISN告诉B,让B有一个思想准备,什么样编号的数据是合法的,什么编号是非法的,比如编号900就是非法的,同时B还可以对A每一个编号的字节数据进行确认。如果A收到B确认编号为2001,则意味着字节编号为,共1000个字节已经安全到达。同理B也是类似的操作,假设B的初始序列号ISN为2000,以该序列号为原点,对自己将要发送的每个字节的数据进行编号,2001,2002,2003…,并把自己的初始序列号ISN告诉A,以便A可以确认B发送的每一个字节。如果B收到A确认编号为4001,则意味着字节编号为,共2000个字节已经安全到达。
一句话概括,TCP连接握手,握的是啥?通信双方数据原点的序列号!

TCP连接断开的四次挥手

四次挥手

TCP连接的释放一共需要四步,因此称为『四次挥手』。
我们知道,TCP连接是双向的,因此在四次挥手中,前两次挥手用于断开一个方向的连接,后两次挥手用于断开另一方向的连接。

  • 第一次挥手
    若A认为数据发送完成,则它需要向B发送连接释放请求。该请求只有报文头,头中携带的主要参数为: FIN=1,seq=u。此时,A将进入FIN-WAIT-1状态。PS1:FIN=1表示该报文段是一个连接释放请求。PS2:seq=u,u-1是A向B发送的最后一个字节的序号。
  • 第二次挥手
    B收到连接释放请求后,会通知相应的应用程序,告诉它A向B这个方向的连接已经释放。此时B进入CLOSE-WAIT状态,并向A发送连接释放的应答,其报文头包含: ACK=1,seq=v,ack=u+1。PS1:ACK=1:除TCP连接请求报文段以外,TCP通信过程中所有数据报的ACK都为1,表示应答。PS2:seq=v,v-1是B向A发送的最后一个字节的序号。PS3:ack=u+1表示希望收到从第u+1个字节开始的报文段,并且已经成功接收了前u个字节。A收到该应答,进入FIN-WAIT-2状态,等待B发送连接释放请求。第二次挥手完成后,A到B方向的连接已经释放,B不会再接收数据,A也不会再发送数据。但B到A方向的连接仍然存在,B可以继续向A发送数据。
  • 第三次挥手
    当B向A发完所有数据后,向A发送连接释放请求,请求头:FIN=1,ACK=1,seq=w,ack=u+1。B便进入LAST-ACK状态。
  • 第四次挥手
    A收到释放请求后,向B发送确认应答,此时A进入TIME-WAIT状态。该状态会持续2MSL时间,若该时间段内没有B的重发请求的话,就进入CLOSED状态,撤销TCB。当B收到确认应答后,也便进入CLOSED状态,撤销TCB。
  • 为什么A要先进入TIME-WAIT状态,等待2MSL时间后才进入CLOSED状态?
    为了保证B能收到A的确认应答。 若A发完确认应答后直接进入CLOSED状态,那么如果该应答丢失,B等待超时后就会重新发送连接释放请求,但此时A已经关闭了,不会作出任何响应,因此B永远无法正常关闭。

TCP的状态机

tcp状态机

TCP的状态机

listen时的指定的backlog含义

我们先来看下listen的声明:

int listen(int sockfd, int backlog);

有关于第二个参数含义的问题网上有好几种说法,我总结了下主要有这么3种:

  • Kernel会为LISTEN状态的socket维护一个队列,其中存放SYN RECEIVED和ESTABLISHED状态的套接字,backlog就是这个队列的大小。
  • Kernel会为LISTEN状态的socket维护两个队列,一个是SYN RECEIVED状态,另一个是ESTABLISHED状态,而backlog就是这两个队列的大小之和。
  • 第三种和第二种模型一样,但是backlog是队列ESTABLISHED的长度。

有关上面说的两个状态SYN RECEIVED状态和ESTABLISHED状态,是TCP三次握手过程中的状态转化,具体可以参考下面的图(在新窗口打开图片): 三次握手状态变迁

当一个应用使用listen系统调用让socket进入LISTEN状态时,它需要为该套接字指定一个backlog。backlog通常被描述为连接队列的限制。
由于TCP使用的3次握手,连接在到达ESTABLISHED状态之前经历中间状态SYN RECEIVED,并且可以由accept系统调用返回到应用程序。这意味着TCP / IP堆栈有两个选择来为LISTEN状态的套接字实现backlog队列:
1:使用单个队列实现,其大小由listen syscall的backlog参数确定。 当收到SYN数据包时,它发送回SYN/ACK数据包,并将连接添加到队列。 当接收到相应的ACK时,连接将其状态改变为已建立。 这意味着队列可以包含两种不同状态的连接:SYN RECEIVED和ESTABLISHED。 只有处于后一状态的连接才能通过accept syscall返回给应用程序。

2 : 使用两个队列实现,一个SYN队列(或半连接队列)和一个accept队列(或完整的连接队列)。 处于SYN RECEIVED状态的连接被添加到SYN队列,并且当它们的状态改变为ESTABLISHED时,即当接收到3次握手中的ACK分组时,将它们移动到accept队列。 显而易见,accept系统调用只是简单地从完成队列中取出连接。 在这种情况下,listen syscall的backlog参数表示完成队列的大小。

历史上,BSD 派生系统实现的TCP使用第一种方法。 该选择意味着当达到最大backlog时,系统将不再响应于SYN分组发送回SYN/ACK分组。 通常,TCP的实现将简单地丢弃SYN分组,使得客户端重试。

在Linux上,是和上面不同的。如在listen系统调用的手册中所提到的: 在Linux内核2.2之后,socket backlog参数的形为改变了,现在它指等待accept的完全建立的套接字的队列长度,而不是不完全连接请求的数量。 不完全连接的长度可以使用/proc/sys/net/ipv4/tcp_max_syn_backlog设置。这意味着当前Linux版本使用上面第二种说法,有两个队列:具有由系统范围设置指定的大小的SYN队列 和 应用程序(也就是backlog参数)指定的accept队列。

OK,说到这里,相信backlog含义已经解释的非常清楚了,下面我们用实验验证下这种说法:

OK,这个著名的设计,给我们带来了很大的麻烦,这个麻烦就是DDOS攻击。 可参见链接:
ddos攻击