This repository has been archived by the owner on Jan 4, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
InverseImage.v
385 lines (355 loc) · 8.21 KB
/
InverseImage.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
Require Export FunctionProperties.
Require Export Ensembles.
Require Import EnsemblesImplicit.
Require Export EnsemblesSpec.
Definition inverse_image {X Y:Type} (f:X->Y) (T:Ensemble Y) : Ensemble X :=
[ x:X | In T (f x) ].
Hint Unfold inverse_image : sets.
Lemma inverse_image_increasing: forall {X Y:Type} (f:X->Y)
(T1 T2:Ensemble Y), Included T1 T2 ->
Included (inverse_image f T1) (inverse_image f T2).
Proof.
intros.
red; intros.
destruct H0.
constructor.
auto.
Qed.
Lemma inverse_image_empty: forall {X Y:Type} (f:X->Y),
inverse_image f Empty_set = Empty_set.
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
destruct H as [[]].
destruct H.
Qed.
Lemma inverse_image_full: forall {X Y:Type} (f:X->Y),
inverse_image f Full_set = Full_set.
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros;
constructor; constructor.
Qed.
Lemma inverse_image_intersection: forall {X Y:Type} (f:X->Y)
(T1 T2:Ensemble Y), inverse_image f (Intersection T1 T2) =
Intersection (inverse_image f T1) (inverse_image f T2).
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
destruct H.
inversion H.
constructor; constructor; trivial.
destruct H as [? [] []].
constructor; constructor; trivial.
Qed.
Lemma inverse_image_union: forall {X Y:Type} (f:X->Y)
(T1 T2:Ensemble Y), inverse_image f (Union T1 T2) =
Union (inverse_image f T1) (inverse_image f T2).
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
destruct H.
inversion H.
left; constructor; trivial.
right; constructor; trivial.
constructor.
destruct H as [? []|? []].
left; trivial.
right; trivial.
Qed.
Lemma inverse_image_complement: forall {X Y:Type} (f:X->Y)
(T:Ensemble Y), inverse_image f (Complement T) =
Complement (inverse_image f T).
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
red; intro.
destruct H.
destruct H0.
contradiction H.
constructor.
intro.
contradiction H.
constructor; trivial.
Qed.
Lemma inverse_image_composition: forall {X Y Z:Type} (f:Y->Z) (g:X->Y)
(U:Ensemble Z), inverse_image (fun x:X => f (g x)) U =
inverse_image g (inverse_image f U).
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
constructor; constructor.
destruct H.
assumption.
destruct H; inversion H.
constructor; trivial.
Qed.
Hint Resolve @inverse_image_increasing : sets.
Hint Rewrite @inverse_image_empty @inverse_image_full
@inverse_image_intersection @inverse_image_union
@inverse_image_complement @inverse_image_composition : sets.
Require Import IndexedFamilies.
Lemma inverse_image_indexed_intersection :
forall {A X Y:Type} (f:X->Y) (F:IndexedFamily A Y),
inverse_image f (IndexedIntersection F) =
IndexedIntersection (fun a:A => inverse_image f (F a)).
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
- destruct H.
inversion_clear H.
constructor. intros.
constructor.
apply H0.
- destruct H.
constructor.
constructor. intros.
destruct (H a).
exact H0.
Qed.
Lemma inverse_image_indexed_union :
forall {A X Y:Type} (f:X->Y) (F:IndexedFamily A Y),
inverse_image f (IndexedUnion F) =
IndexedUnion (fun a:A => inverse_image f (F a)).
Proof.
intros.
apply Extensionality_Ensembles; split; red; intros.
- destruct H.
inversion_clear H.
exists a.
constructor.
exact H0.
- destruct H.
inversion_clear H.
constructor.
exists a.
exact H0.
Qed.
Lemma inverse_image_fun
{X Y : Type}
(f : X -> Y)
(T : Ensemble Y) :
inverse_image f T = fun x => T (f x).
Proof.
apply Extensionality_Ensembles.
split;
red;
intros;
constructor + destruct H;
assumption.
Qed.
Lemma in_inverse_image
{X Y : Type}
(f : X -> Y)
(T : Ensemble Y)
(x : X) :
In T (f x) <-> In (inverse_image f T) x.
Proof.
rewrite inverse_image_fun.
split; auto.
Qed.
Lemma inverse_image_id
{X Y : Type}
{f : X -> Y}
{g : Y -> X} :
(forall y, f (g y) = y) ->
forall S,
inverse_image g (inverse_image f S) = S.
Proof.
intros Hfg S.
rewrite <- inverse_image_composition.
apply Extensionality_Ensembles.
split; red; intros.
- destruct H.
rewrite <- Hfg.
assumption.
- constructor.
rewrite Hfg.
assumption.
Qed.
Lemma inverse_image_empty_set {X Y : Type} (f : X -> Y) :
inverse_image f Empty_set = Empty_set.
Proof.
apply Extensionality_Ensembles.
split; red; intros;
repeat destruct H.
Qed.
Lemma inverse_image_full_set {X Y : Type} (f : X -> Y) :
inverse_image f Full_set = Full_set.
Proof.
apply Extensionality_Ensembles.
split; red; intros;
repeat constructor.
Qed.
Lemma inverse_image_union2 {X Y : Type} (f : X -> Y) (U V : Ensemble Y) :
inverse_image f (Union U V) = Union (inverse_image f U) (inverse_image f V).
Proof.
apply Extensionality_Ensembles.
split; red; intros.
- destruct H.
inversion H;
subst;
[ left | right ];
now constructor.
- now inversion H;
destruct H0;
subst;
constructor;
[ left | right ].
Qed.
Lemma inverse_image_family_union
{X Y : Type}
{f : X -> Y}
{g : Y -> X}
(F : Family Y) :
(forall x, g (f x) = x) ->
(forall y, f (g y) = y) ->
inverse_image f (FamilyUnion F) = FamilyUnion (inverse_image (inverse_image g) F).
Proof.
intros Hgf Hfg.
apply Extensionality_Ensembles.
split; red; intros.
- apply in_inverse_image in H.
inversion H.
subst.
rewrite <- Hgf.
econstructor.
+ constructor.
erewrite inverse_image_id.
* exact H0.
* exact Hfg.
+ rewrite Hgf.
constructor.
assumption.
- destruct H.
apply in_inverse_image in H.
constructor.
econstructor.
+ exact H.
+ constructor.
rewrite Hgf.
assumption.
Qed.
Lemma inverse_image_family_union_image
{X Y : Type}
(f : X -> Y)
(F : Family Y) :
inverse_image f (FamilyUnion F) = FamilyUnion (Im F (inverse_image f)).
Proof.
apply Extensionality_Ensembles.
split; red; intros;
inversion H;
inversion H0;
subst;
repeat econstructor;
eassumption + now destruct H1.
Qed.
Lemma inverse_image_singleton
{X Y : Type}
(f : X -> Y)
(g : Y -> X)
(T : Ensemble Y) :
(forall x, g (f x) = x) ->
(forall y, f (g y) = y) ->
inverse_image (inverse_image g) (Singleton T) = Singleton (inverse_image f T).
Proof.
intros Hgf Hfg.
rewrite inverse_image_fun.
apply Extensionality_Ensembles.
split;
red;
intros;
inversion H;
subst;
red;
rewrite inverse_image_id;
constructor + assumption.
Qed.
Lemma inverse_image_add
{X Y : Type}
(f : X -> Y)
(g : Y -> X)
(F : Family Y)
(T : Ensemble Y) :
(forall x, g (f x) = x) ->
(forall y, f (g y) = y) ->
inverse_image (inverse_image g) (Add F T) = Add (inverse_image (inverse_image g) F) (inverse_image f T).
Proof.
intros Hgf Hfg.
apply Extensionality_Ensembles.
rewrite inverse_image_fun, inverse_image_fun.
split;
red;
intros;
inversion H;
subst;
(left;
assumption) +
(right;
inversion H0;
rewrite inverse_image_id;
constructor + assumption).
Qed.
Lemma inverse_image_image_surjective
{X Y : Type}
(f : X -> Y)
(T : Ensemble Y) :
surjective f ->
Im (inverse_image f T) f = T.
Proof.
intro.
apply Extensionality_Ensembles.
split;
red;
intros.
- inversion H0.
subst.
now destruct H1.
- destruct (H x).
subst.
now repeat econstructor.
Qed.
Lemma inverse_image_surjective_singleton
{X Y : Type}
(f : X -> Y)
(T : Ensemble X) :
surjective f ->
Included (inverse_image (inverse_image f) (Singleton T)) (Singleton (Im T f)).
Proof.
intros H U HU.
destruct HU.
inversion H0.
subst.
now rewrite inverse_image_image_surjective.
Qed.
Lemma inverse_image_finite {X Y : Type} (f : X -> Y) (F : Family X) :
surjective f ->
Finite _ F ->
Finite _ (inverse_image (inverse_image f) F).
Proof.
intros Hf H.
induction H.
- rewrite inverse_image_empty_set.
constructor.
- unfold Add.
rewrite inverse_image_union2.
pose proof (Singleton_is_finite _ (Im x f)).
now eapply Union_preserves_Finite,
Finite_downward_closed,
inverse_image_surjective_singleton.
Qed.
Lemma inverse_image_surjective_injective
{X Y : Type}
(f : X -> Y) :
surjective f ->
injective (inverse_image f).
Proof.
intros H U V eq.
apply Extensionality_Ensembles.
split; red; intros;
destruct (H x);
subst;
apply (in_inverse_image f);
[ rewrite <- eq | rewrite eq ];
now constructor.
Qed.