-
Notifications
You must be signed in to change notification settings - Fork 1
/
resnet.py
159 lines (114 loc) · 4.57 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
class DownsampleA(nn.Module):
def __init__(self, nIn, nOut, stride):
super(DownsampleA, self).__init__()
assert stride == 2
self.avg = nn.AvgPool2d(kernel_size=1, stride=stride)
def forward(self, x):
x = self.avg(x)
return torch.cat((x, x.mul(0)), 1)
class ResNetBasicblock(nn.Module):
expansion = 1
"""
RexNet basicblock (https://github.com/facebook/fb.resnet.torch/blob/master/models/resnet.lua)
"""
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(ResNetBasicblock, self).__init__()
self.conv_a = nn.Conv2d(
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn_a = nn.BatchNorm2d(planes)
self.conv_b = nn.Conv2d(
planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn_b = nn.BatchNorm2d(planes)
self.downsample = downsample
self.featureSize = 64
def forward(self, x):
residual = x
basicblock = self.conv_a(x)
basicblock = self.bn_a(basicblock)
basicblock = F.relu(basicblock, inplace=True)
basicblock = self.conv_b(basicblock)
basicblock = self.bn_b(basicblock)
if self.downsample is not None:
residual = self.downsample(x)
return F.relu(residual + basicblock, inplace=True)
class CifarResNet(nn.Module):
"""
ResNet optimized for the Cifar Dataset, as specified in
https://arxiv.org/abs/1512.03385.pdf
"""
def __init__(self, block, depth, num_classes, channels=3):
super(CifarResNet, self).__init__()
self.featureSize = 64
assert (depth - 2) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
layer_blocks = (depth - 2) // 6
self.num_classes = num_classes
self.conv_1_3x3 = nn.Conv2d(
channels, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn_1 = nn.BatchNorm2d(16)
self.inplanes = 16
self.stage_1 = self._make_layer(block, 16, layer_blocks, 1)
self.stage_2 = self._make_layer(block, 32, layer_blocks, 2)
self.stage_3 = self._make_layer(block, 64, layer_blocks, 2)
self.avgpool = nn.AvgPool2d(8)
self.out_dim = 64 * block.expansion
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
init.kaiming_normal(m.weight)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = DownsampleA(
self.inplanes, planes * block.expansion, stride)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x, feature=False, T=1, labels=False, scale=None, keep=None):
x = self.conv_1_3x3(x)
x = F.relu(self.bn_1(x), inplace=True)
x = self.stage_1(x)
x = self.stage_2(x)
x = self.stage_3(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
return x
def forwardFeature(self, x):
pass
def resnet20(num_classes=10):
model = CifarResNet(ResNetBasicblock, 20, num_classes)
return model
def resnet10mnist(num_classes=10):
model = CifarResNet(ResNetBasicblock, 10, num_classes, 1)
return model
def resnet20mnist(num_classes=10):
model = CifarResNet(ResNetBasicblock, 20, num_classes, 1)
return model
def resnet32mnist(num_classes=10, channels=1):
model = CifarResNet(ResNetBasicblock, 32, num_classes, channels)
return model
def resnet32(num_classes=10):
model = CifarResNet(ResNetBasicblock, 32, num_classes)
return model
def resnet44(num_classes=10):
model = CifarResNet(ResNetBasicblock, 44, num_classes)
return model
def resnet56(num_classes=10):
model = CifarResNet(ResNetBasicblock, 56, num_classes)
return model
def resnet110(num_classes=10):
model = CifarResNet(ResNetBasicblock, 110, num_classes)
return model