MDPI Applied Science 논문 게재
- (2022.01.28) Improving Graph-Based Movie Recommender System Using Cinematic Experience in Applied Science in MDPI
- (2022.01.20) Multi-Relational Stacking Ensemble Recommender System Using Cinematic Experience in IEEE BigComp2022, Code
- Author's Paper link: https://arxiv.org/abs/1904.12058
- Author's code: https://github.com/muhanzhang/IGMC
- Reference code: https://github.com/zhoujf620/Motif-based-inductive-GNN-training
- PyTorch 1.2+
- DGL 0.5 (nightly version)
Movie data
- Rotten Tomatoes data : https://www.kaggle.com/stefanoleone992/rotten-tomatoes-movies-and-critic-reviews-dataset
- Amazon Movie data : http://jmcauley.ucsd.edu/data/amazon/
Training set for BERT
- Sentiment Analysis : https://www.kaggle.com/c/sentiment-analysis-on-movie-reviews
- Emotion Analysis : https://www.kaggle.com/praveengovi/emotions-dataset-for-nlp
- explicit_train_rotten.ipynb
Dataset | Our code best of epochs |
---|---|
Rotten Tomatoes | 0.8004 |
Amazon Movie | 0.9621 |