forked from Traumflug/Teacup_Firmware
-
Notifications
You must be signed in to change notification settings - Fork 1
/
temp.c
361 lines (300 loc) · 9.59 KB
/
temp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#include "temp.h"
/** \file
\brief Manage temperature sensors
\note \b ALL temperatures are stored as 14.2 fixed point in teacup, so we have a range of 0 - 16383.75 celsius and a precision of 0.25 celsius. That includes the ThermistorTable, which is why you can't copy and paste one from other firmwares which don't do this.
*/
#include <stdlib.h>
#include <avr/eeprom.h>
#include <avr/pgmspace.h>
#include "arduino.h"
#include "delay.h"
#include "debug.h"
#ifndef EXTRUDER
#include "sersendf.h"
#endif
#include "heater.h"
#ifdef TEMP_INTERCOM
#include "intercom.h"
#endif
#ifdef TEMP_MAX6675
#endif
#ifdef TEMP_THERMISTOR
#include "analog.h"
#include "ThermistorTable.h"
#endif
#ifdef TEMP_AD595
#include "analog.h"
#endif
typedef enum {
PRESENT,
TCOPEN
} temp_flags_enum;
/// holds metadata for each temperature sensor
typedef struct {
temp_type_t temp_type; ///< type of sensor
uint8_t temp_pin; ///< pin that sensor is on
heater_t heater; ///< associated heater if any
uint8_t additional; ///< additional, sensor type specifc config
} temp_sensor_definition_t;
#undef DEFINE_TEMP_SENSOR
/// help build list of sensors from entries in config.h
#define DEFINE_TEMP_SENSOR(name, type, pin, additional) { (type), (pin), (HEATER_ ## name), (additional) },
static const temp_sensor_definition_t temp_sensors[NUM_TEMP_SENSORS] =
{
#include "config.h"
};
#undef DEFINE_TEMP_SENSOR
/// this struct holds the runtime sensor data- read temperatures, targets, etc
struct {
temp_flags_enum temp_flags; ///< flags
uint16_t last_read_temp; ///< last received reading
uint16_t target_temp; ///< manipulate attached heater to attempt to achieve this value
uint16_t temp_residency; ///< how long have we been close to target temperature in temp ticks?
uint16_t next_read_time; ///< how long until we can read this sensor again?
} temp_sensors_runtime[NUM_TEMP_SENSORS];
/// set up temp sensors. Currently only the 'intercom' sensor needs initialisation.
void temp_init() {
temp_sensor_t i;
for (i = 0; i < NUM_TEMP_SENSORS; i++) {
switch(temp_sensors[i].temp_type) {
#ifdef TEMP_MAX6675
// initialised when read
/* case TT_MAX6675:
break;*/
#endif
#ifdef TEMP_THERMISTOR
// handled by analog_init()
/* case TT_THERMISTOR:
break;*/
#endif
#ifdef TEMP_AD595
// handled by analog_init()
/* case TT_AD595:
break;*/
#endif
#ifdef TEMP_INTERCOM
case TT_INTERCOM:
intercom_init();
send_temperature(0, 0);
break;
#endif
default: /* prevent compiler warning */
break;
}
}
}
/// called every 10ms from clock.c - check all temp sensors that are ready for checking
void temp_sensor_tick() {
temp_sensor_t i = 0;
for (; i < NUM_TEMP_SENSORS; i++) {
if (temp_sensors_runtime[i].next_read_time) {
temp_sensors_runtime[i].next_read_time--;
}
else {
uint16_t temp = 0;
//time to deal with this temp sensor
switch(temp_sensors[i].temp_type) {
#ifdef TEMP_MAX6675
case TT_MAX6675:
#ifdef PRR
PRR &= ~MASK(PRSPI);
#elif defined PRR0
PRR0 &= ~MASK(PRSPI);
#endif
SPCR = MASK(MSTR) | MASK(SPE) | MASK(SPR0);
// enable TT_MAX6675
WRITE(SS, 0);
// ensure 100ns delay - a bit extra is fine
delay(1);
// read MSB
SPDR = 0;
for (;(SPSR & MASK(SPIF)) == 0;);
temp = SPDR;
temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & MASK(SPIF)) == 0;);
temp |= SPDR;
// disable TT_MAX6675
WRITE(SS, 1);
temp_sensors_runtime[i].temp_flags = 0;
if ((temp & 0x8002) == 0) {
// got "device id"
temp_sensors_runtime[i].temp_flags |= PRESENT;
if (temp & 4) {
// thermocouple open
temp_sensors_runtime[i].temp_flags |= TCOPEN;
}
else {
temp = temp >> 3;
}
}
// this number depends on how frequently temp_sensor_tick is called. the MAX6675 can give a reading every 0.22s, so set this to about 250ms
temp_sensors_runtime[i].next_read_time = 25;
break;
#endif /* TEMP_MAX6675 */
#ifdef TEMP_THERMISTOR
case TT_THERMISTOR:
do {
uint8_t j, table_num;
//Read current temperature
temp = analog_read(temp_sensors[i].temp_pin);
// for thermistors the thermistor table number is in the additional field
table_num = temp_sensors[i].additional;
//Calculate real temperature based on lookup table
for (j = 1; j < NUMTEMPS; j++) {
if (pgm_read_word(&(temptable[table_num][j][0])) > temp) {
// Thermistor table is already in 14.2 fixed point
#ifndef EXTRUDER
if (DEBUG_PID && (debug_flags & DEBUG_PID))
sersendf_P(PSTR("pin:%d Raw ADC:%d table entry: %d"),temp_sensors[i].temp_pin,temp,j);
#endif
// Linear interpolating temperature value
// y = ((x - x₀)y₁ + (x₁-x)y₀ ) / (x₁ - x₀)
// y = temp
// x = ADC reading
// x₀= temptable[j-1][0]
// x₁= temptable[j][0]
// y₀= temptable[j-1][1]
// y₁= temptable[j][1]
// y =
// Wikipedia's example linear interpolation formula.
temp = (
// ((x - x₀)y₁
((uint32_t)temp - pgm_read_word(&(temptable[table_num][j-1][0]))) * pgm_read_word(&(temptable[table_num][j][1]))
// +
+
// (x₁-x)
(pgm_read_word(&(temptable[table_num][j][0])) - (uint32_t)temp)
// y₀ )
* pgm_read_word(&(temptable[table_num][j-1][1])))
// /
/
// (x₁ - x₀)
(pgm_read_word(&(temptable[table_num][j][0])) - pgm_read_word(&(temptable[table_num][j-1][0])));
#ifndef EXTRUDER
if (DEBUG_PID && (debug_flags & DEBUG_PID))
sersendf_P(PSTR(" temp:%d.%d"),temp/4,(temp%4)*25);
#endif
break;
}
}
#ifndef EXTRUDER
if (DEBUG_PID && (debug_flags & DEBUG_PID))
sersendf_P(PSTR(" Sensor:%d\n"),i);
#endif
//Clamp for overflows
if (j == NUMTEMPS)
temp = temptable[table_num][NUMTEMPS-1][1];
temp_sensors_runtime[i].next_read_time = 0;
} while (0);
break;
#endif /* TEMP_THERMISTOR */
#ifdef TEMP_AD595
case TT_AD595:
temp = analog_read(temp_sensors[i].temp_pin);
// convert
// >>8 instead of >>10 because internal temp is stored as 14.2 fixed point
temp = (temp * 500L) >> 8;
temp_sensors_runtime[i].next_read_time = 0;
break;
#endif /* TEMP_AD595 */
#ifdef TEMP_PT100
case TT_PT100:
#warning TODO: PT100 code
break
#endif /* TEMP_PT100 */
#ifdef TEMP_INTERCOM
case TT_INTERCOM:
temp = read_temperature(temp_sensors[i].temp_pin);
temp_sensors_runtime[i].next_read_time = 25;
break;
#endif /* TEMP_INTERCOM */
#ifdef TEMP_DUMMY
case TT_DUMMY:
temp = temp_sensors_runtime[i].last_read_temp;
if (temp_sensors_runtime[i].target_temp > temp)
temp++;
else if (temp_sensors_runtime[i].target_temp < temp)
temp--;
temp_sensors_runtime[i].next_read_time = 0;
break;
#endif /* TEMP_DUMMY */
default: /* prevent compiler warning */
break;
}
temp_sensors_runtime[i].last_read_temp = temp;
}
if (labs((int16_t)(temp_sensors_runtime[i].last_read_temp - temp_sensors_runtime[i].target_temp)) < (TEMP_HYSTERESIS*4)) {
if (temp_sensors_runtime[i].temp_residency < (TEMP_RESIDENCY_TIME*100))
temp_sensors_runtime[i].temp_residency++;
}
else {
temp_sensors_runtime[i].temp_residency = 0;
}
if (temp_sensors[i].heater < NUM_HEATERS) {
heater_tick(temp_sensors[i].heater, i, temp_sensors_runtime[i].last_read_temp, temp_sensors_runtime[i].target_temp);
}
}
}
/// report whether all temp sensors are reading their target temperatures
/// used for M109 and friends
uint8_t temp_achieved() {
temp_sensor_t i;
uint8_t all_ok = 255;
for (i = 0; i < NUM_TEMP_SENSORS; i++) {
if (temp_sensors_runtime[i].temp_residency < (TEMP_RESIDENCY_TIME*100))
all_ok = 0;
}
return all_ok;
}
/// specify a target temperature
/// \param index sensor to set a target for
/// \param temperature target temperature to aim for
void temp_set(temp_sensor_t index, uint16_t temperature) {
if (index >= NUM_TEMP_SENSORS)
return;
// only reset residency if temp really changed
if (temp_sensors_runtime[index].target_temp != temperature) {
temp_sensors_runtime[index].target_temp = temperature;
temp_sensors_runtime[index].temp_residency = 0;
#ifdef TEMP_INTERCOM
if (temp_sensors[index].temp_type == TT_INTERCOM)
send_temperature(temp_sensors[index].temp_pin, temperature);
#endif
}
}
/// return most recent reading for a sensor
/// \param index sensor to read
uint16_t temp_get(temp_sensor_t index) {
if (index >= NUM_TEMP_SENSORS)
return 0;
return temp_sensors_runtime[index].last_read_temp;
}
uint8_t temp_all_zero() {
uint8_t i;
for (i = 0; i < NUM_TEMP_SENSORS; i++) {
if (temp_sensors[i].heater < NUM_HEATERS) {
if (temp_sensors_runtime[i].target_temp)
return 0;
}
}
return 255;
}
// extruder doesn't have sersendf_P
#ifndef EXTRUDER
/// send temperatures to host
/// \param index sensor value to send
void temp_print(temp_sensor_t index) {
uint8_t c = 0;
if (index >= NUM_TEMP_SENSORS)
return;
c = (temp_sensors_runtime[index].last_read_temp & 3) * 25;
sersendf_P(PSTR("\nT:%u.%u"), temp_sensors_runtime[index].last_read_temp >> 2, c);
#ifdef HEATER_BED
uint8_t b = 0;
b = (temp_sensors_runtime[HEATER_BED].last_read_temp & 3) * 25;
sersendf_P(PSTR(" B:%u.%u"), temp_sensors_runtime[HEATER_BED].last_read_temp >> 2 , b);
#endif
}
#endif