-
Notifications
You must be signed in to change notification settings - Fork 0
/
DetectWink.py
113 lines (94 loc) · 3.51 KB
/
DetectWink.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import cv2
import os
from os import listdir
from os.path import isfile, join
import sys
def detectWink(frame, location, ROI, cascade):
eyes = cascade.detectMultiScale(
ROI, 1.15, 3, 0|cv2.CASCADE_SCALE_IMAGE, (10, 20))
for e in eyes:
e[0] += location[0]
e[1] += location[1]
x, y, w, h = e[0], e[1], e[2], e[3]
cv2.rectangle(frame, (x,y), (x+w,y+h), (0, 0, 255), 2)
return len(eyes) == 1 # number of eyes is one
def detect(frame, faceCascade, eyesCascade):
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# possible frame pre-processing:
# gray_frame = cv2.equalizeHist(gray_frame)
# gray_frame = cv2.medianBlur(gray_frame, 5)
scaleFactor = 1.15 # range is from 1 to ..
minNeighbors = 3 # range is from 0 to ..
flag = 0|cv2.CASCADE_SCALE_IMAGE # either 0 or 0|cv2.CASCADE_SCALE_IMAGE
minSize = (30,30) # range is from (0,0) to ..
faces = faceCascade.detectMultiScale(
gray_frame,
scaleFactor,
minNeighbors,
flag,
minSize)
detected = 0
for f in faces:
x, y, w, h = f[0], f[1], f[2], f[3]
faceROI = gray_frame[y:y+h, x:x+w]
if detectWink(frame, (x, y), faceROI, eyesCascade):
detected += 1
cv2.rectangle(frame, (x,y), (x+w,y+h), (255, 0, 0), 2)
else:
cv2.rectangle(frame, (x,y), (x+w,y+h), (0, 255, 0), 2)
return detected
def run_on_folder(cascade1, cascade2, folder):
if(folder[-1] != "/"):
folder = folder + "/"
files = [join(folder,f) for f in listdir(folder) if isfile(join(folder,f))]
windowName = None
totalCount = 0
for f in files:
img = cv2.imread(f)
if type(img) is np.ndarray:
lCnt = detect(img, cascade1, cascade2)
totalCount += lCnt
if windowName != None:
cv2.destroyWindow(windowName)
windowName = f
cv2.namedWindow(windowName, cv2.WINDOW_AUTOSIZE)
cv2.imshow(windowName, img)
cv2.waitKey(0)
return totalCount
def runonVideo(face_cascade, eyes_cascade):
videocapture = cv2.VideoCapture(0)
if not videocapture.isOpened():
print("Can't open default video camera!")
exit()
windowName = "Live Video"
showlive = True
while(showlive):
ret, frame = videocapture.read()
if not ret:
print("Can't capture frame")
exit()
detect(frame, face_cascade, eyes_cascade)
cv2.imshow(windowName, frame)
if cv2.waitKey(30) >= 0:
showlive = False
# outside the while loop
videocapture.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
# check command line arguments: nothing or a folderpath
if len(sys.argv) != 1 and len(sys.argv) != 2:
print(sys.argv[0] + ": got " + len(sys.argv) - 1
+ "arguments. Expecting 0 or 1:[image-folder]")
exit()
# load pretrained cascades
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades
+ 'haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier(cv2.data.haarcascades
+ 'haarcascade_eye.xml')
if(len(sys.argv) == 2): # one argument
folderName = sys.argv[1]
detections = run_on_folder(face_cascade, eye_cascade, folderName)
print("Total of ", detections, "detections")
else: # no arguments
runonVideo(face_cascade, eye_cascade)