-
Notifications
You must be signed in to change notification settings - Fork 0
/
openmp.cpp
262 lines (235 loc) · 9.18 KB
/
openmp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include "common.h"
#include <cmath>
#include <list>
#include <vector>
#include <stdio.h>
#include <omp.h>
#include <mutex>
typedef struct Bin {
std::list<particle_t*> plist;
}Bin;
typedef struct SaveBin {
particle_t* p;
int current_row;
int current_col;
int next_row;
int next_col;
}SaveBin;;
Bin** bin_array = NULL;
double bin_size = 0.0;
int bin_num = 0;
// Apply the force from neighbor to particle
void apply_force(particle_t& particle, particle_t& neighbor) {
// Calculate Distance
double dx = neighbor.x - particle.x;
double dy = neighbor.y - particle.y;
double r2 = dx * dx + dy * dy;
// Check if the two particles should interact
if (r2 > cutoff * cutoff)
return;
r2 = fmax(r2, min_r * min_r);
double r = sqrt(r2);
// Very simple short-range repulsive force
double coef = (1 - cutoff / r) / r2 / mass;
particle.ax += coef * dx;
particle.ay += coef * dy;
}
// Integrate the ODE
void move(particle_t& p, double size) {
// Slightly simplified Velocity Verlet integration
// Conserves energy better than explicit Euler method
p.vx += p.ax * dt;
p.vy += p.ay * dt;
p.x += p.vx * dt;
p.y += p.vy * dt;
// Bounce from walls
while (p.x < 0 || p.x > size) {
p.x = p.x < 0 ? -p.x : 2 * size - p.x;
p.vx = -p.vx;
}
while (p.y < 0 || p.y > size) {
p.y = p.y < 0 ? -p.y : 2 * size - p.y;
p.vy = -p.vy;
}
}
void init_simulation(particle_t* parts, int num_parts, double size) {
// You can use this space to initialize static, global data objects
// that you may need. This function will be called once before the
// algorithm begins. Do not do any particle simulation here
bin_size = cutoff;
bin_num = (int)ceil(size / bin_size);
//printf("bin_num=%d\n", bin_num);
bin_array = new Bin * [bin_num];
for (int i = 0; i < bin_num; ++i) {
bin_array[i] = new Bin[bin_num];
}
//put part into Bin
int index_row = 0, index_col = 0;
for (int i = 0; i < num_parts; i++)
{
index_col = int(parts[i].x / bin_size);
index_row = int(parts[i].y / bin_size);
bin_array[index_row][index_col].plist.push_back(parts + i);
}
//test
}
void simulate_one_step(particle_t* parts, int num_parts, double size) {
// Compute Forces
// Compute Forces
std::list<SaveBin> temp_list;
#pragma omp for collapse(2)
for (int i = 0; i < bin_num; ++i) {
for (int j = 0; j < bin_num; ++j) {
for (std::list<particle_t*>::iterator it = bin_array[i][j].plist.begin(); it != bin_array[i][j].plist.end(); ++it) {
particle_t* p = *it;
p->ax = 0;
p->ay = 0;
////Traverse neighboring bines
//
//center
for (std::list<particle_t*>::iterator it2 = bin_array[i][j].plist.begin(); it2 != bin_array[i][j].plist.end(); ++it2) {
if (p != *it2) {
apply_force(*p, **it2);
}
}
//left up
if (i - 1 >= 0 && j - 1 >= 0) {
for (std::list<particle_t*>::iterator it2 = bin_array[i - 1][j - 1].plist.begin(); it2 != bin_array[i - 1][j - 1].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//left
if (i - 1 >= 0) {
for (std::list<particle_t*>::iterator it2 = bin_array[i - 1][j].plist.begin(); it2 != bin_array[i - 1][j].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//left down
if (i - 1 >= 0 && j + 1 < bin_num) {
for (std::list<particle_t*>::iterator it2 = bin_array[i - 1][j + 1].plist.begin(); it2 != bin_array[i - 1][j + 1].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//up
if (j - 1 >= 0) {
for (std::list<particle_t*>::iterator it2 = bin_array[i][j - 1].plist.begin(); it2 != bin_array[i][j - 1].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//down
if (j + 1 < bin_num) {
for (std::list<particle_t*>::iterator it2 = bin_array[i][j + 1].plist.begin(); it2 != bin_array[i][j + 1].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//right up
if (i + 1 < bin_num && j - 1 >= 0) {
for (std::list<particle_t*>::iterator it2 = bin_array[i + 1][j - 1].plist.begin(); it2 != bin_array[i + 1][j - 1].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//right
if (i + 1 < bin_num) {
for (std::list<particle_t*>::iterator it2 = bin_array[i + 1][j].plist.begin(); it2 != bin_array[i + 1][j].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
//right down
if (i + 1 < bin_num && j + 1 < bin_num) {
for (std::list<particle_t*>::iterator it2 = bin_array[i + 1][j + 1].plist.begin(); it2 != bin_array[i + 1][j + 1].plist.end(); ++it2) {
apply_force(*p, **it2);
}
}
}
}
}
#pragma omp for
// Move Particles
for (int i = 0; i < num_parts; ++i) {
move(parts[i], size);
}
#pragma omp for collapse(2)
for (int i = 0; i < bin_num; i = i + 2) {
for (int j = 0; j < bin_num; j = j + 2) {
for (std::list<particle_t*>::iterator it = bin_array[i][j].plist.begin(); it != bin_array[i][j].plist.end();) {
particle_t* p = *it;
// move(*p, size);
int index_row = int(p->y / bin_size);
int index_col = int(p->x / bin_size);
if (index_row != i || index_col != j) {
std::list<particle_t*>::iterator nextIt = std::next(it);
bin_array[i][j].plist.erase(it);
bin_array[index_row][index_col].plist.push_back(p);
it = nextIt;
}
else
{
++it;
}
}
}
}
#pragma omp for collapse(2)
for (int i = 1; i < bin_num; i = i + 2) {
for (int j = 0; j < bin_num; j = j + 2) {
for (std::list<particle_t*>::iterator it = bin_array[i][j].plist.begin(); it != bin_array[i][j].plist.end();) {
particle_t* p = *it;
// move(*p, size);
int index_row = int(p->y / bin_size);
int index_col = int(p->x / bin_size);
if (index_row != i || index_col != j) {
std::list<particle_t*>::iterator nextIt = std::next(it);
bin_array[i][j].plist.erase(it);
bin_array[index_row][index_col].plist.push_back(p);
it = nextIt;
}
else
{
++it;
}
}
}
}
#pragma omp for collapse(2)
for (int i = 0; i < bin_num; i = i + 2) {
for (int j = 1; j < bin_num; j = j + 2) {
for (std::list<particle_t*>::iterator it = bin_array[i][j].plist.begin(); it != bin_array[i][j].plist.end();) {
particle_t* p = *it;
// move(*p, size);
int index_row = int(p->y / bin_size);
int index_col = int(p->x / bin_size);
if (index_row != i || index_col != j) {
std::list<particle_t*>::iterator nextIt = std::next(it);
bin_array[i][j].plist.erase(it);
bin_array[index_row][index_col].plist.push_back(p);
it = nextIt;
}
else
{
++it;
}
}
}
}
#pragma omp for collapse(2)
for (int i = 1; i < bin_num; i = i + 2) {
for (int j = 1; j < bin_num; j = j + 2) {
for (std::list<particle_t*>::iterator it = bin_array[i][j].plist.begin(); it != bin_array[i][j].plist.end();) {
particle_t* p = *it;
// move(*p, size);
int index_row = int(p->y / bin_size);
int index_col = int(p->x / bin_size);
if (index_row != i || index_col != j) {
std::list<particle_t*>::iterator nextIt = std::next(it);
bin_array[i][j].plist.erase(it);
bin_array[index_row][index_col].plist.push_back(p);
it = nextIt;
}
else
{
++it;
}
}
}
}
}