-
Notifications
You must be signed in to change notification settings - Fork 5.2k
/
run.py
141 lines (122 loc) · 4.52 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import time
import os
import argparse
import torch
import glob
from pathlib import Path
from tqdm import tqdm
from models.ppg_extractor import load_model
import librosa
import soundfile as sf
from utils.hparams import HpsYaml
from models.encoder.audio import preprocess_wav
from models.encoder import inference as speacker_encoder
from models.vocoder.hifigan import inference as vocoder
from models.ppg2mel import MelDecoderMOLv2
from utils.f0_utils import compute_f0, f02lf0, compute_mean_std, get_converted_lf0uv
def _build_ppg2mel_model(model_config, model_file, device):
ppg2mel_model = MelDecoderMOLv2(
**model_config["model"]
).to(device)
ckpt = torch.load(model_file, map_location=device)
ppg2mel_model.load_state_dict(ckpt["model"])
ppg2mel_model.eval()
return ppg2mel_model
@torch.no_grad()
def convert(args):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
step = os.path.basename(args.ppg2mel_model_file)[:-4].split("_")[-1]
# Build models
print("Load PPG-model, PPG2Mel-model, Vocoder-model...")
ppg_model = load_model(
Path('./ppg_extractor/saved_models/24epoch.pt'),
device,
)
ppg2mel_model = _build_ppg2mel_model(HpsYaml(args.ppg2mel_model_train_config), args.ppg2mel_model_file, device)
# vocoder.load_model('./vocoder/saved_models/pretrained/g_hifigan.pt', "./vocoder/hifigan/config_16k_.json")
vocoder.load_model('./vocoder/saved_models/24k/g_02830000.pt')
# Data related
ref_wav_path = args.ref_wav_path
ref_wav = preprocess_wav(ref_wav_path)
ref_fid = os.path.basename(ref_wav_path)[:-4]
# TODO: specify encoder
speacker_encoder.load_model(Path("encoder/saved_models/pretrained_bak_5805000.pt"))
ref_spk_dvec = speacker_encoder.embed_utterance(ref_wav)
ref_spk_dvec = torch.from_numpy(ref_spk_dvec).unsqueeze(0).to(device)
ref_lf0_mean, ref_lf0_std = compute_mean_std(f02lf0(compute_f0(ref_wav)))
source_file_list = sorted(glob.glob(f"{args.wav_dir}/*.wav"))
print(f"Number of source utterances: {len(source_file_list)}.")
total_rtf = 0.0
cnt = 0
for src_wav_path in tqdm(source_file_list):
# Load the audio to a numpy array:
src_wav, _ = librosa.load(src_wav_path, sr=16000)
src_wav_tensor = torch.from_numpy(src_wav).unsqueeze(0).float().to(device)
src_wav_lengths = torch.LongTensor([len(src_wav)]).to(device)
ppg = ppg_model(src_wav_tensor, src_wav_lengths)
lf0_uv = get_converted_lf0uv(src_wav, ref_lf0_mean, ref_lf0_std, convert=True)
min_len = min(ppg.shape[1], len(lf0_uv))
ppg = ppg[:, :min_len]
lf0_uv = lf0_uv[:min_len]
start = time.time()
_, mel_pred, att_ws = ppg2mel_model.inference(
ppg,
logf0_uv=torch.from_numpy(lf0_uv).unsqueeze(0).float().to(device),
spembs=ref_spk_dvec,
)
src_fid = os.path.basename(src_wav_path)[:-4]
wav_fname = f"{output_dir}/vc_{src_fid}_ref_{ref_fid}_step{step}.wav"
mel_len = mel_pred.shape[0]
rtf = (time.time() - start) / (0.01 * mel_len)
total_rtf += rtf
cnt += 1
# continue
mel_pred= mel_pred.transpose(0, 1)
y, output_sample_rate = vocoder.infer_waveform(mel_pred.cpu())
sf.write(wav_fname, y.squeeze(), output_sample_rate, "PCM_16")
print("RTF:")
print(total_rtf / cnt)
def get_parser():
parser = argparse.ArgumentParser(description="Conversion from wave input")
parser.add_argument(
"--wav_dir",
type=str,
default=None,
required=True,
help="Source wave directory.",
)
parser.add_argument(
"--ref_wav_path",
type=str,
required=True,
help="Reference wave file path.",
)
parser.add_argument(
"--ppg2mel_model_train_config", "-c",
type=str,
default=None,
required=True,
help="Training config file (yaml file)",
)
parser.add_argument(
"--ppg2mel_model_file", "-m",
type=str,
default=None,
required=True,
help="ppg2mel model checkpoint file path"
)
parser.add_argument(
"--output_dir", "-o",
type=str,
default="vc_gens_vctk_oneshot",
help="Output folder to save the converted wave."
)
return parser
def main():
parser = get_parser()
args = parser.parse_args()
convert(args)
if __name__ == "__main__":
main()