-
Notifications
You must be signed in to change notification settings - Fork 6
/
ddpg_reacher_action_max.py
93 lines (81 loc) · 3.05 KB
/
ddpg_reacher_action_max.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
"""###IMP dummy_seed should always be last in the order in the OrderedDict below!!!
"""
import itertools
from ray import tune
from collections import OrderedDict
num_seeds = 10
var_env_configs = OrderedDict(
{
"action_space_max": [0.025, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0],
"dummy_seed": [i for i in range(num_seeds)],
}
)
var_configs = OrderedDict({"env": var_env_configs})
env_config = {
"env": "ReacherWrapper-v2",
"horizon": 100,
"soft_horizon": False,
"env_config": {
"state_space_type": "continuous",
"action_space_type": "continuous",
"MujocoEnv": {},
},
}
algorithm = "DDPG"
agent_config = {
# Learning rate for the critic (Q-function) optimizer.
"critic_lr": 1e-3,
# Learning rate for the actor (policy) optimizer.
"actor_lr": 1e-3,
# Update the target by \tau * policy + (1-\tau) * target_policy
"tau": 0.002,
# How many steps of the model to sample before learning starts.
"learning_starts": 10000,
"critic_hiddens": [256, 256],
"actor_hiddens": [256, 256],
# N-step Q learning
"n_step": 1,
# Update the target network every `target_network_update_freq` steps.
# "target_network_update_freq": 1,
"buffer_size": 1000000,
# If True prioritized replay buffer will be used.
"prioritized_replay": False,
# "schedule_max_timesteps": 20000,
"timesteps_per_iteration": 1000,
# Update the replay buffer with this many samples at once. Note that this
# setting applies per-worker if num_workers > 1.
# "rollout_fragment_length": 1,
"rollout_fragment_length": 1, # Renamed from sample_batch_size in some Ray version
"train_batch_size": 256,
"min_iter_time_s": 0,
"num_workers": 0,
"num_gpus": 0,
# "evaluation_interval": 1,
}
model_config = {}
eval_config = {
"evaluation_interval": 1, # I think this means every x training_iterations
"evaluation_config": {
"explore": False,
"evaluation_num_episodes": 10,
"horizon": 100,
"env_config": {
"dummy_eval": True, # hack Used to check if we are in evaluation mode or training mode inside Ray callback on_episode_end() to be able to write eval stats
"transition_noise": 0
if "state_space_type" in env_config["env_config"]
and env_config["env_config"]["state_space_type"] == "discrete"
else tune.function(lambda a: a.normal(0, 0)),
"reward_noise": tune.function(lambda a: a.normal(0, 0)),
"action_loss_weight": 0.0,
},
},
}
value_tuples = []
for config_type, config_dict in var_configs.items():
for key in config_dict:
assert isinstance(
var_configs[config_type][key], list
), "var_config should be a dict of dicts with lists as the leaf values to allow each configuration option to take multiple possible values"
value_tuples.append(var_configs[config_type][key])
cartesian_product_configs = list(itertools.product(*value_tuples))
print("Total number of configs. to run:", len(cartesian_product_configs))