-
Notifications
You must be signed in to change notification settings - Fork 6
/
a3c_qbert_p_noise.py
114 lines (103 loc) · 3.4 KB
/
a3c_qbert_p_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import itertools
from ray import tune
from collections import OrderedDict
num_seeds = 5
timesteps_total = 10_000_000
var_env_configs = OrderedDict(
{
"transition_noise": [0, 0.01, 0.02, 0.10, 0.25],
"dummy_seed": [i for i in range(num_seeds)],
}
)
var_configs = OrderedDict({"env": var_env_configs})
env_config = {
"env": "GymEnvWrapper-Atari",
"env_config": {
"AtariEnv": {
"game": "qbert",
"obs_type": "image",
"frameskip": 1,
},
# "GymEnvWrapper": {
"atari_preprocessing": True,
"frame_skip": 4,
"grayscale_obs": False,
"state_space_type": "discrete",
"action_space_type": "discrete",
"seed": 0,
# },
# 'seed': 0, #seed
},
}
algorithm = "A3C"
agent_config = { # Taken from Ray tuned_examples
"clip_rewards": True,
"lr": 1e-4,
# Value Function Loss coefficient
"vf_loss_coeff": 2.5,
# Entropy coefficient
"entropy_coeff": 0.01,
"min_iter_time_s": 0,
"num_envs_per_worker": 5,
"num_gpus": 0,
"num_workers": 3,
"rollout_fragment_length": 10,
"timesteps_per_iteration": 10000,
# "tf_session_args": {
# # note: overriden by `local_tf_session_args`
# "intra_op_parallelism_threads": 4,
# "inter_op_parallelism_threads": 4,
# # "gpu_options": {
# # "allow_growth": True,
# # },
# # "log_device_placement": False,
# "device_count": {
# "CPU": 2,
# # "GPU": 0,
# },
# # "allow_soft_placement": True, # required by PPO multi-gpu
# },
# # Override the following tf session args on the local worker
# "local_tf_session_args": {
# "intra_op_parallelism_threads": 4,
# "inter_op_parallelism_threads": 4,
# },
}
model_config = {
# "model": {
# "fcnet_hiddens": [256, 256],
# "fcnet_activation": "tanh",
# "use_lstm": False,
# "max_seq_len": 20,
# "lstm_cell_size": 256,
# "lstm_use_prev_action_reward": False,
# },
}
eval_config = {
"evaluation_interval": None, # I think this means every x training_iterations
"evaluation_config": {
"explore": False,
"exploration_fraction": 0,
"exploration_final_eps": 0,
"evaluation_num_episodes": 10,
# "horizon": 100,
"env_config": {
"dummy_eval": True, # hack Used to check if we are in evaluation mode or training mode inside Ray callback on_episode_end() to be able to write eval stats
"transition_noise": 0
if "state_space_type" in env_config["env_config"]
and env_config["env_config"]["state_space_type"] == "discrete"
else tune.function(lambda a: a.normal(0, 0)),
"reward_noise": tune.function(lambda a: a.normal(0, 0)),
"action_loss_weight": 0.0,
},
},
}
value_tuples = []
for config_type, config_dict in var_configs.items():
for key in config_dict:
assert isinstance(
var_configs[config_type][key], list
), "var_config should be a dict of dicts with lists as the leaf values to allow each configuration option to take multiple possible values"
value_tuples.append(var_configs[config_type][key])
cartesian_product_configs = list(itertools.product(*value_tuples))
print("Total number of configs. to run:", len(cartesian_product_configs))