-
Notifications
You must be signed in to change notification settings - Fork 6
/
a3c_beam_rider_r_noise.py
117 lines (106 loc) · 3.48 KB
/
a3c_beam_rider_r_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import itertools
from ray import tune
import numpy as np
from collections import OrderedDict
num_seeds = 5
timesteps_total = 10_000_000
var_env_configs = OrderedDict(
{
"reward_noise": list(
np.array([0, 1, 5, 10, 25]) / 100
), # Std dev. of normal dist.
"dummy_seed": [i for i in range(num_seeds)],
}
)
var_configs = OrderedDict({"env": var_env_configs})
env_config = {
"env": "GymEnvWrapper-Atari",
"env_config": {
"AtariEnv": {
"game": "beam_rider",
"obs_type": "image",
"frameskip": 1,
},
# "GymEnvWrapper": {
"atari_preprocessing": True,
"frame_skip": 4,
"grayscale_obs": False,
"state_space_type": "discrete",
"action_space_type": "discrete",
"seed": 0,
# },
# 'seed': 0, #seed
},
}
algorithm = "A3C"
agent_config = { # Taken from Ray tuned_examples
"clip_rewards": True,
"lr": 1e-4,
# Value Function Loss coefficient
"vf_loss_coeff": 2.5,
# Entropy coefficient
"entropy_coeff": 0.01,
"min_iter_time_s": 0,
"num_envs_per_worker": 5,
"num_gpus": 0,
"num_workers": 3,
"rollout_fragment_length": 10,
"timesteps_per_iteration": 10000,
# "tf_session_args": {
# # note: overriden by `local_tf_session_args`
# "intra_op_parallelism_threads": 4,
# "inter_op_parallelism_threads": 4,
# # "gpu_options": {
# # "allow_growth": True,
# # },
# # "log_device_placement": False,
# "device_count": {
# "CPU": 2,
# # "GPU": 0,
# },
# # "allow_soft_placement": True, # required by PPO multi-gpu
# },
# # Override the following tf session args on the local worker
# "local_tf_session_args": {
# "intra_op_parallelism_threads": 4,
# "inter_op_parallelism_threads": 4,
# },
}
model_config = {
# "model": {
# "fcnet_hiddens": [256, 256],
# "fcnet_activation": "tanh",
# "use_lstm": False,
# "max_seq_len": 20,
# "lstm_cell_size": 256,
# "lstm_use_prev_action_reward": False,
# },
}
eval_config = {
"evaluation_interval": None, # I think this means every x training_iterations
"evaluation_config": {
"explore": False,
"exploration_fraction": 0,
"exploration_final_eps": 0,
"evaluation_num_episodes": 10,
# "horizon": 100,
"env_config": {
"dummy_eval": True, # hack Used to check if we are in evaluation mode or training mode inside Ray callback on_episode_end() to be able to write eval stats
"transition_noise": 0
if "state_space_type" in env_config["env_config"]
and env_config["env_config"]["state_space_type"] == "discrete"
else tune.function(lambda a: a.normal(0, 0)),
"reward_noise": tune.function(lambda a: a.normal(0, 0)),
"action_loss_weight": 0.0,
},
},
}
value_tuples = []
for config_type, config_dict in var_configs.items():
for key in config_dict:
assert isinstance(
var_configs[config_type][key], list
), "var_config should be a dict of dicts with lists as the leaf values to allow each configuration option to take multiple possible values"
value_tuples.append(var_configs[config_type][key])
cartesian_product_configs = list(itertools.product(*value_tuples))
print("Total number of configs. to run:", len(cartesian_product_configs))