-
Notifications
You must be signed in to change notification settings - Fork 0
/
fsd50k.py
223 lines (187 loc) · 7.48 KB
/
fsd50k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import io
import os
import av
from torch.utils.data import Dataset as TorchDataset, WeightedRandomSampler
import torch
import numpy as np
import h5py
from datasets.helpers.audiodatasets import PreprocessDataset, get_roll_func
# specify FSD50K location in 'dataset_dir'
# 3 files have to be located there:
# - FSD50K.eval_mp3.hdf
# - FSD50K.val_mp3.hdf
# - FSD50K.train_mp3.hdf
# follow the instructions here to get these 3 files:
# https://github.com/kkoutini/PaSST/tree/main/fsd50k
dataset_dir = "C:\\Users\\UserVR\\Desktop\\thesis_tartu\\dataset_main\\dataset"
assert dataset_dir is not None, "Specify FSD50K dataset location in variable 'dataset_dir'. " \
"Check out the Readme file for further instructions. " \
"https://github.com/fschmid56/EfficientAT/blob/main/README.md"
dataset_config = {
'balanced_train_hdf5': os.path.join(dataset_dir, "dataset_train.hdf"),
'valid_hdf5': os.path.join(dataset_dir, "dataset_val.hdf"),
'eval_hdf5': os.path.join(dataset_dir, "dataset_val.hdf"),
'num_of_classes': 5
}
def decode_mp3(mp3_arr):
"""
decodes an array if uint8 representing an mp3 file
:rtype: np.array
"""
container = av.open(io.BytesIO(mp3_arr.tobytes()))
stream = next(s for s in container.streams if s.type == 'audio')
a = []
for i, packet in enumerate(container.demux(stream)):
for frame in packet.decode():
a.append(frame.to_ndarray().reshape(-1))
waveform = np.concatenate(a)
if waveform.dtype != 'float32':
raise RuntimeError("Unexpected wave type")
return waveform
def pad_or_truncate(x, audio_length):
"""Pad all audio to specific length."""
if audio_length is None:
# audio_length not specified don't do anything.
return x
if len(x) <= audio_length:
return np.concatenate((x, np.zeros(audio_length - len(x), dtype=np.float32)), axis=0)
else:
offset = torch.randint(0, len(x) - audio_length + 1, (1,)).item()
return x[offset:offset + audio_length]
def pydub_augment(waveform, gain_augment=0):
if gain_augment:
gain = torch.randint(gain_augment * 2, (1,)).item() - gain_augment
amp = 10 ** (gain / 20)
waveform = waveform * amp
return waveform
class MixupDataset(TorchDataset):
""" Mixing Up wave forms
"""
def __init__(self, dataset, beta=2, rate=0.5):
self.beta = beta
self.rate = rate
self.dataset = dataset
print(f"Mixing up waveforms from dataset of len {len(dataset)}")
def __getitem__(self, index):
if torch.rand(1) < self.rate:
x1, f1, y1 = self.dataset[index]
idx2 = torch.randint(len(self.dataset), (1,)).item()
x2, f2, y2 = self.dataset[idx2]
l = np.random.beta(self.beta, self.beta)
l = max(l, 1. - l)
x1 = x1 - x1.mean()
x2 = x2 - x2.mean()
x = (x1 * l + x2 * (1. - l))
x = x - x.mean()
return x, f1, (y1 * l + y2 * (1. - l))
return self.dataset[index]
def __len__(self):
return len(self.dataset)
class AudioSetDataset(TorchDataset):
def __init__(self, hdf5_file, resample_rate=32000, classes_num=5, clip_length=10,
in_mem=False, gain_augment=0):
"""
Reads the mp3 bytes from HDF file decodes using av and returns a fixed length audio wav
"""
self.resample_rate = resample_rate
self.hdf5_file = hdf5_file
if in_mem:
print("\nPreloading in memory\n")
with open(hdf5_file, 'rb') as f:
self.hdf5_file = io.BytesIO(f.read())
with h5py.File(hdf5_file, 'r') as f:
self.length = len(f['audio_name'])
print(f"Dataset from {hdf5_file} with length {self.length}.")
self.dataset_file = None # lazy init
self.clip_length = clip_length
if clip_length is not None:
self.clip_length = clip_length * resample_rate
self.classes_num = classes_num
self.gain_augment = gain_augment
def open_hdf5(self):
self.dataset_file = h5py.File(self.hdf5_file, 'r')
def __len__(self):
return self.length
def __del__(self):
if self.dataset_file is not None:
self.dataset_file.close()
self.dataset_file = None
def __getitem__(self, index):
"""Load waveform and target of an audio clip.
Args:
meta: {
'hdf5_path': str,
'index_in_hdf5': int}
Returns:
data_dict: {
'audio_name': str,
'waveform': (clip_samples,),
'target': (classes_num,)}
"""
if self.dataset_file is None:
self.open_hdf5()
audio_name = self.dataset_file['audio_name'][index] # .decode() we do not to decode here
waveform = decode_mp3(self.dataset_file['mp3'][index])
waveform = pydub_augment(waveform, self.gain_augment)
waveform = pad_or_truncate(waveform, self.clip_length)
waveform = self.resample(waveform)
target = self.dataset_file['target'][index]
target = np.unpackbits(target, axis=-1).astype(np.float32)[-self.classes_num:]
return waveform.reshape(1, -1), audio_name, target
def resample(self, waveform):
"""Resample.
Args:
waveform: (clip_samples,)
Returns:
(resampled_clip_samples,)
"""
if self.resample_rate == 32000:
return waveform
elif self.resample_rate == 16000:
return waveform[0:: 2]
elif self.resample_rate == 8000:
return waveform[0:: 4]
else:
raise Exception('Incorrect sample rate!')
def get_base_training_set(resample_rate=32000, gain_augment=0):
balanced_train_hdf5 = dataset_config['balanced_train_hdf5']
ds = AudioSetDataset(
balanced_train_hdf5, resample_rate=resample_rate,
gain_augment=gain_augment, classes_num=dataset_config['num_of_classes']
)
return ds
def get_base_eval_set(resample_rate=32000, variable_eval=None):
eval_hdf5 = dataset_config['eval_hdf5']
if variable_eval:
print("Variable length eval!!")
ds = AudioSetDataset(
eval_hdf5, resample_rate=resample_rate,
clip_length=None, classes_num=dataset_config['num_of_classes']
)
else:
ds = AudioSetDataset(eval_hdf5, resample_rate=resample_rate, classes_num=dataset_config['num_of_classes'])
return ds
def get_base_valid_set(resample_rate=32000, variable_eval=None):
valid_hdf5 = dataset_config['valid_hdf5']
if variable_eval:
print("Variable length valid_set !!")
ds = AudioSetDataset(
valid_hdf5, resample_rate=resample_rate,
clip_length=None, classes_num=dataset_config['num_of_classes']
)
else:
ds = AudioSetDataset(valid_hdf5, resample_rate=resample_rate, classes_num=dataset_config['num_of_classes'])
return ds
def get_training_set(roll=False, wavmix=False, gain_augment=0, resample_rate=32000):
ds = get_base_training_set(resample_rate=resample_rate, gain_augment=gain_augment)
if roll:
ds = PreprocessDataset(ds, get_roll_func())
if wavmix:
ds = MixupDataset(ds)
return ds
def get_valid_set(resample_rate=32000, variable_eval=None):
ds = get_base_valid_set(resample_rate, variable_eval)
return ds
def get_eval_set(resample_rate=32000, variable_eval=None):
ds = get_base_eval_set(resample_rate, variable_eval)
return ds