download directly at weiyun or google driver or export onnx:
pip install super-gradients==3.3.1
cd super-gradients
# copy the python script provided in this repository to your workspace
# note:The weight file is downloaded automatically
cp TensorRT-Alpha/yolonas/alpha_export_dynamic.py YOUR_WORKSPACE
# for YOLO_NAS_S
# Changing lines 9-11 of the code allows you to switch to other models, eg:YOLO_NAS_M
python alpha_export_dynamic.py
# note: If you have obtained onnx by downloading, this step can be ignored
ignore
# put your onnx file in this path:tensorrt-alpha/data/yolonas
cd tensorrt-alpha/data/yolonas
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/feiyull/TensorRT-8.4.2.4/lib
# 640
../../../../TensorRT-8.4.2.4/bin/trtexec --onnx=yolonas_s.onnx --saveEngine=yolonas_s.trt --buildOnly --minShapes=images:1x3x640x640 --optShapes=images:2x3x640x640 --maxShapes=images:4x3x640x640
git clone https://github.com/FeiYull/tensorrt-alpha
cd tensorrt-alpha/yolonas
mkdir build
cd build
cmake ..
make -j10
# note: the dstImage will be saved in tensorrt-alpha/yolonas/build by default
## 640
# infer image
./app_yolo_nas --model=../../data/yolo_nas/yolonas_s.trt --size=640 --batch_size=1 --img=../../data/6406407.jpg --show --savePath=../
# infer video
./app_yolo_nas --model=../../data/yolo_nas/yolonas_s.trt --size=640 --batch_size=2 --video=../../data/people.mp4 --show
# infer camera
./app_yolo_nas --model=../../data/yolo_nas/yolonas_s.trt --size=640 --batch_size=2 --cam_id=0 --show
ignore