Skip to content

Latest commit

 

History

History
116 lines (74 loc) · 3.43 KB

README.md

File metadata and controls

116 lines (74 loc) · 3.43 KB

Chaotic Attractors

A library to simulate trajectories of various systems of differential and difference equations, built primarily for the purpose of exploring the dynamics of chaotic attractors. Requires Numpy and Matplotlib.

Examples

Rabinovich–Fabrikant equations

https://en.wikipedia.org/wiki/Rabinovich%E2%80%93Fabrikant_equations

from attractors import RabFab_attractor
RabFab_attractor(init = (-1,0,0.5), a = 1.1, g = 0.87, speed = 0.001, steps = 150000)

Rabinovich Fabrikant

RabFab_attractor(init = (-1,0,0.5), a = 0.14, g = 0.1, speed = 0.001, steps = 350000)

Rabinovich Fabrikant

Rossler Attractor

https://en.wikipedia.org/wiki/R%C3%B6ssler_attractor

from attractors import Rossler_attractor
Rossler_attractor(init = (0.1,0.1,0.1), a = 0.35, b = 0.5, c = 12, speed = 0.01, steps = 15000)

Rossler Attractor

Lu Chen Attractor

https://en.wikipedia.org/wiki/Multiscroll_attractor

from attractors import Lu_Chen_attractor
Lu_Chen_attractor(init = (0.1, 0.3, -0.5), a = 29, b = 3, c = 22, u = -1, speed = 0.001, steps = 25000) 

Lu Chen Attractor

Skew Tent Map

https://infoscience.epfl.ch/record/52235/files/IC_TECH_REPORT_199704.pdf

from attractors import Skew_Tent_map
Skew_Tent_map(init = 0.5, b = 0.68, steps = 250)

Skew Tent Map

Logistic Map

https://en.wikipedia.org/wiki/Logistic_map

from attractors import Logistic_map
Logistic_map(init = 0.5, p = 3.99, steps = 150)

Logistic Map

Logistic_map(init = 0.5, p = 3.75, steps = 300)

Logistic Map

Gingerbread Map

http://mathworld.wolfram.com/GingerbreadmanMap.html

from attractors import GingerBread_map
GingerBread_map(init = (3.5, 3.5), steps = 250)

Gingerbread Map

Van der Pol Oscillator

https://arxiv.org/abs/0803.1658

from attractors import VanDerPol_oscillator
VanDerPol_oscillator(init = (0.5, 0.5), p = 1.614, speed = 0.001, steps = 15250)

Van der Pol Oscillator

Bogdanov Map

https://arxiv.org/abs/chao-dyn/9402006

from attractors import Bogdanov_map
Bogdanov_map(init=(0.1,0), epsilon = 0.0000, k = 0.0001, mu = 0.020, steps = 10450)

Bogdanov Map

Lorenz Attractor

https://en.wikipedia.org/wiki/Lorenz_system

from attractors import Lorenz_attractor
Lorenz_attractor(init = (10,10,10), sigma = 10, rho = 28, beta = 8/3, speed = 0.001, steps = 30000)

Lorenz Attractor