-
Notifications
You must be signed in to change notification settings - Fork 59
/
train.py
231 lines (209 loc) · 9.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import cv2
import matplotlib.pyplot as plt
import pickle
import h5py
import glob
import time
from random import shuffle
from collections import Counter
from sklearn.model_selection import train_test_split
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler, ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD, Adam
map_characters = {0: 'abraham_grampa_simpson', 1: 'apu_nahasapeemapetilon', 2: 'bart_simpson',
3: 'charles_montgomery_burns', 4: 'chief_wiggum', 5: 'comic_book_guy', 6: 'edna_krabappel',
7: 'homer_simpson', 8: 'kent_brockman', 9: 'krusty_the_clown', 10: 'lisa_simpson',
11: 'marge_simpson', 12: 'milhouse_van_houten', 13: 'moe_szyslak',
14: 'ned_flanders', 15: 'nelson_muntz', 16: 'principal_skinner', 17: 'sideshow_bob'}
pic_size = 64
batch_size = 32
epochs = 200
num_classes = len(map_characters)
pictures_per_class = 1000
test_size = 0.15
def load_pictures(BGR):
"""
Load pictures from folders for characters from the map_characters dict and create a numpy dataset and
a numpy labels set. Pictures are re-sized into picture_size square.
:param BGR: boolean to use true color for the picture (RGB instead of BGR for plt)
:return: dataset, labels set
"""
pics = []
labels = []
for k, char in map_characters.items():
pictures = [k for k in glob.glob('./characters/%s/*' % char)]
nb_pic = round(pictures_per_class/(1-test_size)) if round(pictures_per_class/(1-test_size))<len(pictures) else len(pictures)
# nb_pic = len(pictures)
for pic in np.random.choice(pictures, nb_pic):
a = cv2.imread(pic)
if BGR:
a = cv2.cvtColor(a, cv2.COLOR_BGR2RGB)
a = cv2.resize(a, (pic_size,pic_size))
pics.append(a)
labels.append(k)
return np.array(pics), np.array(labels)
def get_dataset(save=False, load=False, BGR=False):
"""
Create the actual dataset split into train and test, pictures content is as float32 and
normalized (/255.). The dataset could be saved or loaded from h5 files.
:param save: saving or not the created dataset
:param load: loading or not the dataset
:param BGR: boolean to use true color for the picture (RGB instead of BGR for plt)
:return: X_train, X_test, y_train, y_test (numpy arrays)
"""
if load:
h5f = h5py.File('dataset.h5','r')
X_train = h5f['X_train'][:]
X_test = h5f['X_test'][:]
h5f.close()
h5f = h5py.File('labels.h5','r')
y_train = h5f['y_train'][:]
y_test = h5f['y_test'][:]
h5f.close()
else:
X, y = load_pictures(BGR)
y = keras.utils.to_categorical(y, num_classes)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
if save:
h5f = h5py.File('dataset.h5', 'w')
h5f.create_dataset('X_train', data=X_train)
h5f.create_dataset('X_test', data=X_test)
h5f.close()
h5f = h5py.File('labels.h5', 'w')
h5f.create_dataset('y_train', data=y_train)
h5f.create_dataset('y_test', data=y_test)
h5f.close()
X_train = X_train.astype('float32') / 255.
X_test = X_test.astype('float32') / 255.
print("Train", X_train.shape, y_train.shape)
print("Test", X_test.shape, y_test.shape)
if not load:
dist = {k:tuple(d[k] for d in [dict(Counter(np.where(y_train==1)[1])), dict(Counter(np.where(y_test==1)[1]))])
for k in range(num_classes)}
print('\n'.join(["%s : %d train pictures & %d test pictures" % (map_characters[k], v[0], v[1])
for k,v in sorted(dist.items(), key=lambda x:x[1][0], reverse=True)]))
return X_train, X_test, y_train, y_test
def create_model_four_conv(input_shape):
"""
CNN Keras model with 4 convolutions.
:param input_shape: input shape, generally X_train.shape[1:]
:return: Keras model, RMS prop optimizer
"""
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
opt = keras.optimizers.rmsprop(lr=0.0001, decay=1e-6)
return model, opt
def create_model_six_conv(input_shape):
"""
CNN Keras model with 6 convolutions.
:param input_shape: input shape, generally X_train.shape[1:]
:return: Keras model, RMS prop optimizer
"""
model = Sequential()
model.add(Conv2D(32, (3, 3), padding='same', input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Conv2D(256, (3, 3), padding='same'))
model.add(Activation('relu'))
model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(1024))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
opt = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
return model, opt
def load_model_from_checkpoint(weights_path, six_conv=False, input_shape=(pic_size,pic_size,3)):
if six_conv:
model, opt = create_model_six_conv(input_shape)
else:
model, opt = create_model_four_conv(input_shape)
model.load_weights(weights_path)
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
return model
def lr_schedule(epoch):
lr = 0.01
return lr*(0.1**int(epoch/10))
def training(model, X_train, X_test, y_train, y_test, data_augmentation=True):
"""
Training.
:param model: Keras sequential model
:param data_augmentation: boolean for data_augmentation (default:True)
:param callback: boolean for saving model checkpoints and get the best saved model
:param six_conv: boolean for using the 6 convs model (default:False, so 4 convs)
:return: model and epochs history (acc, loss, val_acc, val_loss for every epoch)
"""
if data_augmentation:
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=10, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# Compute quantities required for feature-wise normalization
# (std, mean, and principal components if ZCA whitening is applied).
datagen.fit(X_train)
filepath="weights_6conv_%s.hdf5" % time.strftime("%d%m/%Y")
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=0, save_best_only=True, mode='max')
callbacks_list = [LearningRateScheduler(lr_schedule) ,checkpoint]
history = model.fit_generator(datagen.flow(X_train, y_train,
batch_size=batch_size),
steps_per_epoch=X_train.shape[0] // batch_size,
epochs=40,
validation_data=(X_test, y_test),
callbacks=callbacks_list)
else:
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(X_test, y_test),
shuffle=True)
return model, history
if __name__ == '__main__':
X_train, X_test, y_train, y_test = train.get_dataset(load=True)
model, opt = train.create_model_six_conv(X_train.shape[1:])
model.compile(loss='categorical_crossentropy',
optimizer=opt,
metrics=['accuracy'])
model, history = train.training(model, X_train, X_test, y_train, y_test, data_augmentation=True)