forked from tomcat123a/-chanlun
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chanlun.py
1054 lines (902 loc) · 42 KB
/
chanlun.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""
Created on Mon Oct 12 13:32:43 2020
@author: Administrator
"""
import sys
import pandas as pd
import numpy as np
from datetime import date
import os
data_dir='/scratch/tmp/pudge/chan/data/'
#end debug
#init from non-inclusion
def buy_sell(INDEX,data_dir,debug=1):
os.chdir(data_dir)
len_dir = os.listdir(data_dir)
if date.fromtimestamp(os.path.getmtime(len_dir[INDEX]))<date.today():#if the file is
#not updated on today
return None
# =============================================================================
if debug == 0:
debug = 1
df = pd.read_csv(len_dir[INDEX])[['low','high','datetime']][:-debug]
if debug >= len(df):
print('skipped')
return ;
print('processing ' + len_dir[INDEX].split('_')[1].split('.')[0])
i = 0
while(True ):
if ( df['low'][i] <= df['low'][i+1] ) or (df['high'][i] <= df['high'][i+1]):
i = i + 1
else :
break
df = df[i:].reset_index(drop=True)
#REMOVE INCLUSION
while ( True ):
temp_len = len(df)
i=0
while i<=len(df)-4:
if (df.iloc[i+2,0]>=df.iloc[i+1,0] and df.iloc[i+2,1]<=df.iloc[i+1,1]) or\
(df.iloc[i+2,0]<=df.iloc[i+1,0] and df.iloc[i+2,1]>=df.iloc[i+1,1]):
if df.iloc[i+1,0]>df.iloc[i,0]:
df.iloc[i+2,0] = max(df.iloc[i+1:i+3,0])
df.iloc[i+2,1] = max(df.iloc[i+1:i+3,1])
df.drop(df.index[i+1],inplace=True)
continue
else:
df.iloc[i+2,0] = min(df.iloc[i+1:i+3,0])
df.iloc[i+2,1] = min(df.iloc[i+1:i+3,1])
df.drop(df.index[i+1],inplace=True)
continue
i = i + 1
# print(len(df))
if len(df)==temp_len:
break
df= df.reset_index(drop=True)
#get difenxing and dingfenxing
ul=[0]
for i in range(len(df)-2):
if df.iloc[i+2,0] < df.iloc[i+1,0] and df.iloc[i,0] < df.iloc[i+1,0]:
ul = ul + [1]
continue
if df.iloc[i+2,0] > df.iloc[i+1,0] and df.iloc[i,0] > df.iloc[i+1,0]:
ul = ul + [-1]# difenxing -1 dingfenxing +1
continue
else:
ul = ul + [0]
ul = ul + [0]
global df1
df1 = pd.concat((df[['low','high']],pd.DataFrame(ul),df['datetime']),axis=1)
i = 0
while df1.iloc[i,2] == 0 and i < len(df1)-2:
i = i + 1
df1=df1[i:]
i = 0
while ( sum(abs(df1.iloc[i+1:i+4,2]))>0 or df1.iloc[i,2]==0) and i < len(df1)-2:
i = i + 1
df1=df1[i:]
df1.rename(columns= {0:'od'},inplace=True)
#df1.columns=Index(['low', 'high', 'od', 'datetime'], dtype='object')
#df1.columns=Index(['low', 'high', 'od', 'datetime'], dtype='object')
#df1.columns=Index(['low', 'high', 'od', 'datetime'], dtype='object')
#df1.columns=Index(['low', 'high', 'od', 'datetime'], dtype='object')
if len(df1)<=60:
print('error!')
return ;
#remove those within 3 bars
df1=df1.reset_index(drop=True)
global od_list#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
od_list=[0]
judge(0,0,1)
#judge(27,34,-1)
#generate seg
start = 0
while start < len(od_list)-5:
if check_init_seg(od_list[start:start+4]):
break
else:
start = start + 1
lines = []
i = start
end = False
while i <= len(od_list)-4:
se = Seg(od_list[i:i+4])
label = False
while label == False and i <= len(od_list)-6:
i = i + 2
label,start = se.grow(od_list[i+2:i+4])
if se.vertex[-1] > od_list[-3]:
end =True
lines += [se.lines()]
break
if end:
break
i = np.where(np.array(od_list) == se.vertex[-1])[0][0]
#show datetime of the end of the segment
#print(df1.iloc[se.vertex[-1],3])
lines += [se.lines()]#there are still remaining fewer than or equal to
#3 bies not considered in the last
#seg ,which is unfinished and named by tails
low_list=df1.iloc[se.vertex[-1]:,0]
high_list=df1.iloc[se.vertex[-1]:,1]
low_extre=low_list.min()
high_extre=high_list.max()
if se.finished == True:
if lines[-1][0][1] < lines[-1][1][1] :#d==1
lines += [ [(se.vertex[-1],lines[-1][1][1]),(low_list.idxmin(),low_extre)]]
else:
lines += [ [(se.vertex[-1],lines[-1][1][1]),(high_list.idxmax(),high_extre)]]
else:
if lines[-1][0][1] < lines[-1][1][1] :#d==1
if low_extre > lines[-1][0][1]:
lines[-1] = [ (lines[-1][0][0],lines[-1][0][1]),(high_list.idxmax(),high_extre)]
else:
if low_list.idxmin()-se.vertex[-1]>=10:
lines += [ [(se.vertex[-1],lines[-1][1][1]),(low_list.idxmin(),low_extre)]]
else:
if high_extre < lines[-1][0][1]:
lines[-1] = [ (lines[-1][0][0],lines[-1][0][1]),(low_list.idxmin(),low_extre) ]
else:
if high_list.idxmax()-se.vertex[-1]>=10:
lines += [ [(se.vertex[-1],lines[-1][1][1]),(high_list.idxmax(),high_extre)]]
#print(lines)
#tails is the unfinished seg,tails[4] is its direction
a,tails = get_pivot(lines)
pro_a= process_pivot(a)
# =============================================================================
# if len(pro_a)>=4:
# if pro_a[-1].trend==-1 and pro_a[-2].trend==0 and pro_a[-3].trend==-1 and\
# tails[4]==-1 and pro_a[-1].finished ==0 and df1.iloc[-1][0] <pro_a[-1].dd :
# for yi in range(0,len(a)):
# pro_a[yi].dis1()
# =============================================================================
signal,interval = buy_point1(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../buy1/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_buy1.txt',tails)
signal,interval = buy_point3_des(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../buy3/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_buy3.txt',tails)
signal,interval = buy_point23(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../buy23/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_buy23.txt',tails)
signal,interval = buy_point2(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../buy2/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_buy2.txt',tails)
signal,interval = sell_point1(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../sell1/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_sell1.txt',tails)
signal,interval = sell_point3_ris(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../sell3/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_sell3.txt',tails)
signal,interval = sell_point2(pro_a,tails)
if signal:#trend slow down, first pivot dd > next pivot gg
pro_a[-1].write_out('../sell2/'+len_dir[INDEX].split('_')[1].split('.')[0]+'_sell2.txt',tails)
#end buy_sell
#utility
def same_d(a1,a2,b1,b2,a_sign):
#a1 low a2 high b1 low b2 high
if a_sign == 1:
return (a1 > b1 and a2 > b2)
else:
return (a1 < b1 and a2 < b2)
def new_extreme(a1,a2,b1,b2,a_sign):
#whether b has new extreme than a,true return true
if a_sign == 1:
return b2 >= a2
else:
return a1 >= b1
def write_seg(temp_lines,file,buy_sign,interval):
if buy_sign==True:
f = open(file,'w')
f.write('seg-3:'+str(df1.iloc[temp_lines[-3][0][0],3])+' '+\
str(df1.iloc[temp_lines[-3][0][0],1])+str(df1.iloc[temp_lines[-3][1][0],3])+' '+\
str(df1.iloc[temp_lines[-3][1][0],0]) )
f.write('\n')
f.write('seg-2:'+str(df1.iloc[temp_lines[-2][0][0],3])+' '+
str(df1.iloc[temp_lines[-2][0][0],0])+str(df1.iloc[temp_lines[-2][1][0],3])+' '+
str(df1.iloc[temp_lines[-2][1][0],1]) )
f.write('\n')
f.write('seg-1:'+str(df1.iloc[temp_lines[-1][0][0],3])+' '+
str(df1.iloc[temp_lines[-1][0][0],1])+str(df1.iloc[temp_lines[-1][1][0],3])+' '+
str(df1.iloc[temp_lines[-1][1][0],0]) )
f.write('cur_price:\n'+str(df1.iloc[-1,0]))
f.write('\n')
f.write('cur_time:\n'+str(df1.iloc[-1,3]))
f.write('\n')
if df1.iloc[temp_lines[-1][1][0],0]<interval:
f.write('target_price:'+str(interval))
else:
f.write('supp_price:'+str(interval))
f.close()
else:
f = open(file,'w')
f.write('seg-3:'+str(df1.iloc[temp_lines[-3][0][0],3])+' '+\
str(df1.iloc[temp_lines[-3][0][0],0])+str(df1.iloc[temp_lines[-3][1][0],3])+' '+\
str(df1.iloc[temp_lines[-3][1][0],1]) )
f.write('\n')
f.write('seg-2:'+str(df1.iloc[temp_lines[-2][0][0],3])+' '+
str(df1.iloc[temp_lines[-2][0][0],1])+str(df1.iloc[temp_lines[-2][1][0],3])+' '+
str(df1.iloc[temp_lines[-2][1][0],0]) )
f.write('\n')
f.write('seg-1:'+str(df1.iloc[temp_lines[-1][0][0],3])+' '+
str(df1.iloc[temp_lines[-1][0][0],0])+str(df1.iloc[temp_lines[-1][1][0],3])+' '+
str(df1.iloc[temp_lines[-1][1][0],1]) )
f.write('cur_price:\n'+str(df1.iloc[-1,1]))
f.write('\n')
f.write('cur_time:\n'+str(df1.iloc[-1,3]))
f.write('\n')
if df1.iloc[temp_lines[-1][1][0],0]>interval:
f.write('target_price:'+str(interval))
else:
f.write('resist_price:'+str(interval))
f.close()
def exist_opposite(cur_i,d,pos):
#print("exist_opposite")
#print('e0'+str(cur_i+pos))
#print('e1'+str(df1.iloc[cur_i+pos,0]))
return df1['od'].iloc[cur_i+pos]==-d and same_d(df1.iloc[cur_i,0],df1.iloc[cur_i,1],\
df1.iloc[cur_i+pos,0],df1.iloc[cur_i+pos,1],d)
def exist_new_extreme(cur_i,d,start,end):
j = start
while j <= end:
if new_extreme(df1.iloc[cur_i,0],df1.iloc[cur_i,1],df1.iloc[cur_i + j,0],df1.iloc[cur_i + j,1],d):
return cur_i + j,True
j = j + 1
return cur_i,False
def judge(prev_i,cur_i,d):#d the direction of fenxing to be confirmed, prev_i the previous confirmed
#d == df1['od][cur_i] should hold when finished and prev_i = cur_i is set
global od_list
#print('start ' + str(cur_i))
if cur_i + 4 >= len(df1)-1:
#print('finished')
#stop()
return 0
if cur_i - prev_i < 4 or df1['od'].iloc[cur_i] != d:
cur_i = cur_i + 1
#print(cur_i)
judge(prev_i,cur_i,d)
else:# at least 4 bars later and direction correct
# now df1['od'].iloc[cur_i] ==d and cur_i - prev_i >= 4
new_i,label1 = exist_new_extreme(cur_i,d,2,3)
if label1 == True:
cur_i = new_i
#print("f1")
judge(prev_i,cur_i,d)
else:
k = 4
if cur_i + k + 1>= len(df1)-1:
#print ("finishe2!")
return 0
while not exist_opposite(cur_i,d,k):
#while True:
#kth >=4 later bar does not match opposite fenxing
new_i,label2 = exist_new_extreme(cur_i,d,k,k)
if label2 == True:
cur_i = new_i
judge(prev_i,cur_i,d)
return 0
#print('f2')
else:
k = k + 1
if cur_i + k >= len(df1)-1:
#print ("finishe4!")
return 0
#confirmed by existent opposite fenxing
prev_i = cur_i
cur_i = cur_i + k
od_list = od_list + [prev_i]
#print('added' + str(prev_i))
#print('input ' + str(cur_i))
#print('-d ' + str(d))
judge(prev_i,cur_i,-d)
#print('post call judge' + str(cur_i))
#end judge
#utils for seg
def check_init_seg(start_l):
#return True successful False fail
d = -df1.iloc[start_l[0],2]
if not ((d == 1 or d == -1 )and(len(start_l)==4)):
print('initializing seg failed in check_init_seg!')
if d == 1:
if df1.iloc[start_l[1],1] < df1.iloc[start_l[3],1] and \
df1.iloc[start_l[0],0] < df1.iloc[start_l[2],0]:#valid
return True
else:
return False
else:
if df1.iloc[start_l[1],0] > df1.iloc[start_l[3],0] and \
df1.iloc[start_l[0],1] > df1.iloc[start_l[2],1]:#valid
return True
else:
return False
class Seg:
# Initializer / Instance Attributes
#directino of a seg is the same as its first bi,
#direction of a bi is the negative of its starting fenxing:
#rising bi is +1 and falling bi is -1
def __init__(self, start_l):
self.start = start_l[0]
if df1.iloc[start_l[0],2]==0:
print("error init!")
self.d = - df1.iloc[start_l[0],2]
self.finished = False
self.vertex = start_l
self.gap = False
if self.d == 1:
self.cur_extreme = df1.iloc[start_l[3],1]
self.cur_extreme_pos = start_l[3]
self.prev_extreme = df1.iloc[start_l[1],1]
else:
self.cur_extreme = df1.iloc[start_l[3],0]
self.cur_extreme_pos = start_l[3]
self.prev_extreme = df1.iloc[start_l[1],0]
def grow(self,new_l):
#len(new_l) == 2
#two consecutive bis will be added
#new_d, direction of the first bi added
if 1 == self.d:#rising seg
if df1.iloc[new_l[1],1] >= self.cur_extreme:#new extreme
if df1.iloc[new_l[0],0] > self.prev_extreme:
self.gap = True
else:
self.gap = False
self.prev_extreme = self.cur_extreme
self.cur_extreme = df1.iloc[new_l[1],1]
self.cur_extreme_pos = new_l[1]
else:# no new extreme two cases to finish
if (self.gap == False and df1.iloc[new_l[1],0] < df1.iloc[self.vertex[-1],0]) or \
(self.gap == True and (df1.iloc[self.vertex[-1],1] < df1.iloc[self.vertex[-3],1] ) \
and (df1.iloc[self.vertex[-2],0] < df1.iloc[self.vertex[-4],0] )):
self.finished = True
self.vertex = [ i for i in self.vertex if i <= self.cur_extreme_pos]
#print("finished")
#print(self.vertex)
#print(self.getrange())
return True,self.vertex[-1]
#seg continued
self.vertex = self.vertex + new_l
return False,0
else:
if df1.iloc[new_l[1],0] <= self.cur_extreme:#new extreme
if df1.iloc[new_l[0],1] < self.prev_extreme:
self.gap = True
else:
self.gap = False
self.vertex = self.vertex + new_l
self.prev_extreme = self.cur_extreme
self.cur_extreme = df1.iloc[new_l[1],0]
self.cur_extreme_pos = new_l[1]
else:# no new extreme two cases to finish
if (self.gap == False and df1.iloc[new_l[1],1] > df1.iloc[self.vertex[-1],1]) or \
(self.gap == True and (df1.iloc[self.vertex[-1],0] > df1.iloc[self.vertex[-3],0] ) \
and (df1.iloc[self.vertex[-2],1] > df1.iloc[self.vertex[-4],1] )):
self.finished = True
self.vertex = [ i for i in self.vertex if i <= self.cur_extreme_pos]
#print("finished")
#print(self.vertex)
#print(self.getrange())
return True,self.vertex[-1]
#seg continued
self.vertex = self.vertex + new_l
return False,0
def check_finish(self):
#two consecutive bis will be added
#new_d, direction of the first bi added
if len(self.vertex)-1 <= 5:
print("no need to check!")
return False
def getrange(self):
if self.d == 1:
return [ df1.iloc[self.start,0],self.cur_extreme,self.d ]
else:
return [ df1.iloc[self.start,1],self.cur_extreme,self.d ]
def show(self):
print(self.vertex)
print( self.getrange() )
print(df1.iloc[self.vertex[-1],3])
def lines(self):#lines :d==1 ==> [(index in df1 of starting
#,low of line),(index of end ,high of line)],
#d==-1 ==>[(,high of line),(,low of line)]
return [(self.start,self.getrange()[0]),\
(self.vertex[-1],self.getrange()[1])]
#end class Seg
#each object of pivot is a pivot
#1min pivot
class Pivot1:
def __init__(self, lines,d):#lines a 3 element list of Seg.getlines()
self.trend = -2
self.level = 1
self.enter_d = d#
self.aft_l_price = 0
self.aft_l_time = '00'# time for third type buy or sell point
self.future_zd = -float('inf')
self.future_zg = float('inf')
if d == 1:#pivot=[zg,zd,dd,gg,start_time,end_time,d] d the direction of
#the seg pre-entering but not in pivot
if lines[3][1][1] <= lines[1][0][1]: #low of line i+3 < low of line i+1
self.zg = min(lines[1][0][1],lines[3][0][1])
self.zd = max(lines[3][1][1],lines[1][1][1])
self.dd = lines[2][0][1]
self.gg = max(lines[1][0][1],lines[2][1][1])
else:#pivot=[zg,zd,dd,gg,start_time,end_time,start_seg_index,end_seg_index,d] d the seg pre-entering pivot
if lines[3][1][1] >= lines[1][0][1]:
self.zg = min(lines[1][1][1],lines[3][1][1])
self.zd = max(lines[3][0][1],lines[1][0][1])
self.dd = min(lines[2][1][1],lines[1][0][1])
self.gg = lines[2][0][1]
self.start_index = lines[1][0][0]
self.end_index = lines[2][1][0]# should be updated after growing
#lines[self.end_index] is the leaving seg
self.finished = 0
self.enter_force = seg_force(lines[0])
self.leave_force = seg_force(lines[3])# should be updated after growing
self.size = 3#should be updated
self.mean = 0.5*(self.zd + self.zg)
self.start_time = df1.iloc[self.start_index,3 ]
self.leave_start_time = df1.iloc[self.end_index,3 ]# should be updated after growing
self.leave_end_time = df1.iloc[lines[3][1][0],3 ] # should be updated after growing
self.leave_d = -d # should be updated after growing
self.leave_end_price = lines[3][1][1] # should be updated after growing
self.leave_start_price = lines[3][0][1]
self.prev2_force = seg_force(lines[1])
self.prev1_force = seg_force(lines[2])
self.prev2_end_price = lines[1][1][1]
#tail_price the leave seg's end price,if the seg
#is still not finished,its leave seg is the last seg within the pivot
def grow(self,seg):#seg a Seg.getlines()
self.prev2_force = self.prev1_force
self.prev1_force = self.leave_force
self.prev2_end_price = self.leave_start_price
if seg[1][1] > seg[0][1]:#d for the line is 1
if (seg[1][1]>=self.zd and seg[0][1] <= self.zg) and (self.size <=28):#then the seg is
# added to the pivot
self.end_index = seg[0][0]
self.size = self.size + 1
self.dd = min(self.dd,seg[0][1])
self.leave_force = seg_force(seg)
self.leave_start_time = df1.iloc[self.end_index,3 ]
self.leave_end_time = df1.iloc[seg[1][0],3 ]
self.leave_d = 2*int(seg[1][1]>seg[0][1])-1
self.leave_start_price = seg[0][1]
self.leave_end_price = seg[1][1]
if self.size in [4,7,10,19,28]:#level expansion
self.future_zd = max(self.future_zd ,self.dd)
self.future_zg = min(self.future_zg ,self.gg)
if self.size in [10,28]:#level expansion
self.level = self.level + 1
self.zd = self.future_zd
self.zg = self.future_zg
self.future_zd = -float('inf')
self.future_zg = float('inf')
else:
if (seg[1][1]>=self.zd and seg[0][1] <= self.zg):
self.dd = min(self.dd,seg[0][1])
self.finished = 0.5
else:
self.finished = 1
self.aft_l_price = seg[1][1]
self.aft_l_time = df1.iloc[seg[1][0],3]
#only when the seg is finished is the tail_price different from end_price
else:#d for the line is -1. falling line
if (seg[1][1]<=self.zg and seg[0][1] >= self.zd) and self.size<=28:#then the seg is
# added to the pivot
self.end_index = seg[0][0]
self.end_price = seg[0][1]
self.size = self.size + 1
self.gg = max(self.gg,seg[0][1])
self.leave_force = seg_force(seg)
self.leave_start_time = df1.iloc[self.end_index,3 ]
self.leave_end_time = df1.iloc[seg[1][0],3 ]
self.leave_d = 2*int(seg[1][1]>seg[0][1])-1
self.leave_start_price = seg[0][1]
self.leave_end_price = seg[1][1]
if self.size in [4,7,10,19,28]:#level expansion
self.future_zd = max(self.future_zd ,self.dd)
self.future_zg = min(self.future_zg ,self.gg)
if self.size in [10,28]:#level expansion
self.level = self.level + 1
self.zd = self.future_zd
self.zg = self.future_zg
self.future_zd = -float('inf')
self.future_zg = float('inf')
else:
if (seg[1][1]<=self.zg and seg[0][1] >= self.zd) :#broke because it is too long
self.gg = max(self.gg,seg[0][1])
self.finished = 0.5
else:
self.finished = 1
self.aft_l_price = seg[1][1]
self.aft_l_time = df1.iloc[seg[1][0],3]
def display(self):
print('enter_d:'+str(self.enter_d))
print('zd:'+str(self.zd))
print('zg:'+str(self.zg))
print('dd:'+str(self.dd))
print('gg:'+str(self.gg))
print('start_index:'+str(self.start_index))
print('end_index:'+str(self.end_index))
print('start_time:'+str(self.start_time))
print('size:'+str(self.size))
print('enter_force:'+str(self.enter_force))
print('leave_force:'+str(self.leave_force))
print('finished:'+str(self.finished))
print('leave_start_time:'+str(self.leave_start_time))
print('leave_end_time:'+str(self.leave_end_time))
print('leave_d:'+str(self.leave_d))
print('leave_start_price:'+str(self.leave_start_price))
print('leave_end_price:'+str(self.leave_end_price))
print('mean:'+str(self.mean))
print('aft_l_price:'+str(self.aft_l_price))
def dis1(self):
print('trend:'+str(self.trend))
print('level:'+str(self.level))
print('enter_d:'+str(self.enter_d))
print('zd:'+str(self.zd))
print('zg:'+str(self.zg))
print('dd:'+str(self.dd))
print('gg:'+str(self.gg))
print('leave_d:'+str(self.leave_d))
print('start_time:'+str(self.start_time))
print('leave_start_time:'+str(self.leave_start_time))
print('\n')
def write_out(self,filepath,extra=''):
f = open(filepath,'w')
f.write(' zd:' + str(self.zd)+' zg:'+str(self.zg) +
' dd:' + str(self.dd)+' gg:'+str(self.gg) +
' leave_d:' + str(self.leave_d)+
' prev2_leave_force:' +str(self.prev2_force)+ ' leave_force:' + str(self.leave_force)+
'\n start_time:'+str(self.start_time)+
' leave_start_time:'+str(self.leave_start_time)+
' leave_end_time:'+str(self.leave_end_time)+
' prev2_end_price:'+str(self.prev2_end_price)+
' leave_end_price:'+str(self.leave_end_price)+
'\n size: ' + str(self.size)+' finished: ' + str(self.finished) + ' trend:' +
str(self.trend) + ' level:' +
str(self.level))
f.write('\n')
if extra!='':
f.write('tails:')
f.write(str(extra))
f.write('\n')
f.write('now')
f.write(str(df1.iloc[-1]))
f.close()
return
#ebd class Pivot
def seg_force(seg):
return 1000*abs(seg[1][1]/seg[0][1]-1)/(seg[1][0]-seg[0][0])
def get_pivot(lines):
Pivot1_array = []
i = 0
while i < len(lines):
#print(i)
d = 2 * int( lines[i][0][1] < lines[i][1][1] ) - 1
if i < len(lines)-3:
if d == 1:#pivot=[zg,zd,dd,gg,start_time,end_time,d] d the direction of
#the seg pre-entering but not in pivot
if lines[i+3][1][1] <= lines[i+1][0][1]: #low of line i+3 < low of line i+1
pivot = Pivot1(lines[i:i+4],d)
i_j = 1
while i + i_j < len(lines)-3 and pivot.finished == 0:
pivot.grow(lines[i + i_j + 3])
i_j = i_j +1
i = i + pivot.size
Pivot1_array = Pivot1_array + [pivot]
continue
else:
i = i + 1
else:#pivot=[zg,zd,dd,gg,start_time,end_time,start_seg_index,end_seg_index,d] d the seg pre-entering pivot
if lines[i+3][1][1] >= lines[i+1][0][1]:
pivot = Pivot1(lines[i:i+4],d)
i_j = 1
while i + i_j < len(lines)-3 and pivot.finished == 0:
pivot.grow(lines[i + i_j + 3])
i_j = i_j +1
i = i + pivot.size
Pivot1_array = Pivot1_array + [pivot]
continue
else:
i = i + 1
else:
i = i + 1
#pivot [zd,zg,dd,gg] zd and zg may not be valid after expansion
# the second para returned is the tails,or the last unconfirmed seg,with tails[4] its d
return Pivot1_array , [df1.iloc[lines[-1][0][0],3],lines[-1][0][1],\
df1.iloc[lines[-1][1][0],3],lines[-1][1][1],2*int(lines[-1][1][1]>lines[-1][0][1])-1]
#same hierachy decomposition
#def process_pivot(pivot) :
# i = 0
# while i < len(pivot)-1:
# if min(pivot[i][2:4]) <= max(pivot[i+1][2:4]) and\
# max(pivot[i][2:4]) >= min(pivot[i+1][2:4]):
# pivot[i+1][2] = min(pivot[i][2],pivot[i+1][2])
# pivot[i+1][3] = max(pivot[i][3],pivot[i+1][3])
# pivot[i+1][4] =pivot[i][4]
# pivot[i+1][5] = pivot[i+1][5]
# del pivot[i]
# else:
# i = i + 1
# return pivot
def process_pivot(pivot):
for i in range(0,len(pivot)-1):
if pivot[i ].level==1 and pivot[i+1].level==1:
if pivot[i].dd > pivot[i+1].gg:
pivot[i+1].trend=-1
else:
if pivot[i].gg < pivot[i+1].dd:
pivot[i+1].trend=1
else:
pivot[i+1].trend=0
else:
if pivot[i ].gg> pivot[i +1].gg and pivot[i ].dd> pivot[i +1].dd:
pivot[i+1].trend=-1
else:
if pivot[i ].gg < pivot[i +1].gg and pivot[i ].dd < pivot[i +1].dd:
pivot[i+1].trend=1
else:
pivot[i+1].trend=0
return pivot
def buy_point1(pro_pivot,tails,num_pivot=2):
if len(pro_pivot)<=3 or tails[4]==1 or pro_pivot[-1].size>=8 or pro_pivot[-1].finished!=0 \
or df1.iloc[-1][0]/pro_pivot[-1].leave_end_price -1>0 or \
df1.iloc[-1][0] > tails[3]:
return False,0
else:#two pivot descending
#no slow down
if ( pro_pivot[-1].prev2_end_price >pro_pivot[-1].leave_end_price ) and \
(pro_pivot[-1].leave_start_time==tails[0]) and\
df1.iloc[-1][0] < pro_pivot[-1].dd and \
1.2*pro_pivot[-1].leave_force <pro_pivot[-1].prev2_force and \
( pro_pivot[-1].dd >pro_pivot[-1].leave_end_price ):
return True,pro_pivot[-1].dd#target price
else:
return False,0
# =============================================================================
# if pro_pivot[-1].finished == 1 or pro_pivot[-1].leave_d!=-1 or \
# pro_pivot[-1].finished == 0.5:
# return False,0
# if num_pivot == 2:
# if pro_pivot[-2].enter_d==-1 and pro_pivot[-1].gg < pro_pivot[-2].dd \
# and pro_pivot[-1].enter_d==-1 and tails[0]==pro_pivot[-1].leave_start_time \
# and tails[3] <= pro_pivot[-1].dd:#tails[0] tail seg start_time
# return True,pro_pivot[-1].zd
# else:
# return False,0
# if num_pivot == 3:
# if pro_pivot[-3].enter_d==-1 and pro_pivot[-2].gg < pro_pivot[-3].dd and \
# pro_pivot[-2].enter_d==-1 and pro_pivot[-1].gg < pro_pivot[-2].dd and\
# pro_pivot[-1].enter_d==-1 and \
# pro_pivot[-1].leave_force<\
# pro_pivot[-1].enter_force and tails[0]==pro_pivot[-1].leave_start_time \
# and tails[3] <= pro_pivot[-1].dd:
# return True,pro_pivot[-1].zd
# else:
# return False,0
# =============================================================================
def buy_point2(pro_pivot,tails,num_pivot=2):
if len(pro_pivot)<=3 or tails[4]==1 or pro_pivot[-1].size>=8 or pro_pivot[-1].finished!=0 \
or df1.iloc[-1][0]/pro_pivot[-1].leave_end_price -1>0 or \
df1.iloc[-1][0] > tails[3]:
return False,0
else:#two pivot descending
#no slow down
if ( pro_pivot[-1].prev2_end_price <pro_pivot[-1].leave_end_price ) and \
(pro_pivot[-1].leave_start_time==tails[0]) and\
pro_pivot[-1].prev2_end_price == pro_pivot[-1].dd and \
pro_pivot[-1].leave_start_price >0.51*(pro_pivot[-1].zd+pro_pivot[-1].zg) :
return True,pro_pivot[-1].prev2_end_price#support price
else:
return False,0
def buy_point3_des(pro_pivot,tails):
if len(pro_pivot)<=2 or(tails[4]==1) or (pro_pivot[-1].finished!=1) or \
pro_pivot[-1].level > 1 or df1.iloc[-1][0]/pro_pivot[-1].leave_end_price -1>0 or \
df1.iloc[-1][0] > tails[3]:
return False,0
else:#two pivot descending
if df1.iloc[-1][0] <0.98*pro_pivot[-1].leave_end_price and df1.iloc[-1][0] >1.02*pro_pivot[-1].zg and \
pro_pivot[-1].aft_l_price >1.02*pro_pivot[-1].zg and \
tails[0] == pro_pivot[-1].leave_end_time and \
pro_pivot[-1].leave_force > pro_pivot[-1].prev2_force and\
pro_pivot[-1].leave_end_price > pro_pivot[-1].prev2_end_price:
return True,pro_pivot[-1].zg#support price
else:
return False,0
#no slow down
# =============================================================================
# if not np.mean( pro_pivot[-3][0:2]) / np.mean(pro_pivot[-2][0:2]) > \
# np.mean(pro_pivot[-2][0:2]) / np.mean(pro_pivot[-1][0:2]):
# return False,0
# if num_pivot == 3:
# if pro_pivot[-4][2]>pro_pivot[-3][2] and pro_pivot[-3][2]>pro_pivot[-2][2] \
# :
# return True,pro_pivot[-1][0]
# else:
# return False,0
# if num_pivot == 2:
# if pro_pivot[-3][2]>pro_pivot[-2][2] and pro_pivot[-2][2]>pro_pivot[-1][2] \
# :
# return True,pro_pivot[-1][0]
# else:
# return False,0
# =============================================================================
def buy_point23(pro_pivot,tails):
if len(pro_pivot)<=3 or pro_pivot[-1].finished!=1 or \
pro_pivot[-1].level > 1 or df1.iloc[-1][0]/pro_pivot[-1].leave_end_price -1>0 or \
df1.iloc[-1][0] > tails[3]:
return False,0
else:#two pivot descending
#no slow down
if df1.iloc[-1][0] <0.98*pro_pivot[-1].leave_end_price and df1.iloc[-1][0] >1.01*pro_pivot[-1].zg and pro_pivot[-1].trend==-1 \
and tails[3] >1.01*\
pro_pivot[-1].zg and tails[0] == pro_pivot[-1].leave_end_time and \
pro_pivot[-1].leave_start_price ==pro_pivot[-1].dd:
return True,pro_pivot[-1].zg# support price
else:
return False,0
def sell_point1(pro_pivot,tails,num_pivot=2):
if len(pro_pivot)<=3 or tails[4]==-1 or pro_pivot[-1].size>=8 or pro_pivot[-1].finished!=0\
or df1.iloc[-1][1]/pro_pivot[-1].leave_end_price -1<0 or \
df1.iloc[-1][0] < tails[3]:
return False,0
else:#two pivot descending
#no slow down
if ( pro_pivot[-1].prev2_end_price <pro_pivot[-1].leave_end_price ) and \
(pro_pivot[-1].leave_start_time==tails[0]) and\
df1.iloc[-1][0] > pro_pivot[-1].zg and \
1.2*pro_pivot[-1].leave_force <pro_pivot[-1].prev2_force:
return True,pro_pivot[-1].zg #buyback and suppor price
else:
return False,0
def sell_point2(pro_pivot,tails,num_pivot=2):
if len(pro_pivot)<=3 or tails[4]==-1 or pro_pivot[-1].size>=8 or pro_pivot[-1].finished!=0\
or df1.iloc[-1][1]/pro_pivot[-1].leave_end_price -1<0 or \
df1.iloc[-1][0] < tails[3]:
return False,0
else:#two pivot descending
#no slow down
if ( pro_pivot[-1].prev2_end_price >pro_pivot[-1].leave_end_price ) and \
(pro_pivot[-1].leave_start_time==tails[0]) and\
df1.iloc[-1][0] > 0.51*(pro_pivot[-1].zd+pro_pivot[-1].zg) and \
pro_pivot[-1].prev2_end_price==pro_pivot[-1].gg:
return True,pro_pivot[-1].zg #buyback and support price
else:
return False,0
def sell_point3_ris(pro_pivot,tails,num_pivot=2):
if len(pro_pivot)<=3 or tails[4]==-1 or pro_pivot[-1].size>=8 or pro_pivot[-1].finished!=1 \
or \
df1.iloc[-1][0] < tails[3]:
return False,0
else:#two pivot descending
#no slow down
if ( 1.02*pro_pivot[-1].leave_end_price < df1.iloc[-1][0] ) and \
(pro_pivot[-1].leave_end_time==tails[0]) and \
pro_pivot[-1].leave_force>pro_pivot[-1].prev2_force\
and df1.iloc[-1][1]<pro_pivot[-1].zd:
return True,pro_pivot[-1].zd # resistance price
else:
return False,0
def main():
df=pd.read_csv('C:/Users/Administrator/Desktop/ecom/chanlun/sh.csv',index_col=0)[['low','high']]
df['datetime']=df.index
#REMOVE INCLUSION
while ( True ):
temp_len = len(df)
i=0
while i<=len(df)-4:
if (df.iloc[i+2,0]>=df.iloc[i+1,0] and df.iloc[i+2,1]<=df.iloc[i+1,1]) or\
(df.iloc[i+2,0]<=df.iloc[i+1,0] and df.iloc[i+2,1]>=df.iloc[i+1,1]):
if df.iloc[i+1,0]>df.iloc[i,0]:
df.iloc[i+2,0] = max(df.iloc[i+1:i+3,0])
df.iloc[i+2,1] = max(df.iloc[i+1:i+3,1])
df.drop(df.index[i+1],inplace=True)
continue
else:
df.iloc[i+2,0] = min(df.iloc[i+1:i+3,0])
df.iloc[i+2,1] = min(df.iloc[i+1:i+3,1])
df.drop(df.index[i+1],inplace=True)
continue
i = i + 1
# print(len(df))
if len(df)==temp_len:
break
df= df.reset_index(drop=True)
#get difenxing and dingfenxing
ul=[0]
for i in range(len(df)-2):
if df.iloc[i+2,0] < df.iloc[i+1,0] and df.iloc[i,0] < df.iloc[i+1,0]:
ul = ul + [1]
continue
if df.iloc[i+2,0] > df.iloc[i+1,0] and df.iloc[i,0] > df.iloc[i+1,0]:
ul = ul + [-1]# difenxing -1 dingfenxing +1
continue
else:
ul = ul + [0]
ul = ul + [0]
global df1
df1 = pd.concat((df[['low','high']],pd.DataFrame(ul),df['datetime']),axis=1)
i = 0
while df1.iloc[i,2] == 0 and i < len(df1)-2:
i = i + 1
df1=df1[i:]
i = 0
while ( sum(abs(df1.iloc[i+1:i+4,2]))>0 or df1.iloc[i,2]==0) and i < len(df1)-2:
i = i + 1
df1=df1[i:]
df1.rename(columns= {0:'od'},inplace=True)
#df1.columns=Index(['low', 'high', 'od', 'datetime'], dtype='object')
if len(df1)<=60:
print('error!')
return ;
#remove those within 3 bars
df1=df1.reset_index(drop=True)
global od_list#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
od_list=[0]
judge(0,0,1)
#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
#od_list are the index of df1 whose corresponding point are fenxing extreme vertex
#generate seg
start = 0
while start < len(od_list)-5:
if check_init_seg(od_list[start:start+4]):
break
else:
start = start + 1
lines = []
i = start
end = False
while i <= len(od_list)-4:
se = Seg(od_list[i:i+4])
label = False
while label == False and i <= len(od_list)-6:
i = i + 2