-
Notifications
You must be signed in to change notification settings - Fork 0
/
kusa3.py
342 lines (302 loc) · 9.88 KB
/
kusa3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Statistics (and a little cryptography) over a finite field - fullscratch version
# composite multiple base keys to a single masterkey using polynomial fitting
# the masterkey cannot be computed without having at least k base keys
# the masterkey can ganerate base keys
def tomod(obj, p):
if type(obj) == Mod:
return Mod(obj.n, p)
if type(obj) == int:
return Mod(obj, p)
if type(obj) == float:
return Mod(int(obj), p)
class Mod(object):
def __init__(self, n, p):
self.n = n % p
self.p = p
def __mul__(self, other):
k = tomod(other, self.p)
return Mod(self.n * k.n, self.p)
def __rmul__(self, other):
k = tomod(other, self.p)
return k * self
def __add__(self, other):
k = tomod(other, self.p)
return Mod(self.n + k.n, self.p)
def __radd__(self, other):
k = tomod(other, self.p)
return k + self
def __truediv__(self, other):
k = tomod(other, self.p)
return Mod(self.n * ext_euc(k.n, self.p)[0], self.p)
def __rtruediv__(self, other):
k = tomod(other, self.p)
return k / self
def __sub__(self, other):
k = tomod(other, self.p)
return Mod(self.n - k.n, self.p)
def __rsub__(self, other):
k = tomod(other, self.p)
return k - self
def __neg__(self):
return Mod(-self.n, self.p)
def __pow__(self, k):
return Mod(pow(self.n, k, self.p), self.p)
def __eq__(self, other):
k = tomod(other, self.p)
return self.n % self.p == k.n % self.p
def __repr__(self):
return "(" + str(self.n % self.p) + " % " + str(self.p) + ")"
def tovec(x):
if type(x) == Vec:
return x
if type(x) == list:
return Vec(x)
raise Exception("invalid argument")
def mat_identity(n, x=1):
l = [0]*(n*n)
mat = Mat(l, n, n)
for i in range(n):
mat.modify(i, i, x)
return mat
def mat_add(a, b):
if type(a) == Vec and type(b) == Vec and a.n == b.n:
return Vec([a.d[i] + b.d[i] for i in range(a.n)])
if type(a) == Mat and type(b) == Mat and a.n == b.n and a.m == b.m:
return Mat([a.d[i] + b.d[i] for i in range(a.n*a.m)], a.n, a.m)
raise Exception("invalid argument")
def mat_dot(a, b):
if type(a) == Vec and type(b) == Vec and a.n == b.n:
return sum([a.d[i] * b.d[i] for i in range(a.n)])
if type(a) == Mat and type(b) == Vec and a.m == b.n:
bb = Mat(b.d, b.n, 1)
return mat_dot(a, bb)
if type(a) == Mat and type(b) == Mat and a.m == b.n:
l = []
for i in range(a.n):
for j in range(b.m):
l.append(a.getrow(i)*b.getcol(j))
return Mat(l, a.n, b.m)
raise Exception("invalid argument")
# destructive function to perform a gaussian reduction
# mats is a list of matrices
# if you set method == 'down', it will perform downward reduction and mats[0] will be upper triangular matrix
# if you set method == 'up', it will perform upward reduction and mats[0] will be lower triangular matrix
# matrices in mats other than mats[0] will follow reduction of mats[0]
def reduction(mats, method):
n = mats[0].n
if method == 'down':
inds_1 = range(0, n - 1)
elif method == 'up':
inds_1 = range(n - 1, 0, -1)
else:
raise Exception("invalid argument")
for i in inds_1:
if method == 'down':
inds_2 = range(i + 1, n)
if method == 'up':
inds_2 = range(i - 1, -1, -1)
edge_i = mats[0].pos(i, i)
for j in inds_2:
edge_j = mats[0].pos(j, i)
coeff = -(edge_j/edge_i)
for mat in mats:
mat.add_row_vec(j, mat.getrow(i).__mul__(coeff))
# scale each rows in mats so that mats[0] will be an identity matrix.
def reduction_scale(mats):
for i in range(mats[0].n):
scale = 1/mats[0].pos(i, i)
for mat in mats:
mat.mul_row_with(i, scale)
# use gaussian reduction to calculate an inverse matrix
def dotinv(mat):
mat = mat.copy()
out = mat_identity(mat.n)
mats = [mat, out]
reduction(mats, 'down')
reduction(mats, 'up')
reduction_scale(mats)
return out
# make vandermonde matrix with shape (k, k) and parameters x
def vander(x, k):
out = Mat([0]*(k*k), k, k)
tmp = Vec([1]*k)
for j in range(k-1, -1, -1):
for i in range(k):
out.modify(i, j, tmp.d[i])
for i in range(k):
tmp.d[i] *= x.d[i]
return out
class Mat(object):
def __init__(self, d, n, m):
assert len(d) == n*m
self.d = d
self.n = n
self.m = m
def getrow(self, i):
assert i < self.n
return Vec(self.d[i*self.m:(i + 1)*self.m])
def getcol(self, i):
assert i < self.m
return Vec([self.d[t] for t in range(i, self.n*self.m, self.m)])
# get value at position (row = x, column = y)
def pos(self, x, y):
return self.d[x*self.m + y]
# change position (row = x, column = y) to v
def modify(self, x, y, v):
self.d[x*self.m + y] = v
# add specified row vector to specified row index
def add_row_vec(self, i, v):
assert v.n == self.m
for j in range(v.n):
self.d[i*self.m + j] += v.d[j]
# multiple specified row with specified scalar
def mul_row_with(self, i, v):
for j in range(self.n):
self.d[i*self.m + j] *= v
def copy(self):
return Mat(self.d.copy(), self.n, self.m)
# destructive map function
def map_dest(self, f):
for i in range(self.n*self.m):
self.d[i] = f(self.d[i])
return self
def map(self, f):
return Mat(list(map(f, self.d)), self.n, self.m)
def __add__(self, other):
return mat_add(self, other)
def __radd__(self, other):
return mat_add(other, self)
def __mul__(self, other):
# self is left, other is right
return mat_dot(self, other)
def __rmul__(self, other):
# self is right, other is left
return mat_dot(other, self)
def __neg__(self):
return Mat(list(map(lambda x: -x, self.d)), self.n, self.m)
def __repr__(self):
s = "\n"
for i in range(self.n):
s += "[ "
for j in range(self.m):
s += str(self.pos(i, j)) + " "
s += "]\n"
return s
def __eq__(self, other):
return self.d == other.d and self.n == other.n and self.m == other.m
class Vec(object):
def __init__(self, d):
self.d = d
self.n = len(d)
def pos(self, x):
return self.d[x]
def copy(self):
return Vec(self.d.copy())
# destructive map function
def map_dest(self, f):
for i in range(self.n):
self.d[i] = f(self.d[i])
return self
def map(self, f):
return Vec(list(map(f, self.d)))
def __add__(self, other):
other = tovec(other)
return mat_add(self, other)
def __radd__(self, other):
other = tovec(other)
return mat_add(other, self)
def __mul__(self, other):
# self is left, other is right
if type(other) == list or type(other) == Vec:
other = tovec(other)
return mat_dot(self, other)
else:
return self.map(lambda x: x*other)
def __rmul__(self, other):
# self is right, other is left
if type(other) == list or type(other) == Vec:
other = tovec(other)
return mat_dot(other, self)
else:
return self.map(lambda x: other*x)
def __truediv__(self, other):
if type(other) == list or type(other) == Vec:
pass
else:
return self.map(lambda x: x/other)
def __rtruediv__(self, other):
if type(other) == list or type(other) == Vec:
pass
else:
return self.map(lambda x: other/x)
def __repr__(self):
return str(self.d)
def __neg__(self):
return Vec(list(map(lambda x: -x, self.d)))
def __eq__(self, other):
if type(other) == list:
return self.d == other
if type(other) == Vec:
return self.d == other.d and self.n == other.n
# extended euclidean algorithm
def ext_euc(a1, b1):
a = a1
b = b1
c = 0
d = 0
coeff_a_a1 = 1
coeff_a_b1 = 0
coeff_b_a1 = 0
coeff_b_b1 = 1
while True:
c = a // b
d = a % b
if d == 0:
return [coeff_b_a1, coeff_b_b1]
coeff_a_a1_n = coeff_b_a1
coeff_a_b1_n = coeff_b_b1
coeff_b_a1_n = coeff_a_a1 - coeff_b_a1*c
coeff_b_b1_n = coeff_a_b1 - coeff_b_b1*c
coeff_a_a1 = coeff_a_a1_n
coeff_a_b1 = coeff_a_b1_n
coeff_b_a1 = coeff_b_a1_n
coeff_b_b1 = coeff_b_b1_n
a = b
b = d
p = 0x1630754518592437521810394623170439071787346163136715732951116994613647026908158243257902189
import random
if __name__ == "__main__":
k = 15
print("k = %d" % k)
print()
points_x = Vec([Mod(random.randint(0, p - 1), p) for i in range(k)])
points_y = Vec([Mod(random.randint(0, p - 1), p) for i in range(k)])
print("INDIVIDUAL KEYS X")
print(points_x)
print()
print("INDIVIDUAL KEYS Y")
print(points_y)
print()
# run polynomial fitting with degree k - 1
lhs = vander(points_x, k)
rhs = points_y
solution = (dotinv(lhs)*rhs).getcol(0)
def fit_func(x, coeffs):
rev = coeffs.d[::-1]
t = 1
out = 0
for i in range(len(rev)):
out += t*rev[i]
t *= x
return out
# test fitting
for i in range(k):
x = points_x.d[i]
y = points_y.d[i]
assert(fit_func(x, solution) == y)
import hashlib
print("COMPOUND KEY")
print(solution)
print()
print("COMPOUND KEY (HASH)")
print(hashlib.sha256(str(solution).encode()).hexdigest())