diff --git a/Cubical/Data/W/Indexed.agda b/Cubical/Data/W/Indexed.agda index 71a56811f..93ac73456 100644 --- a/Cubical/Data/W/Indexed.agda +++ b/Cubical/Data/W/Indexed.agda @@ -5,7 +5,6 @@ open import Cubical.Foundations.Function open import Cubical.Foundations.Path open import Cubical.Foundations.Isomorphism renaming (Iso to _≅_) open import Cubical.Foundations.Equiv -open import Cubical.Foundations.Univalence open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Unit @@ -55,8 +54,8 @@ module _ {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type ℓP} equivRepIW : (x : X) → IW S P inX x ≃ RepIW S P inX x equivRepIW x = isoToEquiv (isoRepIW x) - pathRepIW : (x : X) → IW S P inX x ≡ RepIW S P inX x - pathRepIW x = ua (equivRepIW x) + --pathRepIW : (x : X) → IW S P inX x ≡ RepIW S P inX x + --pathRepIW x = ua (equivRepIW x) isPropIW : (∀ x → isProp (S x)) → ∀ x → isProp (IW S P inX x) isPropIW isPropS x (node s subtree) (node s' subtree') = @@ -133,8 +132,8 @@ module IWPath {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → Type equivEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≃ Cover w w' equivEncode w w' = isoToEquiv (isoEncode w w') - pathEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≡ Cover w w' - pathEncode w w' = ua (equivEncode w w') + --pathEncode : ∀ {x} (w w' : IW S P inX x) → (w ≡ w') ≡ Cover w w' + --pathEncode w w' = ua (equivEncode w w') open IWPathTypes open IWPath @@ -143,7 +142,7 @@ isOfHLevelSuc-IW : {X : Type ℓX} {S : X → Type ℓS} {P : ∀ x → S x → (n : HLevel) → (∀ x → isOfHLevel (suc n) (S x)) → ∀ x → isOfHLevel (suc n) (IW S P inX x) isOfHLevelSuc-IW zero isHS x = isPropIW isHS x isOfHLevelSuc-IW (suc n) isHS x w w' = - subst (isOfHLevel (suc n)) (λ i → pathEncode w w' (~ i)) + isOfHLevelRetractFromIso (suc n) (isoEncode w w') (isOfHLevelSuc-IW n (λ (y , v , v') → isHS y (getShape v) (getShape v')) (x , w , w')