-
Notifications
You must be signed in to change notification settings - Fork 8
/
data.py
95 lines (85 loc) · 2.99 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import animeface
import sys
import os
from __future__ import print_function
from multiprocessing import Pool
from PIL import Image
# im from PIL.Image.open, face_pos position object, margin
def faceCrop(im,face_pos,m):
"""
m is the relative margin added to the face image
"""
x,y,w,h = face_pos.x, face_pos.y, face_pos.width, face_pos.height
sizeX, sizeY = im.size
new_x, new_y = max(0,x-m*w), max(0,y-m*h)
new_w = w + 2*m*w if sizeX > (new_x + w + 2*m*w) else sizeX - new_x
new_h = h + 2*m*h if sizeY > (new_y + h + 2*m*h) else sizeY - new_y
new_x,new_y,new_w,new_h = int(new_x),int(new_y),int(new_w),int(new_h)
return im.crop((new_x,new_y,new_x+new_w,new_y+new_h))
def min_resize_crop(im, min_side):
sizeX,sizeY = im.size
if sizeX > sizeY:
im = im.resize((min_side*sizeX/sizeY, min_side), Image.ANTIALIAS)
else:
im = im.resize((min_side, sizeY*min_side/sizeX), Image.ANTIALIAS)
return im.crop((0,0,min_side,min_side))
#return im
def load_detect(img_path):
"""Read original image file, return the cropped face image in the size 96x96
Input: A string indicates the image path
Output: Detected face image in the size 96x96
Note that there might be multiple faces in one image,
the output crossponding to the face with highest probability
"""
im = Image.open(img_path)
faces = animeface.detect(im)
prob_list = []
len_f = len(faces)
if len_f == 0:
return 0
for i in range(len_f):
prob_list.append(faces[i].likelihood)
prob_array = np.array(prob_list)
idx = np.argmax(prob_array)
face_pos = faces[idx].face.pos
im = faceCrop(im, face_pos, 0.5)
return min_resize_crop(im, 96)
def process_img(img_path):
"""
The face images are stored in {${pwd} + faces}
"""
tmp = img_path.split('/')
cls_name,img_name = tmp[len(tmp)-2], tmp[len(tmp)-1]
new_dir_path = os.path.join('faces',cls_name)
try:
os.makedirs(new_dir_path)
except OSError as err:
print("OS error: {0}".format(err))
new_img_path = os.path.join(new_dir_path, img_name)
if os.path.exists(new_img_path):
return 0
im = load_detect(img_path)
# no faces in this image
if im == 0:
return 0
im.save(new_img_path, 'JPEG')
def try_process_img(img_path):
try:
process_img(img_path)
except:
e = sys.exc_info()[0]
print('Err: %s \n' % e)
# multiprocessing version
def multi_construct_face_dataset(base_dir):
cls_dirs = [f for f in os.listdir(base_dir)]
imgs = []
for i in xrange(len(cls_dirs)):
sub_dir = os.path.join(base_dir, cls_dirs[i])
imgs_tmp = [os.path.join(sub_dir,f) for f in os.listdir(sub_dir) if f.endswith(('.jpg', '.png'))]
imgs = imgs + imgs_tmp
print('There are %d classes, %d images in total. \n' % (len(cls_dirs), len(imgs)))
pool = Pool(12) # 12 workers
pool.map(try_process_img, imgs)
base_dir = 'base'
multi_construct_face_dataset(base_dir)