-
Notifications
You must be signed in to change notification settings - Fork 2
/
tspn.cpp
163 lines (108 loc) · 2.83 KB
/
tspn.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#include<bits/stdc++.h>
#define V 4
using namespace std;
int maxtsp(int graph[][V],int s)
{
int i,k;
vector<int> vertex;
for(i=0;i<V;i++)
{
if(i!=s)
{
vertex.push_back(i);
}
}
int maxpath=INT_MIN;
do{
int cpath=0;
k=s;
for(i=0;i<vertex.size();i++)
{
cpath+=graph[k][vertex[i]];
k=vertex[i];
}
cpath+=graph[k][s];
maxpath=max(maxpath,cpath);
}
while(next_permutation(vertex.begin(),vertex.end()));
return maxpath;
}
int tsp( int graph[][V],int s)
{
int i;
int k;
vector<int> vertex;
for(i=0;i<V;i++)
{
if(i!=s)
{
vertex.push_back(i);
}
}
int minpath=INT_MAX;
k=s;
do{
int cpath=0;
k=s;
for(i=0;i<vertex.size();i++)
{
cpath+=graph[k][vertex[i]];
k=vertex[i];
}
cpath+=graph[k][s];
minpath=min(minpath,cpath);
}
while(next_permutation(vertex.begin(),vertex.end()));
return minpath;
}
int main(){
int graph[][V]={{ 0, 10, 15, 20 },
{ 10, 0, 35, 25 },
{ 15, 35, 0, 30 },
{ 20, 25, 30, 0 }};
int s=0;
cout<<tsp(graph,s)<<endl;
cout<<maxtsp(graph,s)<<endl;
//for 2 sensor based network,optimal TSPN and energy loss modification.
//Amount of data at a sensor node is inversely proportional to the radius of communication of the sensor in the network.
//Algorithm for TSPN based sensor network
/*
for 2 sensor system:
Step1: Energy loss of a sensor /collector = K r^(alpha);
where K = proportionality constant
r= estimated radius before improvement;
alpha= constant;
For Si bit information sensor the Energy loss= K*Si*r^(alpha);
problem becomes minimisation problem:
minimise Energy net=(k*si*r^(alpha));
subject to :
(2(d-r1)+2(d-r2)/velocity of collector)= Dmax;
r2=r1(S1/S2)^(1/alpha-1);
Function becomes= K1(C/s^(1/alpha-1))=f;
Step 2:Calculate TSPN=Dmax; by Elbissioni algorithm over Euclid graph;
Step3: if(d<Dmax)
do: K1=K1-delta;
f=K1(C/s^(1/alpha-1));
else if(d>Dmax)
do: K1=K1+delta;
f=K1(C/s^(1/alpha-1));
else if(d==Dmax)
return f,and optimal radius r;
terminate
*/
cout<<"enter radius of 2 circles"<<endl;
float r1,r2;
cin>>r1>>r2;
cout<<"enter distance between them"<<endl;
float d;
cin>>d;
cout<<"enter packet information rate of S1 and S2"<<endl;
float pk1,pk2;
cin>>pk1>>pk2;
float K= 10^(-5);
float alpha= 3;
cout<<"Energy loss in case of two sensor system"<<endl;
float energy= K*(pk1)*pow(r1,alpha) + K*(pk2)*(pow(r2,alpha));
cout<<energy<<endl;
//oprimtality()
return 0;}