Skip to content

Latest commit

 

History

History

yolov5

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 

Zone Evaluation on YOLOv5

Download YOLOv5 from https://github.com/ultralytics/yolov5 and install the dependencies. As a reminder, we use YOLOv5-v7.0.

Make sure you have compiled our pycocotools.

Download the pretrained weight file, e.g., YOLOv5-s, from the official website.

Put our provided file zone-val.py to ./yourpath/yolov5/.

Then run,

 python zone-val.py --data coco.yaml --img 640  --weight yolov5s.pt --device 0,1

And you will see the zone evaluation results (YOLOv5-s):

Zone:, ZP, ZP50, ZP75, ZPs, ZPm, ZPl, ZR1, ZR10, ZR100, ZRs, ZRm, ZRl
z05:  [       37.4        57.2        40.2        21.1        42.3          49        31.1        51.6        56.6        37.8        62.5        72.2]
---------------------------------------
z01:  [       28.8        44.3        30.4        19.4        36.8        42.7        34.3        49.4        51.3        40.6        60.5        66.3]
z12:  [       34.9        52.7          38        21.6        41.3        46.3        37.7        53.2        55.1        36.8        60.2        70.8]
z23:  [       36.9          55        39.3        20.7        42.7        49.1        37.2        52.1        53.9        36.8        59.7        67.4]
z34:  [       35.1        53.8        37.2        21.8        41.6        45.9        37.7        50.5        52.1        35.6        58.6        63.2]
z45:  [       38.4        57.8        42.3          27        45.1        47.6        45.6        54.9          56        39.2        61.1          69]
---------------------------------------
ZP_variance:  [     10.488      20.739       15.42      6.6149      7.2542      4.5353      14.179      3.8022      3.1174       3.321     0.69311      6.5777]
SP, SP50, SP75, SPs, SPm, SPl, SR1, SR10, SR100, SRs, SRm, SRl
SP: [       33.3        50.5        35.6        20.9        40.1        45.6        36.7        51.3        53.2        38.1        60.1        67.5]

Test resolution: 640.

Detector SP $\text{ZP}^{0,5}$ Variance $\text{ZP}^{0,1}$ $\text{ZP}^{1,2}$ $\text{ZP}^{2,3}$ $\text{ZP}^{3,4}$ $\text{ZP}^{4,5}$ params
(M)
FLOPs
(B)
YOLOv5-s 33.3 37.4 10.5 28.8 34.9 36.9 35.1 38.4 7.2 16.5
YOLOv8-n 32.3 37.3 19.7 26.4 34.0 37.0 35.8 39.6 3.2 8.7
YOLOv5-m 40.8 45.2 12.9 36.0 42.3 44.5 43.2 46.7 21.2 49.0
YOLOv8-s 39.8 44.9 24.4 33.4 42.2 44.3 43.2 48.5 11.2 28.6

Discussion: If we compare YOLOv8 and YOLOv5 with similar AP, the improvement of YOLOv8 mainly comes from large objects and central zone. Besides, YOLOv5 performs better in spatial equilibrium (lower variance).