diff --git a/.doctrees/_generated/semantique.QueryRecipe.doctree b/.doctrees/_generated/semantique.QueryRecipe.doctree index e960dca5..3387c625 100644 Binary files a/.doctrees/_generated/semantique.QueryRecipe.doctree and b/.doctrees/_generated/semantique.QueryRecipe.doctree differ diff --git a/.doctrees/_generated/semantique.QueryRecipe.execute.doctree b/.doctrees/_generated/semantique.QueryRecipe.execute.doctree index 8eaf6af4..772d13de 100644 Binary files a/.doctrees/_generated/semantique.QueryRecipe.execute.doctree and b/.doctrees/_generated/semantique.QueryRecipe.execute.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.Datacube.doctree b/.doctrees/_generated/semantique.datacube.Datacube.doctree index 5dca5129..8482cb8e 100644 Binary files a/.doctrees/_generated/semantique.datacube.Datacube.doctree and b/.doctrees/_generated/semantique.datacube.Datacube.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.Datacube.lookup.doctree b/.doctrees/_generated/semantique.datacube.Datacube.lookup.doctree index 3b6605e3..ff4468c6 100644 Binary files a/.doctrees/_generated/semantique.datacube.Datacube.lookup.doctree and b/.doctrees/_generated/semantique.datacube.Datacube.lookup.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.Datacube.retrieve.doctree b/.doctrees/_generated/semantique.datacube.Datacube.retrieve.doctree index 012f7891..30f7f3a4 100644 Binary files a/.doctrees/_generated/semantique.datacube.Datacube.retrieve.doctree and b/.doctrees/_generated/semantique.datacube.Datacube.retrieve.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.GeotiffArchive.doctree b/.doctrees/_generated/semantique.datacube.GeotiffArchive.doctree index 2df56c7b..c1ae8e2b 100644 Binary files a/.doctrees/_generated/semantique.datacube.GeotiffArchive.doctree and b/.doctrees/_generated/semantique.datacube.GeotiffArchive.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.GeotiffArchive.lookup.doctree b/.doctrees/_generated/semantique.datacube.GeotiffArchive.lookup.doctree index 8d00faa2..90bb2618 100644 Binary files a/.doctrees/_generated/semantique.datacube.GeotiffArchive.lookup.doctree and b/.doctrees/_generated/semantique.datacube.GeotiffArchive.lookup.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.GeotiffArchive.retrieve.doctree b/.doctrees/_generated/semantique.datacube.GeotiffArchive.retrieve.doctree index 3dc8a8df..66b1de9d 100644 Binary files a/.doctrees/_generated/semantique.datacube.GeotiffArchive.retrieve.doctree and b/.doctrees/_generated/semantique.datacube.GeotiffArchive.retrieve.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.Opendatacube.doctree b/.doctrees/_generated/semantique.datacube.Opendatacube.doctree index 7ff41016..b9804b87 100644 Binary files a/.doctrees/_generated/semantique.datacube.Opendatacube.doctree and b/.doctrees/_generated/semantique.datacube.Opendatacube.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.Opendatacube.lookup.doctree b/.doctrees/_generated/semantique.datacube.Opendatacube.lookup.doctree index 019906b4..3c03bbf4 100644 Binary files a/.doctrees/_generated/semantique.datacube.Opendatacube.lookup.doctree and b/.doctrees/_generated/semantique.datacube.Opendatacube.lookup.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.Opendatacube.retrieve.doctree b/.doctrees/_generated/semantique.datacube.Opendatacube.retrieve.doctree index c710cef8..f0a0f811 100644 Binary files a/.doctrees/_generated/semantique.datacube.Opendatacube.retrieve.doctree and b/.doctrees/_generated/semantique.datacube.Opendatacube.retrieve.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.STACCube.config.doctree b/.doctrees/_generated/semantique.datacube.STACCube.config.doctree new file mode 100644 index 00000000..e6712725 Binary files /dev/null and b/.doctrees/_generated/semantique.datacube.STACCube.config.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.STACCube.doctree b/.doctrees/_generated/semantique.datacube.STACCube.doctree new file mode 100644 index 00000000..5a927c16 Binary files /dev/null and b/.doctrees/_generated/semantique.datacube.STACCube.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.STACCube.layout.doctree b/.doctrees/_generated/semantique.datacube.STACCube.layout.doctree new file mode 100644 index 00000000..a50d16ce Binary files /dev/null and b/.doctrees/_generated/semantique.datacube.STACCube.layout.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.STACCube.lookup.doctree b/.doctrees/_generated/semantique.datacube.STACCube.lookup.doctree new file mode 100644 index 00000000..2ac5ffb8 Binary files /dev/null and b/.doctrees/_generated/semantique.datacube.STACCube.lookup.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.STACCube.retrieve.doctree b/.doctrees/_generated/semantique.datacube.STACCube.retrieve.doctree new file mode 100644 index 00000000..7b42bfe4 Binary files /dev/null and b/.doctrees/_generated/semantique.datacube.STACCube.retrieve.doctree differ diff --git a/.doctrees/_generated/semantique.datacube.STACCube.src.doctree b/.doctrees/_generated/semantique.datacube.STACCube.src.doctree new file mode 100644 index 00000000..7d3100c3 Binary files /dev/null and b/.doctrees/_generated/semantique.datacube.STACCube.src.doctree differ diff --git a/.doctrees/_generated/semantique.mapping.Mapping.doctree b/.doctrees/_generated/semantique.mapping.Mapping.doctree index 4fe394c7..0b78dda6 100644 Binary files a/.doctrees/_generated/semantique.mapping.Mapping.doctree and b/.doctrees/_generated/semantique.mapping.Mapping.doctree differ diff --git a/.doctrees/_generated/semantique.mapping.Mapping.lookup.doctree b/.doctrees/_generated/semantique.mapping.Mapping.lookup.doctree index 3ea40506..4bcd110e 100644 Binary files a/.doctrees/_generated/semantique.mapping.Mapping.lookup.doctree and b/.doctrees/_generated/semantique.mapping.Mapping.lookup.doctree differ diff --git a/.doctrees/_generated/semantique.mapping.Mapping.translate.doctree b/.doctrees/_generated/semantique.mapping.Mapping.translate.doctree index 36458d4a..62a7c55d 100644 Binary files a/.doctrees/_generated/semantique.mapping.Mapping.translate.doctree and b/.doctrees/_generated/semantique.mapping.Mapping.translate.doctree differ diff --git a/.doctrees/_generated/semantique.mapping.Semantique.doctree b/.doctrees/_generated/semantique.mapping.Semantique.doctree index 8d4f7a50..53125a6b 100644 Binary files a/.doctrees/_generated/semantique.mapping.Semantique.doctree and b/.doctrees/_generated/semantique.mapping.Semantique.doctree differ diff --git a/.doctrees/_generated/semantique.mapping.Semantique.lookup.doctree b/.doctrees/_generated/semantique.mapping.Semantique.lookup.doctree index 9e198668..9bce8996 100644 Binary files a/.doctrees/_generated/semantique.mapping.Semantique.lookup.doctree and b/.doctrees/_generated/semantique.mapping.Semantique.lookup.doctree differ diff --git a/.doctrees/_generated/semantique.mapping.Semantique.translate.doctree b/.doctrees/_generated/semantique.mapping.Semantique.translate.doctree index bf0fb68e..c687e080 100644 Binary files a/.doctrees/_generated/semantique.mapping.Semantique.translate.doctree and b/.doctrees/_generated/semantique.mapping.Semantique.translate.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_operator.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_operator.doctree index 396e03fc..793ace55 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_operator.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_operator.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_reducer.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_reducer.doctree index 2188dd4e..1d895c08 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_reducer.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_reducer.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_verb.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_verb.doctree index 3aaaa412..bb59ad7d 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_verb.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.add_custom_verb.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_handler.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_handler.doctree index 51b292dd..5c178fe9 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_handler.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_handler.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_verb.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_verb.doctree index 2fbab721..8998eef3 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_verb.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.call_verb.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.doctree index 5959ca8a..08fd6c67 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.execute.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.execute.doctree index e9aebee5..3b2d10f2 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.execute.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.execute.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_operator.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_operator.doctree index 5a7c40ea..6f9316b8 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_operator.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_operator.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_reducer.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_reducer.doctree index 839eca7b..11f1f3e9 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_reducer.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.get_reducer.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_apply_custom.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_apply_custom.doctree index 7b82d6c6..e5adfcc6 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_apply_custom.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_apply_custom.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_assign.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_assign.doctree index fc7dcf78..3bd418e5 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_assign.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_assign.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_collection.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_collection.doctree index 3ec3e881..66cab9e0 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_collection.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_collection.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_compose.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_compose.doctree index bdaf67fb..001b8607 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_compose.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_compose.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concatenate.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concatenate.doctree index 547e98b7..d31ddbc3 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concatenate.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concatenate.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concept.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concept.doctree index d261772d..916f342f 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concept.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_concept.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_delineate.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_delineate.doctree index 25986ed4..02be31f1 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_delineate.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_delineate.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_evaluate.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_evaluate.doctree index b9af99d5..fac7656c 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_evaluate.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_evaluate.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_extract.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_extract.doctree index 3189442f..b5d75131 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_extract.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_extract.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_fill.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_fill.doctree index ed848a83..44d18f95 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_fill.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_fill.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_filter.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_filter.doctree index a1a00d68..50a05350 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_filter.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_filter.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_geometry.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_geometry.doctree index fd54cbaf..5d22ca4a 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_geometry.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_geometry.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_groupby.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_groupby.doctree index 09e204a0..0f8eb8ae 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_groupby.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_groupby.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_interval.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_interval.doctree index dd3ec33a..2311102c 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_interval.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_interval.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_label.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_label.doctree index e3d77e54..68df6021 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_label.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_label.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_layer.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_layer.doctree index b9f3cb80..17cef3b3 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_layer.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_layer.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_merge.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_merge.doctree index dc15ac8f..6a3c7137 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_merge.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_merge.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_name.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_name.doctree index b693b6d6..0ad46a07 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_name.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_name.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_processing_chain.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_processing_chain.doctree index add793cd..7340f900 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_processing_chain.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_processing_chain.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_reduce.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_reduce.doctree index ef392506..44b5829a 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_reduce.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_reduce.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_result.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_result.doctree index 8f205aa9..634e905a 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_result.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_result.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_self.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_self.doctree index bb5919fd..33791c76 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_self.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_self.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_set.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_set.doctree index 096c6a87..bcf7292c 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_set.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_set.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_shift.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_shift.doctree index 791584e8..7cbec12f 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_shift.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_shift.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_smooth.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_smooth.doctree index cc6da013..2fbf40fb 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_smooth.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_smooth.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_instant.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_instant.doctree index 6048fd94..5827d44c 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_instant.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_instant.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_interval.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_interval.doctree index cadc63ec..060bfb9c 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_interval.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_time_interval.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_trim.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_trim.doctree index 82317259..c5a4c4ac 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_trim.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_trim.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_verb.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_verb.doctree index e0a74bdc..a3b2be52 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_verb.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.handle_verb.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.optimize.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.optimize.doctree index afe27c7b..786803b4 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.optimize.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.optimize.doctree differ diff --git a/.doctrees/_generated/semantique.processor.core.QueryProcessor.parse.doctree b/.doctrees/_generated/semantique.processor.core.QueryProcessor.parse.doctree index 3835786d..1fc9c024 100644 Binary files a/.doctrees/_generated/semantique.processor.core.QueryProcessor.parse.doctree and b/.doctrees/_generated/semantique.processor.core.QueryProcessor.parse.doctree differ diff --git a/.doctrees/_notebooks/datacube.doctree b/.doctrees/_notebooks/datacube.doctree index 0dfec702..dc547824 100644 Binary files a/.doctrees/_notebooks/datacube.doctree and b/.doctrees/_notebooks/datacube.doctree differ diff --git a/.doctrees/_notebooks/gallery.doctree b/.doctrees/_notebooks/gallery.doctree index abeb7ce1..2ad9008d 100644 Binary files a/.doctrees/_notebooks/gallery.doctree and b/.doctrees/_notebooks/gallery.doctree differ diff --git a/.doctrees/_notebooks/mapping.doctree b/.doctrees/_notebooks/mapping.doctree index 419fefc4..ff3dbf7b 100644 Binary files a/.doctrees/_notebooks/mapping.doctree and b/.doctrees/_notebooks/mapping.doctree differ diff --git a/.doctrees/_notebooks/processor.doctree b/.doctrees/_notebooks/processor.doctree index b3a17acf..4a9cc795 100644 Binary files a/.doctrees/_notebooks/processor.doctree and b/.doctrees/_notebooks/processor.doctree differ diff --git a/.doctrees/_notebooks/recipes.doctree b/.doctrees/_notebooks/recipes.doctree index b43f8c7a..db47232b 100644 Binary files a/.doctrees/_notebooks/recipes.doctree and b/.doctrees/_notebooks/recipes.doctree differ diff --git a/.doctrees/_notebooks/references.doctree b/.doctrees/_notebooks/references.doctree index d55b3960..e5b83d38 100644 Binary files a/.doctrees/_notebooks/references.doctree and b/.doctrees/_notebooks/references.doctree differ diff --git a/.doctrees/_notebooks/verbs.doctree b/.doctrees/_notebooks/verbs.doctree index 185098ac..21e011f9 100644 Binary files a/.doctrees/_notebooks/verbs.doctree and b/.doctrees/_notebooks/verbs.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle index 868e9703..e2673554 100644 Binary files a/.doctrees/environment.pickle and b/.doctrees/environment.pickle differ diff --git a/.doctrees/nbsphinx/_notebooks/datacube.ipynb b/.doctrees/nbsphinx/_notebooks/datacube.ipynb index 700c8d26..7f23f02a 100644 --- a/.doctrees/nbsphinx/_notebooks/datacube.ipynb +++ b/.doctrees/nbsphinx/_notebooks/datacube.ipynb @@ -22,6 +22,7 @@ "- [Structure](#Structure)\n", "- [The Opendatacube configuration](#The-Opendatacube-configuration)\n", "- [The Geotiffarchive configuration](#The-Geotiffarchive-configuration)\n", + "- [The STACCube configuration](#The-STACCube-configuration)\n", "\n", "## Prepare\n", "\n", @@ -174,7 +175,7 @@ "source": [ "## The Geotiffarchive configuration\n", "\n", - "Besides the Opendatacube configuration, semantique contains a second built-in EO data cube configuration called [Geotiffarchive](https://zgis.github.io/semantique/semantique.datacube.Geotiffarchive.html). This configuration is targeted at small data cubes that are nothing more than a zipped archive of multiple GeoTIFF files, each having two spatial and one temporal dimension. Given the nature of GeoTIFF, the time dimension will be recognized as \"band dimension\", and therefore the time coordinates should be stored as band description for each band. Be aware that the Geotiffarchive configuration in semantique is mainly meant for demonstration purposes, and the retriever function is not optimized for performance (e.g. the full GeoTIFF is loaded into memory before subsetting in space and time).\n", + "As a second built-in EO data cube configuration semantique contains the so-called [Geotiffarchive](https://zgis.github.io/semantique/semantique.datacube.Geotiffarchive.html). This configuration is targeted at small data cubes that are nothing more than a zipped archive of multiple GeoTIFF files, each having two spatial and one temporal dimension. Given the nature of GeoTIFF, the time dimension will be recognized as \"band dimension\", and therefore the time coordinates should be stored as band description for each band. Be aware that the Geotiffarchive configuration in semantique is mainly meant for demonstration purposes, and the retriever function is not optimized for performance (e.g. the full GeoTIFF is loaded into memory before subsetting in space and time).\n", "\n", "To initialize a representation of a Geotiffarchive data cube, you need to provide a valid layout dictionary and the filepath to the zipped archive of GeoTIFF files. A valid layout for this configuration means that the metadata objects for each data layer should contain at least the following keys and values:\n", "\n", @@ -184,7 +185,7 @@ "\n", "When initializing the instance, you should also provide the timezone in which the temporal coordinates inside the data cube are stored. By default, semantique assumes this is [UTC](https://en.wikipedia.org/wiki/Coordinated_Universal_Time). Additionaly, you can provide several configuration parameters that tune the data retrieval process, see the [documentation](https://zgis.github.io/semantique/semantique.datacube.Geotiffarchive.html) of the Geotiffarchive class for details.\n", "\n", - "Now we can initialize an instance of the Geotiffarchive class using the small demo data cube that is contained in semantique. The layout file we use looks like [this](files/layout.json)." + "Now we can initialize an instance of the Geotiffarchive class using the small demo data cube that is contained in semantique. The layout file we use looks like [this](files/layout_gtiff.json)." ] }, { @@ -194,8 +195,8 @@ "metadata": {}, "outputs": [], "source": [ - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")" + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")" ] }, { @@ -657,11 +658,11 @@ " [ 3., 27., 3., ..., 27., 27., 27.],\n", " [27., 3., 7., ..., 27., 27., 27.]]])\n", "Coordinates:\n", + " spatial_ref int32 0\n", " * x (x) float64 4.53e+06 4.53e+06 ... 4.536e+06 4.536e+06\n", " * y (y) float64 2.697e+06 2.697e+06 ... 2.691e+06 2.691e+06\n", - " spatial_ref int64 0\n", + " temporal_ref int32 0\n", " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-...\n", - " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", " AREA_OR_POINT: Area\n", @@ -669,7 +670,7 @@ " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", " value_type: ordinal\n", - " value_labels: {1: 'SVHNIR', 2: 'SVLNIR', 3: 'AVHNIR', 4: 'AVLNIR', 5: '...
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    ordinal
    value_labels :
    {1: 'SVHNIR', 2: 'SVLNIR', 3: 'AVHNIR', 4: 'AVLNIR', 5: 'WV', 6: 'SHV', 7: 'SHRBRHNIR', 8: 'SHRBRLNIR', 9: 'HRBCR', 10: 'WR', 11: 'PB', 12: 'GH', 13: 'VBBB', 14: 'BBB', 15: 'SBB', 16: 'ABB', 17: 'DBB', 18: 'WBBorSHB', 19: 'NIRPBB', 20: 'BA', 21: 'DPWASH', 22: 'SLWASH', 23: 'TWASH', 24: 'SASLWA', 27: 'TNCLV', 28: 'TNCLWA_BB', 29: 'SN', 30: 'SHSN', 31: 'SH', 32: 'FLAME'}
  • " ], "text/plain": [ "\n", @@ -738,11 +739,11 @@ " [ 3., 27., 3., ..., 27., 27., 27.],\n", " [27., 3., 7., ..., 27., 27., 27.]]])\n", "Coordinates:\n", + " spatial_ref int32 0\n", " * x (x) float64 4.53e+06 4.53e+06 ... 4.536e+06 4.536e+06\n", " * y (y) float64 2.697e+06 2.697e+06 ... 2.691e+06 2.691e+06\n", - " spatial_ref int64 0\n", + " temporal_ref int32 0\n", " * time (time) datetime64[ns] 2019-12-15T10:17:33.408715 ... 2020-...\n", - " temporal_ref int64 0\n", " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0\n", "Attributes:\n", " AREA_OR_POINT: Area\n", @@ -815,7 +816,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 13, @@ -824,7 +825,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAEiCAYAAABZdOcWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde1wU5f7HP2uCCKhAeQFKCBXIIHO1o5RlaCcwQcXUTM1OWF6yUstStA5QKlqZ2q/Cu2VqnLygoYWZF4yOWrJoUAEloQV46Qgq4gV1fn8M34dnnp3ZCywKNu/Xa1+7O/PMM8/cducz35tBkiQJOjo6Ojo6Ojo6Ojo6OjoWaHKjB6Cjo6Ojo6Ojo6Ojo6PT8NHFo46Ojo6Ojo6Ojo6Ojo5VdPGoo6Ojo6Ojo6Ojo6OjYxVdPOro6Ojo6Ojo6Ojo6OhYRRePOjo6Ojo6Ojo6Ojo6OlbRxaOOjo6Ojo6Ojo6Ojo6OVXTxqKOjo6Ojo6Ojo6Ojo2MVXTzq6Ojo6Ojo6Ojo6OjoWEUXjzo6Ojo6Ojo6Ojo6OjpW0cXjdWDPnj0wGAwoLy+/0UPR0dHR0dHR0dHR0dGpFbp4dDAPP/wwJk+erJh2//33o7S0FK1atboxg6olVVVVmDZtGkJDQ+Hm5gYfHx+MHj0aJSUlinaXLl3Ciy++iNtuuw1ubm4YMGAA/vzzT0Wb2bNn4/7774erqys8PDxU17dz507cf//9aNGiBby9vTFt2jRcuXLF4hhLS0sxYsQIBAUFoUmTJmb7HgCWLVuGBx98EJ6envD09MQjjzyC77//3ur2b9q0CREREbjttttgMBhw6NAhszYPP/wwDAaD4jV8+HAAwMcff2w2T3zt2bPHpm0AgI0bN6Jz585o1qwZOnfujNTUVKvbYG2/WxrjyZMnNftNTk7GPffcg5YtW6Jly5YICwvDV199pWiTkJCA4OBguLm5sf1+4MABq2PW0dHR0dHR0dFpmOji8Trg7OyMdu3awWAw3Oih2EVlZSVMJhPeeOMNmEwmbNq0CQUFBRgwYICi3eTJk5GamoqUlBRkZmaioqICUVFRuHr1Kmtz+fJlDB06FBMmTFBd148//ojHHnsMkZGRyM7ORkpKCr744gtMnz7d4hgvXbqE1q1bY+bMmejSpYtqmz179uDJJ5/E7t27sW/fPrRv3x6PPvooiouLLfZ9/vx5PPDAA5g7d67Fds899xxKS0vZa8mSJQCAJ554QjE9LCzMrO39999v0zbs27cPTzzxBJ566ikcPnwYTz31FIYNG2ZVjFnb7+IYS0tLERERgd69e6NNmzaa/d5+++2YO3cuDh48iIMHD6JPnz4YOHAgfvrpJ9YmMDAQH3zwAXJycpCZmQl/f388+uijOHXqlMUx6+jo6Ojo6OjoNFAkHYfx9NNPSwAUr99//13avXu3BEAqKyuTJEmSVq1aJbVq1UpKS0uTAgMDpebNm0uPP/64VFFRIX388ceSn5+f5OHhIb3wwgvSlStXWP+XLl2SXn31VcnHx0dydXWV/vGPf0i7d+++rtv4/fffSwCko0ePSpIkSeXl5ZKTk5OUkpLC2hQXF0tNmjSR0tPTzZanbReJi4uTunfvrpiWmpoqubi4SGfPnrVpbL1795YmTZpktd2VK1ekFi1aSJ988olN/f7+++8SACk7O7vW67S1rVabYcOGSZGRkYppERER0vDhw21at9Z+Fzl58qTk5OQkrV692qZ+eTw9PaXly5drzj9z5owEQPrmm2/s7ltHR0dHR0dHR+fGo1seHciiRYvMrEt33HGHatvKykq8//77SElJQXp6Ovbs2YPBgwfjyy+/xJdffolPP/0US5cuxYYNG9gyzzzzDL777jukpKTgxx9/xNChQxEZGYlff/1Vc0z9+vWDu7u7xZc9nDlzBgaDgblAZmVloaqqCo8++ihr4+Pjg5CQEPz3v/+1ud9Lly7BxcVFMa158+a4ePEisrKy7BqjNSorK1FVVQUvLy+H9Ld27VrcdtttuPvuuzF16lScO3fOIf3y7Nu3T7GPASAiIkKxj8kFtS6sXr0arq6uGDJkiGK6wWDAxx9/rLrM1atXkZKSgvPnzyMsLEy1zeXLl7F06VK0atVK07qqo6Ojo6Ojo6PTsGl6owdwM9GqVSs4OzvD1dUV7dq1s9i2qqoKycnJ6NChAwBgyJAh+PTTT3HixAm4u7ujc+fOCA8Px+7du/HEE0/gyJEj+Oyzz/Dnn3/Cx8cHADB16lSkp6dj1apVmDNnjup6li9fjgsXLjhk+y5evIjp06djxIgRaNmyJQDg+PHjcHZ2hqenp6Jt27Ztcfz4cZv7joiIwMKFC/HZZ59h2LBhOH78OGbNmgVAjmt0JNOnT4evry8eeeSROvc1cuRI3HnnnWjXrh1yc3MRFxeHw4cPY8eOHQ4YaQ3Hjx9H27ZtFdPEfdyqVSsEBQXVaT0rV67EiBEj0Lx5c8X0oKAgs5jdnJwchIWF4eLFi3B3d0dqaio6d+6saLN161YMHz4clZWV8Pb2xo4dO3DbbbfVaYw6Ojo6Ojo6Ojo3Bl083iBcXV2ZcARkIeDv76+wBLZt25YlLTGZTJAkCYGBgYp+Ll26hFtvvVVzPb6+vg4Zb1VVFYYPH45r167ho48+stpekiS7rGCPPvoo3nnnHYwfPx5PPfUUmjVrhjfeeAOZmZm45ZZbAECxb0aNGoXFixfbvR1vv/02PvvsM+zZs4dZOteuXYtx48axNl999RUefPBBm/p77rnn2OeQkBB06tQJ3bt3h8lkgtFotHt8lhD3p7iPY2JiEBMTU+v+9+3bh59//hmrV682m5eXl2c2LSgoCIcOHUJ5eTk2btyIp59+GhkZGQoBGR4ejkOHDuGvv/7CsmXLWJympXhKHR0dHR0dHR2dhokuHm8QTk5Oiu8Gg0F12rVr1wAA165dwy233IKsrCwmpghLrqf9+vXDt99+a3EsFRUVFudXVVVh2LBh+P3337Fr1y5mdQSAdu3a4fLlyygrK1NYH0+ePIn777/fYr8iL7/8MqZMmYLS0lJ4enqiqKgIcXFxuPPOOwFAke2UH4OtvPvuu5gzZw6++eYb3HPPPWz6gAED0KNHD/a9LoLbaDTCyckJv/76q0PFY7t27cwsuSdPnjSzRtaF5cuX495770W3bt1sau/s7IyOHTsCALp3744ffvgBixYtYgmDAMDNzQ0dO3ZEx44d0bNnT3Tq1AkrVqxAXFycw8ato6Ojo6Ojo6NzfdDFo4NxdnZWZBl1FF27dsXVq1dx8uRJm61iQN3dVkk4/vrrr9i9e7eZlbNbt25wcnLCjh07MGzYMACym2lubi7efvttu9dnMBiYW+5nn32GO+64g4kwEiq14Z133sGsWbOwfft2dO/eXTGvRYsWaNGiRa375vnpp59QVVUFb29vh/RHhIWFYceOHZgyZQqb9vXXX9st0LWoqKjA559/jqSkpFr3IUkSLl26VOc2Ojo6Ojo6Ojo6DRNdPDoYf39/HDhwAEVFRXB3d3dYUpbAwECMHDkSo0ePxvz589G1a1f89ddf2LVrF0JDQ/HYY4+pLlcXK9qVK1cwZMgQmEwmbN26FVevXmXWLy8vLzg7O6NVq1YYM2YMXnnlFdx6663w8vLC1KlTERoaqogpPHbsGE6fPo1jx47h6tWrzIrYsWNHZjl95513EBkZiSZNmmDTpk2YO3cuPv/8czNLqwj1VVFRgVOnTuHQoUNwdnZm7pNvv/023njjDaxbtw7+/v5sG6wlDKLxUl3L/Px8ALIVsF27djhy5AjWrl2Lxx57DLfddht+/vlnvPLKK+jatSseeOABu/a1tW2YNGkSHnroIcybNw8DBw7Eli1b8M033yAzM5P1kZqairi4OIWLqS37HQD+85//4MqVKxg5cqTq+IKDg5GUlMTcYmfMmIF+/frhjjvuwLlz55CSkoI9e/YgPT0dgFzmZPbs2RgwYAC8vb3xv//9Dx999BH+/PNPDB06lPU7evRo+Pr6MtGqtg3iuuPi4lBcXKzqXqujo6Ojo6Ojo1OP3NBcrzch+fn5Us+ePaXmzZtbLdXBEx8fL3Xp0kUx7emnn5YGDhzIvl++fFn697//Lfn7+0tOTk5Su3btpJiYGOnHH3+sl22hEhVqL75EyIULF6QXXnhB8vLykpo3by5FRUVJx44dM9sWa/2Eh4dLrVq1klxcXKQePXpIX375pU3jVOvXz8+Pzffz81NtEx8fb7HfVatWWVzu2LFj0kMPPSR5eXlJzs7OUocOHaSXXnpJ+t///qfan6VSHda2QZIkaf369VJQUJDk5OQkBQcHSxs3blQdL48t+12SJCksLEwaMWKE5r4AIK1atYp9j42Nlfz8/CRnZ2epdevWUt++faWvv/6azb9w4YIUExMj+fj4SM7OzpK3t7c0YMAA6fvvvzfbJ08//bTFbRDX/fTTT0u9e/fWHKuOjo6Ojo6Ojk79YJAkSaovYaqjo6Ojo6Ojo6Ojo6Nzc6DXedTR0dHR0dHR0dHR0dGxii4edXR0dHR0dHR0dHR0dKyii0cdHR0dHR0dHR0dHR0dq+jiUUdHR6cW7NmzBwaDAeXl5Td6KDo6Og5Av6Z1dHR0rKOLRx0dHR0rPPzww5g8ebJi2v3334/S0lK0atXqxgyqllRVVWHatGkIDQ2Fm5sbfHx8MHr0aFaShrh06RJefPFF3HbbbXBzc8OAAQPw559/svlFRUUYM2YM7rzzTjRv3hwdOnRAfHw8Ll++rOjn2LFjiI6OhpubG2677Ta89NJLZm3UyMjIQLdu3eDi4oKAgAAsXrzYbDvefPNNdOjQAS4uLujSpQsrFWMJSZKQkJAAHx8fNG/eHA8//DB++uknRZuHH34YBoNB8Ro+fDgA4OOPPzabJ7727NmD0tJSjBgxAkFBQWjSpInZ+UNs3LgRnTt3RrNmzdC5c2ekpqZa3YbZs2fj/vvvh6urKzw8PMzmWxrjyZMnrfYPAElJSTAYDGbjTkhIQHBwMNzc3ODp6YlHHnkEBw4csKnPhoR+TV/fa9qW62HZsmV48MEH4enpyc6t77//3ur2b9q0CREREbjttttgMBhYSSqeI0eOICYmBq1bt0bLli0xbNgwnDhxAsDNfU0nJyfjnnvuQcuWLdGyZUuEhYXhq6++0mw/btw4GAwGLFy40OqYdf6+6OJRR0dHpxY4OzujXbt2MBgMN3oodlFZWQmTyYQ33ngDJpMJmzZtQkFBAQYMGKBoN3nyZKSmpiIlJQWZmZmoqKhAVFQUrl69CgDIy8vDtWvXsGTJEvz0009YsGABFi9ejBkzZrA+rl69iv79++P8+fPIzMxESkoKNm7ciFdeecXiGH///Xc89thjePDBB5GdnY0ZM2bgpZdewsaNG1mb119/HUuWLMH//d//4eeff8b48eMRExOD7Oxsi32//fbbeO+99/DBBx/ghx9+QLt27fDPf/4T586dU7R77rnnUFpayl5LliwBADzxxBOK6WFhYWZt77//fly6dAmtW7fGzJkz0aVLF9Wx7Nu3D0888QSeeuopHD58GE899RSGDRtmVYxdvnwZQ4cOxYQJE1Tni2MsLS1FREQEevfujTZt2ljsGwB++OEHLF26FPfcc4/ZvMDAQHzwwQfIyclBZmYm/P398eijj+LUqVNW+23o6Nd0/V3TtlwPe/bswZNPPondu3dj3759aN++PR599FEUFxdb7Pv8+fN44IEHMHfuXM35jz76KAwGA3bt2oXvvvsOly9fRnR0NK5du3ZTX9O333475s6di4MHD+LgwYPo06cPBg4caPbADAA2b96MAwcOwMfHx+JYdXT0Oo86Ojo6FlCrlWmpfmtaWpoUGBgoNW/eXHr88celiooK6eOPP5b8/PwkDw8P6YUXXpCuXLnC+r906ZL06quvSj4+PpKrq6v0j3/8w6wOZ33z/fffSwCko0ePSpIkSeXl5ZKTk5OUkpLC2hQXF0tNmjSR0tPTNft5++23pTvvvJN9//LLL6UmTZpIxcXFbNpnn30mNWvWTDpz5oxmP6+99poUHBysmDZu3DipZ8+e7Lu3t7f0wQcfKNoMHDhQGjlypGa/165dk9q1ayfNnTuXTbt48aLUqlUrafHixWyapZqsIra01WozbNgwKTIyUjEtIiJCGj58uE3rVqsZrMbJkyclJycnafXq1Vbbnjt3TurUqZO0Y8cOm7btzJkzEgDpm2++sWnMDQH9mpa5ntc0j63X15UrV6QWLVpIn3zyiU39Um3q7OxsxfTt27dLTZo0UYzv9OnTEgBpx44dtRpfY7qmRTw9PaXly5crpv3555+Sr6+vlJubK/n5+UkLFiywu1+dvw+65VFHR0fHAosWLTJ7En3HHXeotq2srMT777+PlJQUpKenY8+ePRg8eDC+/PJLfPnll/j000+xdOlSbNiwgS3zzDPP4LvvvkNKSgp+/PFHDB06FJGRkfj11181x9SvXz+4u7tbfNnDmTNnYDAYmLtUVlYWqqqq8Oijj7I2Pj4+CAkJwX//+1+L/Xh5ebHv+/btQ0hIiOJJdkREBC5duoSsrCzNfvbt26dYNy138OBBVFVVAZAtGS4uLoo2zZs3R2Zmpma/v//+O44fP67ou1mzZujdu7fZdq1duxa33XYb7r77bkydOtXMMukItLaTHwu5q9WF1atXw9XVFUOGDFFMNxgM+PjjjxXTJk6ciP79++ORRx6x2u/ly5exdOlStGrVStMS0xDRr2mZ63lN14bKykpUVVUp1l8bLl26BIPBgGbNmrFpLi4uaNKkicXfi9rQEK9p4urVq0hJScH58+cRFhbGpl+7dg1PPfUUXn31Vdx99911GpfO34OmN3oANwN79+7FO++8g6ysLJSWliI1NRWDBg2yqw9JkjB//nwsXboUR48eRZs2bTBhwgSFu4iOjs71p1WrVnB2doarqyvatWtnsW1VVRWSk5PRoUMHAMCQIUPw6aef4sSJE3B3d0fnzp0RHh6O3bt344knnsCRI0fw2Wef4c8//2Q3Y1OnTkV6ejpWrVqFOXPmqK5n+fLluHDhgkO27+LFi5g+fTpGjBiBli1bAgCOHz8OZ2dneHp6Ktq2bdsWx48fV+3nyJEj+L//+z/Mnz+fTTt+/Djatm2raOfp6QlnZ2fNfrSWa9u2La5cuYK//voL3t7eiIiIwHvvvYeHHnoIHTp0wM6dO7FlyxbmgqfVL/Ul9n306FH2feTIkbjzzjvRrl075ObmIi4uDocPH8aOHTs0+64NWtvJ75tWrVohKCioTutZuXIlRowYgebNmyumBwUFKeL7UlJSYDKZ8MMPP1jsb+vWrRg+fDgqKyvh7e2NHTt24LbbbqvTGK8n+jVdw/W6pmvD9OnT4evra9ODDEv07NkTbm5umDZtGubMmQNJkjBt2jRcu3YNpaWlDhqtTEO7pgEgJycHYWFhuHjxItzd3ZGamorOnTuz+fPmzUPTpk3x0ksv1WlMOn8fdPHoAM6fP48uXbrgmWeeweOPP16rPiZNmoSvv/4a7777LkJDQ3HmzBn89ddfDh6pjo5OfeLq6spuMgH5psHf319hNWjbti1LcGAymSBJEgIDAxX9XLp0Cbfeeqvmenx9fR0y3qqqKgwfPhzXrl3DRx99ZLW9JEmqT8xLSkoQGRmJoUOH4tlnn1XMU2vP98Pvm1GjRrHEOOJykiQppi9atAjPPfccgoODYTAY0KFDBzzzzDNYtWoVANlyOG7cOLb8V199hVtuuUWzb37ac889xz6HhISgU6dO6N69O0wmE4xGo+q+qS3WxhITE4OYmJha979v3z78/PPPWL16tdm8vLw89vmPP/5g/0OiRVckPDwchw4dwl9//YVly5axmC5b4ikbG/o17bhr2h7efvttfPbZZ9izZw87H9Wu6QcffNBqX61bt8b69esxYcIEvP/++2jSpAmefPJJGI1G9pvgSBrKNU0EBQXh0KFDKC8vx8aNG/H0008jIyMDnTt3RlZWFhYtWgSTydToYn11bhy6eHQA/fr1Q79+/TTnX758Ga+//jrWrl2L8vJyhISEYN68eXj44YcBAL/88guSk5ORm5tb56dROjo6Nw4nJyfFd4PBoDrt2rVrAGR3oVtuuQVZWVlmNzGW3NT69euHb7/91uJYKioqLM6vqqrCsGHD8Pvvv2PXrl3MQgEA7dq1w+XLl1FWVqawVJw8eRL333+/op+SkhKEh4cjLCwMS5cuVcxr166dWaKIsrIyVFVVsafzfGZEGkO7du3MrBgnT55E06ZN2Q1469atsXnzZly8eBH/+9//4OPjg+nTp+POO+8EAAwYMAA9evRgy/v6+jIrw/Hjx+Ht7a3oW7QW8BiNRjg5OeHXX391qHjU2k5LY7GX5cuX495770W3bt0stsvKysLJkycV7a5evYq9e/figw8+wKVLl9g56ubmho4dO6Jjx47o2bMnOnXqhBUrViAuLs5h424o6Ne0Y65pe3j33XcxZ84cfPPNN4qkTWrXtK08+uijOHLkCP766y80bdoUHh4eaNeuHfu9cBQN6ZomnJ2d0bFjRwBA9+7d8cMPP2DRokVYsmQJvv32W5w8eRLt27dn7a9evYpXXnkFCxcuRFFRkcPGrXPzoIvH68AzzzyDoqIipKSkwMfHB6mpqYiMjEROTg46deqEtLQ0BAQEYOvWrYiMjIQkSXjkkUfw9ttv19nXX0dHp+44OztbdIesLV27dsXVq1dx8uRJm56gE3V1caObzF9//RW7d+82s4h069YNTk5O2LFjB4YNGwZATrWfm5uLt99+m7UrLi5GeHg4unXrhlWrVqFJE2UYfVhYGGbPno3S0lIm1r7++ms0a9aM3fjQTY24XFpammLa119/je7du5vduLu4uMDX1xdVVVXYuHEjG2+LFi3QokULRVtyRd2xYwe6du0KQH64l5GRgXnz5mnur59++glVVVUKwekIwsLCsGPHDkyZMoVN+/rrr81u5mtLRUUFPv/8cyQlJVlt27dvX+Tk5CimPfPMMwgODsa0adMsWmgkScKlS5fqPN7riX5NX99r2lbeeecdzJo1C9u3b0f37t0V89SuaXsh9+pdu3bh5MmTZhlp60pDuqa14K/Xp556yswtOCIiAk899RSeeeaZOo1V5ybmBiTpuakBIKWmprLvv/32m2QwGBSZySRJkvr27SvFxcVJkiRnEWzWrJnUo0cPae/evdLu3bule++9VwoPD7+eQ9fR0dHgueeek+677z7p999/l06dOiVdvXpVMzMjT3x8vNSlSxfFtKeffloaOHAg+z5y5EjJ399f2rhxo1RYWCh9//330ty5c6Vt27bVy7ZUVVVJAwYMkG6//Xbp0KFDUmlpKXtdunSJtRs/frx0++23S998841kMpmkPn36SF26dGFZJYuLi6WOHTtKffr0kf78809FP8SVK1ekkJAQqW/fvpLJZJK++eYb6fbbb5deeOEFi2MsLCyUXF1dpSlTpkg///yztGLFCsnJyUnasGEDa7N//35p48aN0pEjR6S9e/dKffr0ke688052PLSYO3eu1KpVK2nTpk1STk6O9OSTT0re3t7S2bNnJUmSf7MTExOlH374Qfr999+lbdu2ScHBwVLXrl0VGTUJS5kZs7OzpezsbKlbt27SiBEjpOzsbOmnn35i87/77jvplltukebOnSv98ssv0ty5c6WmTZtK+/fvZ202bdokBQUFKfo9evSolJ2dLSUmJkru7u5sPefOnVO0W758ueTi4iKdPn1adXxBQUHSpk2bNPeVuG0VFRVSXFyctG/fPqmoqEjKysqSxowZIzVr1kzKzc1l7Z566ilp+vTpFrdBXPf06dOlp556SnMsjka/pq/vNS1J1q+HefPmSc7OztKGDRsU6xbPa5H//e9/UnZ2trRt2zYJgJSSkiJlZ2crxr1y5Upp37590m+//SZ9+umnkpeXl/Tyyy+r9nczXdNxcXHS3r17pd9//1368ccfpRkzZkhNmjSRvv76a/WdKUmq2VYbwzWtc/3QxaODEcXj559/LgGQ3NzcFK+mTZtKw4YNkyRJ/hMDIOXn57PlsrKyJABSXl7e9d4EHR0dgfz8fKlnz55S8+bNrab157HlRvPy5cvSv//9b8nf319ycnKS2rVrJ8XExEg//vhjvWwLpbNXe/HlBC5cuCC98MILkpeXl9S8eXMpKipKOnbsGJu/atUqzX54jh49KvXv319q3ry55OXlJb3wwgvSxYsXrY5zz549UteuXSVnZ2fJ399fSk5ONpt/1113Sc2aNZNuvfVW6amnnjJ7SKfGtWvXpPj4eKldu3ZSs2bNpIceekjKyclh848dOyY99NBDkpeXl+Ts7Cx16NBBeumll6T//e9/qv1ZutFU2zd+fn6KNuvXr5eCgoIkJycnKTg4WNq4caNiPu1nHrVSE+LxkyRJCgsLk0aMGKG5LwBIq1at0pwvbtuFCxekmJgYycfHR3J2dpa8vb2lAQMGSN9//73Zck8//bTFbRDX/fTTT0u9e/fWHIuj0a/p639NW7se/Pz8VNvEx8db7Fdr3Pxy06ZNk9q2bSs5OTlJnTp1kubPny9du3ZNtb+b6ZqOjY2V/Pz8JGdnZ6l169ZS3759LQpHSVIXj43hmta5fhgkqToLgY5DMBgMimyr//nPfzBy5Ej89NNPqvEP7dq1Q3x8PObMmcNS0APAhQsX4Orqiq+//hr//Oc/r+cm6Ojo6Ojo6Ojo6OjomKHHPNYztsQ/PPDAA7hy5QqOHDnCsroVFBQAAPz8/K7bWHV0dHR0dHR0dHR0dLTQLY8OoKKiAr/99hsAWSy+9957CA8Ph5eXF9q3b49Ro0bhu+++w/z589G1a1f89ddf2LVrF0JDQ/HYY4/h2rVruO++++Du7o6FCxfi2rVrmDhxIlq2bImvv/76Bm+djo6Ojo6Ojo6Ojo6OLh4dwp49exAeHm42/emnn8bHH3+MqqoqzJo1C6tXr0ZxcTFuvfVWhIWFITExEaGhoQDk1Ngvvvgivv76a7i5uaFfv36YP3++nm1VR0dHR0dHR0dHR6dBoItHHR0dHR0dHR0dHR0dHas0sd5ER0dHR0dHR0dHR0dH5++OLh51dHR0dHR0dHR0dHR0rKKLRx0dHR0dHR0dHR0dHR2r6KU6asm1a9dQUlKCFi1awGAw3Ojh6OjoAJAkCefOnYOPjw+aNLH/2Zh+XevoNCz0a1pH5+ajrtf1jeLixYu4fPmyxTbOzs5wcXG5TiO6MejisZaUlJTgjjvuuNHD0NHRUeGPP/7A7bffbvdy+nWto9Mw0a9pHZ2bj9pe1zeCixcvonnz5lbbtWzZEt7e3mjSpAkmTpyIiRMnXofRXV908VhLWrRoAQD44/ff0bL6s46Ozo2l1YXZwB0L2PVpL7Rc0u9J2PL9HzYtc6Hddzi84rDVdqYH28P47TEAwEZ/Vzb98aJKdBnThfXRZUwXrCooY21ND7bH8y2j2LoA4MzeM2j1UCuz9fbs/zz7vH/bR+wz379/J38U/VoEAFiwYIFi+f9886vZuJ94pJPmPOJ4wZdoF/iY6nRalzhOfnw8pgfbo8Nzx/DNv13xZt9Oin1hCXH/Pl5UaXUZa3QZ0wX/3vkr3uzbyaZjXF/4d/Jn+1dtn/LzAfmYWTpellDrnz+veOxdj1Z7uobE7QCAK5WXcfCZ5XW+pn0S/kATl5aKedHlyQh8tRliT/4TAPDeqXbwuPtT/OebX7E/siXOVE0FALRyepct0zP9LPZH1vQzHYMw8Gdl0vpvwsJw/sx+AMBXh8aZjanfvUuwJ321Xdtxod13aH78AQBA1+z2SPOYYNfy9hBdnqz4HvhqM5T/9BQAwOPuTzGl6QnF/OkYhGaHO6rOo/m1Rdy3WzqrW48H/iypzqPltZarLXOxGQuutDWbPqXpCTb9RNMwAEBoWTuzdgXH3AEAJ79cjjaPPcs+88f1ledWKpaZvywWQM15W/DOJQDy8bF0HT7xSCcUvHNJ85zh+0vzmMDWa8+1Tf9NdI7uj2yJLoe+AgAcvrcf4g9PxfbSf7P2FS32Ivex3Fpf1zcCaxZH4uzZs/jjjz/QsmVL640bKXqpjlpy9uxZtGrVCmf++uumPkF0dBoThgv/BlrNxZkzZ2p1XdJ13fM/z6OpazPNdivPpiK2ZQwytyxQnR8QFIDC/ELFtIJwfxQePWXWNrLwPIwTjDAlmwBA8ZlID3Bjn2dEBMGUbEKvgVMAQHMMxglGAGB90Zio/14Dp2BUZJBimTXp+YrvoyKD2DS+rdiOH0OvgVNQkrcFANg+oHUHBAXAJ3igYtlKnwzF9sYvy0XCs68gYfl8pJlGK7ZBC3FbaV9HFp5n8631URDuj+HBXpizPZ/tY7W+6xtxX9G+peNN+5afx8+3RkneFsUxEL+rtbXUxlFobcuVykvY/8RHdb6mb597xkw8AsDg8kVY8GwM5p70BgDEdZ0NAJCqZsLgNFvRttfWs8iMUvaRnvQufKP3I726ZjNPUEAA+3znli3YECILGJfsQLauXlvPor/vPExvUwq/De0xuHwRNnlMYssd6wIs7rUEa9LzMSoyCHmzLyrm1wVxXTSNJ3imi+J657d/8RVvlOXIgibYvwJ5Re7snfYjAMRjKO4t8wEAHPIsqdVYh+TKt6q0D21tT9i6nK0kYj0AeR9oUdq0F9tuNQZVnsOU5akInumCspxYJO91AgAcHVLzsGxJ26/YsSfyZl8EIB8b+r7JYxJmTFwCQPn73D3Lz+bzZcbEJWa/7bZS6ZMB15LeimmjIoMwfsJ4ADW/o8TViqs43Ptwra/rGwH9lthCY9qu2qBbHnV0dG4azlRNRSvMrff1xLaMAaAuSgKCAtQWQWzLGFRGZJi1F/9URdEyZ3vNnzkvHDO3LECvgVNQEO7PxgPU3PCvzEuVJ1TPJyE46p4gQGlYAAAzkch/X5Oeb3YDwwtLGmv5rnI23yd4INJ9UtnYfIJVdwtcS3rDOAFIyTuN4cFeGLkuCts7nFIVjrS/xX02Z3s+E+EAMByAaXeR2T61RODuIhiDvay2q09IeJOA9AmGmeAmQe4TrBRZdD5YokagbVFM58Uh//m1ya8BANZgoNl54Who28WHLvXNJo9JWADLlm2paiaWGFZiDc4qpvfaehYzIoIQHWKAu7BMZE4OEyzdOgzA7wMHAke+QKIhBNhdLWz2JCDTHTi2F0iGuXAEgPaHgTmHZevlnA8BeNR2S2X4ddA7CUZx3Zs8JgEf1ix3sNtRJGXPRLB/BQAwsUh4hq5EXrWYFOFFo0t2IC52LWDfE7Ee8RiqmA9A0cZe8bchxGAmIB1JPIYyAamFKBxpH9D2+e31xGCg+rd1JbB3HAaXL4LfBv44yMc+b/YiJhaJOR9WW7U9ar4PLl8EdJO/j4oMQl7WRZu3KW/2RYyaGaT4rbfneicBWemTAQBY+mOGTQ/udBofunjU0dHRqQVaFj8AmjfA8pNZczHEkx7ghsjC8zXTA9xqLGFcWxIKZAGlm2+68ecFJaB9E8DfKIiWSELN6rgmPR8leVvg0ccDriW9ZWtscI011idYHoMtVquUvNNYO2Ir5iT1QCGAfXEHEE0zJ8giMtq4GgmGEGBMBMB5vCYsn4/I5BAA1886aC/WbqBoPomngKAAMyFIxyBzi1oPUFiSFZaiLQvMHjDQ+clbr3lxr/YAQfxeHyJSPk/kDSQL67WL1xy+HkC2spAFZ0lbF3i2BcY3LWUWR4PTbMCQCEjxMDjNhtGUBvgARhNgMspnp7wfgJF5UcgLCEB+YSEic3IAKMUOWR3vLfMBdktor+EBTeKNLE9qlkh74Jelz5s8JmmKRWvTu2f5YXrXUswt8mai8USLzwEAZTmxuNi1F+71r0CMZ431kheFgCycgv0rkJcdiLius5FaNgmpELavuu9DtdrqGkhA1sXqaMnimZQ9EwhdaTZ9fNNS+YPnIqSW1Wwbicm86u90TGZELlEsr3bMN3lMwuDZixTf1djkMQk4In+29WGD4tyYvQijZiofEgLa/x8kFEk0Zm5ZYPZwj5+vc3PQeFIc6ejo6DQQaiMc6Wa4INyfTROtaMYJRuZqmR7gxr6T8Og1cIqqZZMskZasNiV5W1TFoSgM6aX1R0/bQaKQXJUiS5owqxnfTk04Zm5ZgJK8LcjcsgCZWxZgeLAXEp8LYfPDknqYLZNgCFF83/zOZwCAkeuiNLfZEczZnl9rUWqcYER6gJvCeqwG9c+7q4r7j44LQfN5xDaAfG4E7i5SuL8uTl6MxcmLFW2I1ya/ZtaP2vf6xid4IHyCB6rG0tYGiuMbXL4IMyYuqXG3rHYZHO80HlLVTABg78asmmvTZIyGyRiNrND9bNrSH5diVGQQYlvGIPita6iQcrEhxGAmNII2rkLinrsxqPKcpnAkeJdFQGkdFF1KtVBrx4sN0eLIT1MTJSQsgme6YMryVExvU4pBlecAAONO9GP7khAFIw9ZEy92LWDt+r8/y6wdb6kckivZbUWkZWojHHduXcE+W1reU0M4xmMoe4nw29V2wPNo3+FllOXEYtyJfhhcvghtBzyPg92Oqh5vS8fIFiydQ/w8eqgCqP+mEPx/BH3uNXAKXEt6s5daW9G9tbFxKPkQjnx8RPV1KPkQAOC+++5D586d8eGHH97YwdYTuuVRR0dHxw7UbtotwccAArI1zjihxn2Vt0byIiWy8LyqpVFLjPFt1LDmDihak1xLegP3yJ/56eROKY6DFzw161NaHclCSmKXxpyZrBTj++IOIM00Gil5pxF29BQijvTC5tOnAQCDvGTX0kF4Ets7ZAJHLW5WrZizPR+RDuqHsMV9ixeO/P7jrbf8g4LCfNtcVcU2ajeDJXlbmJvqjaQ+YyvlmK6jaJszDye++IhZWtoOAJJMymQYUtVMIHQmUAVF7OPmigokFc2EZ+hKlBn2oywH6O8LdOo6GYl72svLHp0Jg1/NMqs85qP9YcDvcHuL45Nv3mMU30koLHhWnr5pgyww/TaY9yVaDi1ZGdWw1GZw+SLkza5us1wWOcT0NqXY7NoCedmBOFQtDrUE5L1lPkxAkSVu20uvWxyXvQKQF5r2CkheOJI7Lb+8S3agqmgE5BjHeI1+D3mW4N4yH3mb/SuQ8b6cMGnUzCDM+dAJyWgPeEzC4C8W4dtnJ2NJ5FdMxPHnQfBMFwyebb81enB5jdtr+/SXMSoyiLm5iu6whKWHRGoxjpU+GWbTXUt6o9fA3kC1ZpZ/jxq3eLSFH3744aaOedQtjzo6OjoaqAlFjz4edvVR6ZPBrCiE+KdLgqog3J9Z7gKCApj7oppAWHk21Wz5UZFBCksiuRHZEg9nqzVJTLTDW2FpG3nrKL8PRSFNy/caOEVhgQ1L6oE52/OxdsRW9PxXoqL95tOn5dc7nyHArzVmRKi72tYGUezxiYpqQ23GJlqQtR5WFIT7Wz2mJXlbNNuI/foED7RoZeDRcm+2hrUHLzSfbkIztyzA8YIva7UuS2wrnobgmS44OuQYgme6IK7rbEwPsb5catkkzP/uLWwrnsasbZ6hK+EZuhJzT3pD6nRMFonlszE5YxHaH4ZVSyPPJo9JmLI8lb1EN1ZCTTjyfRCi2yo/nW+r1oa+Dy5fhAkPVQGoSdCyyWMSTnzxkSLekdxXbYGJKA1OtPjcajyhFrybqZoV2Bp9o8agb9QYAOpxjXFdZ9e4pQLsPOCnieQVuZttL3+cZkxcwpLdbPKYBL8N7ZlwpOlkMReXtQQdTxKIdG13z/JjfdN03npsy++AaFUURSNNE1/GCUZkbllwQ7NX69Qd3fKoo6OjowLF81UiQ+FempJ3GsPtSAIgtzOZ3cQbJxiRknca4DK3xg6cgsLdyvhFMeaE/qRjW8ZougKtPJuK4cFeMCWbNBP48JCbqi3uRKJw6DVwiiJjKlnPKIZOjKfjlyPhyQRotVibERGEaKP8ZH63SyzwTiw6FhezZX/z9cUhzxI0P3oKc46eAqrjRB2JvVZDRyDGIgLagkuMadXqzydYGbfEjl/ka5oxjdaorduqJatipU8GfDBQcS4ZJxhx+svTtVqXSOCrcvZkyhaaiVKM910JqWomxlVZXpbPqPnKA28osokuvuJdk/DkRD/WrrauhWrxhlOW11gerS2rZmm0dSwLno3Bpg0132uyeX5kljxnk8cktC2qwtzqVEGebeWMq6hjVlXCaEoDjNrur4BsJSShRzg6q6poQSVBSdeSZ+hKlOXEIp5L7iMKRV5kA0DMYU9oyX8S6p6hNdZA3jJoz7XHH/c16fnonuWHOUfGyXGQH9ZkV+2e5YcTWR8p1mkPFM8oJszhiTauRpppNAakmYAJRjnb6mpdQDZWdPGoo6OjI7B/20cwTlLGIgKyEBxeLfqGa2RJBcyzYALyzXH5rnIW1+bh44FAlhG0xnpHsWhrUO0GGim7Etbc4KuPmdxOxYQFdMOuZi2iGxFrlkmWqVXD4sRck2yAxiPGjfYaOAUzqm86UvJOY61RtkBGHOmFze98ht98fQHIbqsbpFxMKU3HflwfauPGmh7gBnACdM72fMywkCBJC3qAwN80BgQFKI6zmujn408JS+VWLJVpuR64lvSWH5hgYM25VAI4B15CEdRrgtrDlKYnIElvagpFg9NsLL7ijXGSerZQQLYgAbK1UaqaCZwsxZTlqegOPyASmLI8FbBTNJILKv9O+G1oj00ek3BsUgIObl2IzKiWkIbEaloeReti2wHPA3uV6wFqRKYoNMUEPWI2T+qX5p/4Qj4ubQc8j7KcWJShRiiplea4t8wHMUISGYLcOinZjnnKFXP6Ro1RFZD2ICbEsaUkSDyGAlHAeMoSywlHQN6WIbkS+83SQkyCAw/ZBRgAcKIfOx6AvI+3FU8DoDzOwTNdao5TNfwxkq2VLsBsP8U02bLpgu5ZfjjY7Widr3f6DRIfaNL3sKQeQNwBfFOyAmPvCULyf1VSfus0GnTxqKOjo6OBJWsTlZZQQy2hDpWxIJFWiQz22Zo4A5Q391RnknAt6Y01JflsvSRSAfU6fmI2TuMEIypRI27JNdWawFBDXB9fn1CMuxQFK1l45bIZo4G4A4ioCkT/OdOx7aXXMcjLC2dK5ILtJ3d/wJYTa2XWFr7cByDvV0vJkeoKucUWhPtzDxLMERPl+AQPRGH+AmZZdhUsu3ydTZ9g68dNrX+tjK22uEDbAq1HrPNZmK/c3/5+/nVeFyCX8UFzy23GNy1VFZfjm5YqrI9lObFAdV1GJhZrWUajRiDEKKYBsuCbe9IbcagW/lvzMSVLXaDyIsMzdCXanhsGoAKL/OX5c4u8WZ8AMPek3G7ciX5YgGNY0vYrlOXE4sQX5u6rliya7Tu8jFF8DOC5YYpl+RjHQ54liMdQhYDs//4ss5hHoymNeR5YY1RkEHAlE6VNe9nUXhyTVkkPm0Uk1OMq5ey6yvb08GFyhrwvg2e6IG82vctuqrxgPNZ7EoJ7ydbANenTarY3Uk5qQxZJUUzmza5xdyVhOWFAFQZ/Ibcry3keB7tNQzCCcLCbHDQu7z/LvxNacY4EP488bogZE4yAaTRMW0yo9DGi+fEHAOiWx8aKQZKk+iuEcxNDxULP/PXXTR0Uq6PTmDBc+DfQam6dC4pjNABn5TyF26qGaLQkXvh6fVrlK9TcB9Wm0R+2KdnEbuppGolUXqjxmTXV+hHrJGrVoiRxx2d/VUOtdAhNp+XU9oFoNY02rkbCs68AK7bLJTpWbEeClIsEQwi2zzGPR3S062pdUKvTKY6PxKM43R5xJiZLytyygNWJrE1f5IZMN4Ja4pl/KCAm9bEHvn/RBdo4wQjn33pi/xMf1fmatvW/2uA0m2VbJebmyhYhS7GGtUGtJINogSRRR1anY0feM+sDUIq6RaPLEOO5SOFymYj1zMWWXHeJGtfbIEUspywmP2Li5mC3o4qi82TdpLYkWk+0+JxlHVVDdOsc5OWFBCkXLtXlO+wRj95XMgHI4kesF2lp3SQerWVxFUUhvw6tZWkZtbjOQZXnzI4pAPT3nQfP0JUKK2L7Di+zz3RN0jE68cVHTPjxDx95V3QSmNTn0SHyQwLAPEaTtmnn1hWK8hu0bsJSaAONkX7H+XAPOp6JWA+jKa3O1/WNgH5LJkyfi2Yu6i6+ly5eRPLc6QgMDMQtt9yCiRMnYuLEidd5pPWPnjDnbwyfQU5H52bgTNVUh/Sz0d8VxglG9uLLLajFmtE8tfpWIpZustUSFdC0lWdTFUlyaH3Dg72QuWUBXEt6K0o+0Fh6DZyiqM3Ik5JXE0+WHuAGU7JJceMubjsvHI0TjJrxeGqZYVeeTVWU8fAJHsiS+fACgheuU0plH93c6tp5m0+fRsKzr+DXtf5m6wzwa606FkdiS/woQftsRkQQe/GQcOTHrZUciUfN3ZfiR8lV1VpmXS3U3K21zulKnwyz8xGA6jRr66QSNJlbFiiO//Ws20m1HUXhCNS4Eh4dcoy9agufxIQXfHyfNdZBWdStl3oCAL7tOlm1T94ySEhVMxUlLuIxFKVNe6Fv1BhFKQl+emnTXrjYtYCJQUosVJYTi7YDnkd/33msjMSEh6pwsNtRRfKgspxYljiHYgPFhDNqiXCqEl7GvWU+uNi1QI51tBHKjEpWR1E4WkrMY6n8h5a10d4kPmLc56DKcywZjmfoSnTP8mOvE198xLKfEvzxdi3pjf6+8zDuRD8m6IGah4tatXpJOFK/9B8gFcdCqprJXrRtlT4ZiDauNhOOtoh5clM1TjBWhzLIvyemZBPSTHK93ngMhWtJb1xo953V/hozP/zwA37++eebUjgCunj8W0KiUe1PUkdHB3izbyf22ZRsUliGVp5NZTWsSHzx8/mbYVEMWHKBFDOlisS2jGEWRl7k0Tv17dHHw+zPG1B3XRSFMJ9d1JRsUljNqN4hLyg/qjqhEIBi/UZeGMa2jGGixid4oEJMivtml/cIzNmej90usdj8zmcIWTgVWLEdg159UjFeEmQkwCxlR7VF2FvDkihLD3BjL35dagIoPcAN++IOAIDCXZX2AZ0L/PlAn2mfiedSQbh/dfmOQs1st7Yi1h/VajM82EtxTEvytiBwd1GtioH7BA90iDtsnTmptMjMzXVs92I21AkPVWHGxCXY7NoC7Tu8jM2uLWDwXYkE33NMNI69ZywA8yyrR4ccM8vaOeGhKuYeaS8kpkhE9vedh9KmvbCteBoe/yUQAJiApM+jIoMQ7F+BYP8KTG9TinEn+qHtuWEK0caLLrV4R3JbtUecJWI9MqNaKtxVRbF4yLMEHYuLFdO1EvmI2VnVMrVq1W60FcOvyuPHZ7slF+CD3Y5ixsQl1YmSUnHsyHvo7zsP/X3nAQAezF6ITR6TmJsr/8BxTXq+okYjH+NIx+zYkfcwjkvsBCit7SQSeetjtHE1q71r77XtWtIbxglGM/Epu63qNFb0mMe/IddTNIpPcrWe7OroNHQiC8/DCKDw6CkgVJ4W2zIGriVAQfhpxJb0ro5FlOeRQAKASK78Rm3r2IkunYQYo0f1tGx1I0zJOw1eElECF+MEoyLhy4yIIKBatM6YYNQsfM8LLN4KVumToRAHsS1j4NMSrFYhL4YWeEcCcZFIeFYpFgEAK7Zj+PNGmHYXsaQaw4O9FFZUNeSbmOtjzRIztc7Znm9X2Q615DWEmhswAARy7Wmf23K+aZ0nZEWg/cULc3pYIu5LyrKbmbwAxgn2FwNXuzG93hYKg29N/N7iK96Y3qafWRs+wU1toCQma9LzMSp0JZb+uBRj75G3/63fMxDvKd9om4zRWHyPN8pyYtHfFziRVWOtJOvk4PJFONjtKA4COJgOALIr5MWuY9Bt4EDkFxZiSE6OmRBSi+mj+L8NIQYYEkPQ1dkNPdslAlFjgHWpePyXQGy8SxaVzOWyGPi26zlsdm0BAOyd9h+5r1oqzcFjMkYDAKI15pPAXHxF3i8XuxbY3De1G/Tqk8id/K5inr31ILUQ+6BEQEBN2RY+cy0xuHwRUO0SnDe7pvbi4NmLkLy3xk34mMd7rI8ZkXJcIwlIioc8KCRV439PeKv29DY1bRKclEl/+Gs3zTQaaRZ+v8Trln471DKvhiX1QFpEEK5WXNXsT6fho1sedWyiNi6uasvowlGnsSFakdTi6siCJ1ryYlvGILJE/pm1dBNvLdMdH+PII34nSx/VluThLVAleVvYdzU3XLIsqm0rua7aEl/IC0n+ZoS3SpKg5PdzwrOvyDdcK7azV7csIza/8xnOlLzLxJkp2YQZEUGsJmSAX2szgR2/LBfGCUa73SntRU0cztmeryqyqW1k4XmFlZBqoInYWn8RALN424p4nvC12PjzK7LwPGZEBFk97nRe1Vakk2WbXterHpz430Tuk91OxGBJ26/wYPZC9qJyCrVhcPki5M2+WC0IZWvS2HvGYnzTUpiM0TAZo5mlLClbHtN6qSfijM5mwpGysfLQb8XIdVGK6Woummpi6feB8vkgxecy67hLtiwa147YiovVmUX7+85jrvQPZi/EiRafY0nbr3Cixec45FmCQ54lLK5OtCj2f38W+r8/y8wKaM2q55IdiMVXvBXJi0Q6FhcrtnVDiMFsPZvf+cyihdEWxHVsCDEosqvygjavyB15Re5mrsWAufWRPs/5cBzmfDhOkRmXtyS27/CyUjQK5M2+yJbr7zsPrzzwRs3MNt6s1AxQc+4nVNU8guJrMwLK61ms3QiAeeOItR4BMMtlQl4I9sUdQLRxNfrdu0R9x/7NSE5Oxj333IOWLVuiZcuWCAsLw1dffcXmS5KEhIQE+Pj4oHnz5nj44Yfx008/3cARy+ji8TqTm3/9Up87GooJsRXypdfRaWwcXnGY/RHO2Z7PBAnFAdqDbI0ZyD6LWCqfQFiy4Ihxir0GTmFJc0R40UhuhoDs9qklFEk08K6M/D6wtj94N0tyaeUhEclvA2NMhPwCkPVRa4RfXIkF3pGYEREE4wQjyt+UhWTPfyVi5LooVtuSXzd/E23NOlkXSMhGFp5n+4xEIi8safsSn5Or0lN2Wy1qm+2118ApLK7UHvjzqSDc32yetTF69PGwa31i/2KCoS5jutS6PzVs+R8zmtKYqygALP1xKfus5VquFQdJxd3FAu/T25QyN09AtqQlZc9Er61nEeO5CDGei9gN/lDDfkh/HmV9+m1oz6yevJClm/VKnwwMD/ZCdKH88CY9NBTpoaHo1mGA1Syi+YWFcDeEsO8nd3+Ai10L8PgvgbIFqjp2bVvxNLMHT2U5scxl1ZIL6raXXse2l17HzMQaKy8JvKTsmQrXVpdsWdB4X8lEsH8F2p4bVp1JVi4LwlsTqRasWokMErT0EveB1v4QRTcfKykKT16k0udErGcuvcEzXdi5wJdKsQYvLAE5jrF7lp9qqAP9hwTPdGEvz9CVGOTujrknvZllWLw3o+NFx26oYT+GGvbDtaQ3xt4zFouTF8NkjFaIRFEo8ucfG6vw8IzcX3Vkbr/9dsydOxcHDx7EwYMH0adPHwwcOJAJxLfffhvvvfcePvjgA/zwww9o164d/vnPf+LcuXM3dNw3NNtqUlISNm3ahLy8PDRv3hz3338/5s2bh6Agy+49ly5dwptvvok1a9bg+PHjuP322zFz5kzExspB21VVVUhKSsInn3yC4uJiBAUFYd68eYiMVFbqKi4uxrRp0/DVV1/hwoULCAwMxIoVK9CtWzerY/87ZFvlYyO1PuvoNCTOnj2LVrfdVufMjD3/8zyaujZj08l9j1wQZ4WOtdCLbWj96WtB5Tn4G3VRuPEZMsVC8x59PBQCjQQmX3dRjBkk0UjT6bu4fke6gqYHuOHC+D8QfnEldrvEYpCXFzAmAgnL5yMsqYfZGPixXM8EK9bgs62SeOQFuFgXlLKkWnMztSQGtUQolUmxxSJpi9ikmFrqW23M4vaIWVQJNfdYxYOMywBWo+4ZlM9MB1rWXNNq/19U6xGoEYxj7xmrEI9j7xmruFa/7TrZovvq4PJFLFupsvYemHBc0vYr5t7Jiy6pOJaVblCr53d0yDE8mL1QYf0RP8/Zno+cGecRmZODkNBQJEjaQZx0Y58z4zwqpFz2QIYXAGqJqdaO2ApAFnpU55HqNRJqsY4EL7oSsR5J2TNZP4c8S+B9JZOVS6GsrgCY26o17i3zYcKSsGZtFEWjWAfSlj5oexZf8cacD8dhwkNVLNkNnxxHtB7bw4yJSzQzrVKcI2XXTS2bhLwid1zsWoBErDe7BjZXVLCER4pSPVEt0WvrWfZddEWNNq5mDxXE6YT40CJy/zmEhYU1ymyrZ37JRcsWLdTbnDuHVneF1CnbqpeXF9555x3ExsbCx8cHkydPxrRpspv4pUuX0LZtW8ybNw/jxo2z0lP9cUPFY2RkJIYPH4777rsPV65cwcyZM5GTk4Off/4Zbm7aiQ8GDhyIEydOYNasWejYsSNOnjyJK1eu4P777wcATJs2DWvWrMGyZcsQHByM7du34+WXX8Z///tfdO3aFQBQVlaGrl27Ijw8HBMmTECbNm1w5MgR+Pv7o0OHDlbHXlvxmJufjxAr4pjakJXSWvv6RhSOtRWNjupHR0eL+hSPgPLm3954Lkeg5b7KiwJrtbj45cVkPlRvkCxOhUdPIbLwvGZJiboKNjEzqHGCEbu8R2C3S6wiVuiQZwkTjiTGbFkv9U8lIPhtr29E8ahqWVUZDy+4RHdma8LOmjikhwha566t+0h8MKFWcoXfDkvjVssOS9OME4wwLTLVi3gEzAWkwWk2szou/XEp20+jIoOYgKRyCfyNOmUbPfHFRwBq6vYFz3RRuBWuSc9HZvQC9EqrLqtSfVMuls4gd1XP0JVsPbxIHVy+CAuejcGD2QvRN2oMW068gY82rpZFgiERudXicfscNyYOh+RKKE7rydxTefi+ROsRLyBJOBJ8DUUiEetVxaNau8VXvFm5D7WYRr7UhWfoSrOEOWoJcdTEI2BZ/NkiHq31AdRYTrcVT0P3LD82nT9H+FIaamg9nCBXVhKhFCdJ0LmTGdUSMCQiyXQZcV3V773owcma9HzNpDhiIi1yRxXPH3oIQdPDknogMk7OhE6uyTe7eKzNdl29ehXr16/H008/jezsbLi4uKBDhw4wmUxMuwCyBvLw8MAnn3xSp+2pCzfUbTU9PR3/+te/cPfdd6NLly5YtWoVjh07hqysLIvLZGRk4Msvv8QjjzwCf39//OMf/2DCEQA+/fRTzJgxA4899hgCAgIwYcIEREREYP78+azNvHnzcMcdd2DVqlX4xz/+AX9/f/Tt29cm4VjfkFgMCQq64cKRR3T1oe+W3IBoHi8WtYSjXjpEpyFCsXJidtPrSaVPBivH4VrSGwFBAYoX7w5qSjZpuhDxLomA0o0VkOMfC8L9FXUseWukpWym9kA3IGrZS3e7xCL84soadzQvL4xcF2Vm8bDFfZgECO2D+nRb5SELNe1rreRC1JaH3yeiNdpaqRBrmVV9ggciJe+0WXkUoCaLsNq4xDHy69HKQFuYX6i6Hh7jBKPq8jStPq81rYeXZFnk9wV9p2n8caFSGtuKp8mJa7odxZr0fDPhON5pPAAw4TgqMghSsRz3mJQ9E4uveKPX1rPotfUsthVPw7biaVj641LF9UviYsGzMdjs2oIJx24dBii2gca5c+sK9Np6Ft2yjGj2Y7SiNuqQXAnpoaHImSE/EApL6sHcUnnXQrIe8QKh8Ogp9hJjK/n6iXyZEGsZYHmLK1m/PENrfgdOtPgcJ1p8jrknvdk8cTni3jIfhcgj4aiVNEhEbbql0h5q8xKxHi7ZgfAMXYkTX3zE6nMe7HaUiTyyDALawtEaMyYuYW6tZTmxZr8Z33adLJfl+PMo4rrORmrZJBicZiPBqQC5+fnIzc9HglMBcnKHsPONL/vEE7+sxmpNv2n74g6YnQM0ndh/+TziMZTFEYcl9cCWznVPTtSQOXv2rOJ16dIlzbY5OTlwd3dHs2bNMH78eKSmpqJz5844fvw4AKBt27aK9m3btmXzbhQ31PIo8ttvv6FTp07IyclBSEiIapvnn38eBQUF6N69Oz799FO4ublhwIABeOutt9C8eXMAwK233oq3334bY8bUPJF78sknsW/fPhQVFQEAOnfujIiICPz555/IyMiAr68vnn/+eTz33HOq67106ZLi4J89exZ33HGHXZZHMd7RkcLweriSWlqHLZZEURyKFkjdGqlTV+y1PGpd16Zl7fFSu8cBAK/nLDWzuBWE+6smmnEU4s057yZIWKvDx2PpJlzNVZJuWNVEj6WEKWLWVEuQEBItj3SzStaCkIVTkbB8PtJMoxW1EwHbxAVZyWobO6hG+Zvvok/pOrMxqJXo4C2Q4r7rNXAKVp5NVZTrsLXO4+LkxViTnq+IYbUX0b0ZAHN1DPBrbeYmbe8Y1VDbZovY6bZq6b/6s1YbML5pKYymNGSF7jdbdolBFiTWXMgtlStQs+ry2UmZddcYrUj8wq+ze5YfFjwbwwq6i6UV5p70xsWuBQrRmHXkC/Y58bkQ1d+MlWdTMTzYCwlDy5FfWHPdVVS7spIVSbRgWnr4QfBiQXTtJIsgXdO/+fpikLs7NldUmLmsErwFsu25YcgrcmcxoLz7qui6qiXwtOAFJY3TkmuqWlZWtThScuE90eJzhbvx4PJFaDvgeSTvdWLuy6I7MqBMiqSFGDNJ7q8THqrCtuJpCqv49Dal2OzaAidafI7xTUuRkzvEbBvVXE+JOdvzVS2M++IOmFkaCdpX5DXC93NP/D/w+JuVN63lUSQ+Ph4JCQmqy1y+fBnHjh1DeXk5Nm7ciOXLlyMjIwPl5eV44IEHUFJSAm/vmt+K5557Dn/88QfS09NV+7seNJiEOZIk4eWXX0avXr00hSMAFBYWIjMzE7m5uUhNTcXChQuxYcMGhU9xREQE3nvvPfz666+4du0aduzYgS1btqC0tFTRT3JyMjp16oTt27dj/PjxeOmll7B6tXoh1KSkJLRq1Yq97rjjDsdtvAr2Jta5nslpeIsjv341y6FaW769LhZ1biRa1/UzgZ4Aam70RCtMfQpHQBYCahYZyqRKZS8Kwv01nxIDtt30kYUIqBGtVMNSLb7JElrlRNTgEwkRvHB86/dH8JuvL8689U+EJfVQbCNv1eOxlNhInCdaUe1JhtSndB3mbM/HLu8RZoJRTGCkNQZA3l+RJU1YhlQS1HydRzEpBrUlsfHa5NcA1FiR1ayPaomKgBoRyC9Dx51qilISJn5bqH1takhmbllgu3CsBZb+qy0JR1vh3cL5d3qJWSgBsBt5akvlKABlJt3+vvNw7Mh7TASMO9EP4070Y4lO6EViKevIF+zFWwvJnVz0PohtGYOUvNOI3qb8beFv/sOSepjV5LOnzAyPmjCjZDabKyrM4iKTsmeyFy8cCTEb6/impYqsoeI6bYG3GvKu8gAQsnAqm28p0RCfOIcy5VLM5rgT/RQib5PHJCTvdQIAllFVDT4pkhZiIh1KxJO81wnfdp2MNen52FY8DcH+FZh70ht3f2XE0h+XwmhKw9OXn8bTl59m4yb3Wi1mRASZJbshsbgv7oCZcBy5LgrFaT3Z92jjakQbV7N2fC3lm5E//vgDZ86cYa+4uDjNts7OzujYsSO6d++OpKQkdOnSBYsWLUK7du0AwMzKePLkSTNr5PWmwVgeJ06ciG3btiEzMxO33367ZrtHH30U3377LY4fPy7HMQDYtGkThgwZgvPnz6N58+Y4deoUnnvuOaSlpcFgMKBDhw545JFHsGrVKlRWVgKQD1b37t3x3//+l/X90ksv4YcffsC+ffvM1nu9LY982xvtuqpWqxFQjxexVQyqtdXFpE5dcZTlkY95pJvu+GW5SDONvq6xjrYmUQHMrSFi1kpbENdFViiKNbS1H0v986JYtFQWhPvjp34mdhP31u+PsHmUuIdiMC2NhYROSt5pJlS0EtiIy4iiVGt6/DI5oQjFiIqZXrXqO6rFq1LcoJolUA210i58XJ2YUZc/ploxitagfa5mdaeHBpSEiY6x2nGwGwdZHvmYR7X/GbI6AjCLU+T3t1pyGrXv/HQeskLySUioZAfFTBKbPCYxC9Rm1xaI8VykEFBivJn4nTL60jnFl05IyAvBu3cBkTk5KE7ricgZ5xEv5Sr6EEUlD/0mBPi1VsQ9iiIrEetxOfEctr30OgA5kQ4lxKHkLWy81clyANktlReOIiQ8RUFpzfKoFbtI80g82ptgB5CFY16ROxs7xWeOO9FPIQT5shuOgheowTNdmMXx8V8CzeJSedJMozHUsB/biqdZtKin5J1W9JNmGm32kEHsV81aSWzeOxKHex++aS2Pddmuvn37srA6Hx8fTJkyBa+9Jj8kvHz5Mtq0aXPDE+Y0CMvjiy++iC+++AK7d++2KBwBwNvbG76+vkw4AsBdd90FSZLw559/AgBat26NzZs34/z58zh69Cjy8vLg7u6OO++8U9FP586dFX3fddddOHZM3e+8WbNmrA4LveyFj2G0JhxvtGDUQnQz5bFH+Km11bJe6ujUF9au69dzliI9wA3xy3KR+FzIdY93pHILlv7URcgqx5eMsBXR2pmSd5ole6mrcFTrX0208E//d3mPQEreabP9rjYWsshRqZLyXeWsxiZB2yH2R3UteXixCchisfzNd5mFcufWFdh4VwHil+WiTfgLiDauRvyyXKQHuLFlZ0QEsSfuYr9Ebax3loTjqMggvDb5Nc0yHWoPIsSSHCK8aOeFI8XiBgQFwLWkt1nftO/sEY72lsIR0bqmF1yRn9RT3JUt0H7m97dYosAa4rW7rXga+vvOg1Qs39zTsaMYvuCZLgqLElkb84rcmVAKS+qBbh0GaN6YA/LNO8WokccCjT3BEIKE4FxM/QUIaRoK3+j9SOfiIRPyQpCQV+MBplZegc7p4cFebD4vyPh4RxKOQE3W1RjPRUw4JmI9E46eoSuZOyrFSQ6qVJYlONHic2ahtFQSxBIhC6cqvqsJx998fdmLLIpq8Im9gv0rUJYTq4jP3OzaQlGaI3imi81lOiwhWjSpNAedr13TPS0KR0A+juulnoqMxwBYWQ6C4uC7dRiAhGdfwZzt+arnRVhSD1XrNU0PS+qBIbkS/r3zV/s3uKHQuh3Qxlv91Vq2Ft53333o3LkzPvzwQ4tdzZgxA99++y2KioqQk5ODmTNnYs+ePRg5ciQMBgMmT56MOXPmIDU1Fbm5ufjXv/4FV1dXjBgx4npsqSY31PIoSRJefPFFpKamYs+ePejUyboZe+nSpZg8eTJOnjwJd3f5h2XLli0YPHgwKioqWNwjT1VVFe666y4MGzYMc+bMAQCMGDECf/zxB7799lvWbsqUKThw4IDCGqlFfZfqsMXyeD1Fpuiiyk+ri7VQtzbqOBJHZltdfeVLReIYSkd+I7KsAurxaTwUzyRm97RmpQPMs6by61GLT6uvshhkrdsXdwBTStOxwDsSaabRCjdQyvgn1nPUStzC9+1a0ltVUPGlSOg4RxtXM8sixWLu3LoCK8+movDoKVZOBABa+UxlJRBo3CPXRaHw6ClEHKnJBkmxm4AsZPlssADM4hfVLIyEWr1BPgMoP02rnIal2FYisvC8WWkNWpYvDQPArDSH1v62CweW6jD+9jVMxmhVrxe1wvP8/uSPg2hxtAUxC/KoyCCMb1qqKIEgrqe/7zxc7FqAhKpAJDjVWOgo1pGPcyTo3FWzDO3cuoKN49voBXIN1anbkXslh1nWeNG4PdVN1eoosi/ugKbFj3fnpAdDlrKxxnguYjGN5PrJI7qy8llZaT2i1TBk4VTkTn7X4jbwtSHF5dXqRtpCXpE7preRw6WWtP0KebMvKuZbsz7aYqEULY6ULVU89kNyJYQEBSnOI0KMdeSvcT7D6pzt+YiYcR5nSt7FAu9Is34I/nyhBxx0fpAr6/mLUuONebRw32/vPciYMWOwc+dOlJaWolWrVrjnnnswbdo0/POf/wQg66TExEQsWbIEZWVl6NGjBz788EOL4X3XgxtqeZw4cSLWrFmDdevWoUWLFjh+/DiOHz+OCxcusDZxcXEYPbrmxB4xYgRuvfVWPPPMM/j555+xd+9evPrqq4iNjWXC8cCBA9i0aRMKCwvx7bffIjIyEteuXWNmX0AWivv378ecOXPw22+/Yd26dVi6dKnd9VjqC95KSRmxeBqydVINSxZFW4o26+hcb8gNkV43wvII1AiK+GW5FrNXFh49xT7P2Z6vuOFXi+/jEVOw88S2jDGL+ayv/ZCSdxr74g7g3jIf7HaJxch1UWxd8ctyzTLe8llbKY6xINwfBeH+iF+Wi6TnL7O+yaWSoDbpAW4I8GuNfXEHsMt7hOqNckreaSQ8+woqfTIQ2zIGF8b/gZjXvBCVVYxWPrIFI8EQgoRnX0Ern6kIS+qBwqOn0PNfiTjz1j+RsHw+EpbPZxaKlLzTqu7I4ndriVv4dmIGUH7aa5NfMxOb5JKsJhx5azUdb/6YkwAhy2NBuD8TwnSOlu8qt1iT1BqOyuxLdDn0FaKNqzW9XrSo9MlgWSh5t08xxlFcRu2dPlf6ZMjHxpCIbyPmITOqpeqDgvWSfKOdm58Pd0MI3A0hGJIrIb+wENGFhRi5LgpTStPRrcMAhXhTS3ySZhqtGE+3LKN8XgbnKlwyt6e6YXuqvO8jYs6rlmII8GuteKlBcYAzE2vcgXnLXSLW494yH6SZRjPhfqLF5yxRDlliRURX1rbnhiHYv0JhGRTFnpZwDFk4FSELp1oUh6KF0h48Q1di7klvTFmeyuouth3wvCLLqiMInunCsvw+krXATDjeW+aD0NBQAEBCVaCZ0KffAP6c7hs1Bil5pxXCcV/cAcw1XWYPx0TIsgjI5w7v/lyc1hPFaT0V03WAFStWoKioCJcuXcLJkyfxzTffMOEIAAaDAQkJCSgtLcXFixeRkZFxw4UjADS9kStPTk4GADz88MOK6atWrcK//vUvAEBpaanCldTd3R07duzAiy++iO7du+PWW2/FsGHDMGvWLNbm4sWLeP3111FYWAh3d3c89thj+PTTT+Hh4cHa3HfffUhNTUVcXBzefPNN3HnnnVi4cCFGjhxZb9tbW0SRyAvJ6ykitbKi0ndLlkhbrIu6FVKnoXCh3Xc4nHyYfSeBAQCxNvahVm+xNpCg2Ll1BYuzE8ew8mwqyO7GrI4kCKvjknqFjmVWRDXxx08jK2elT4Zc3uIsMFxFRDgKqu/Yp3QdogEMevVJJCyfj7eCvYBqq+e9ZT4K4SqKWFOyCQHVdSoBoABRaBP+AihNQWF+IQrza8RM4O4iYHeI7NpXfcOz/+N4WUSWpmMB5Bp2BZBvks689U/sArDAGIm3THIs5sqzqThT8q4sID+ege0lixABIGLGeSRIuehZmo7dLrG4twzo//4sVI71wVvV66bkOHz5DXIBVSuFIVqdbRWWYltr1sYAv9ZIyTuNQlS7Bwv7GKDvNdNFy7RaSRE1i7FWPClge5yurRy+tx8OVZknBZmbC0yvvhdTdwdWxjtW+mRg59aa2o9irKNaQh36LP4mJJkuI8GpAEnZM7GmOhsr9QHIxyinWwiKq11KpwLAwqn4PSAACO8EIB8nd3+ArCNbQQXOeOHAWx9FCxIA7OP0fCLWo2DdJ4Bfa3QyFgEAE5EEWSH5B1XWmB1v/ovJu5qajNHAlZp5JA5F62Jp016a9SJrQ8jCqdj8zmdm02WrqC8Gvfokmzbo1SdV21qDMsKeqDYQ9/edB8/QlRgVGoS8rIsYXL6I1Xukeo1kaRQ/89AyANB2wPNYkz6NWakf948FhIywhzxL0CttCjZXyJbcQ0L8Jj0s4h+OADWuqnO25yNyxnkkRQZiW/E09O06BmrQ+RERc14+d+LM54nTdRonDSZhTmOjvt1WHY29wkwUgvx3XixaEo1q1kS1eEk1IaqjUxsc5baK0QCc5Wm8BYT+ZOvTddWS6FSbR+6q4k051TSMbRmDlWdTWayaGNvSECh/813sdonF3V/Jd7NrR2yVC0tzAoLit3ZuXWHVFVLMgGqphAhfHgSQ3U5dl5YobnpHrovC2hFbmdsqZSIFwNxb147Yiimlcur0Vm/sUFga+TjOQ54lmu7PvPsnALPkQrWlJG8LPPp4sO+UwCZ+Wa5qIpS6nh9iEiCC3JJ5rIpEB7mtav1XG5xmIyExEd90q0kqY+/1LVoNxe9Uj3Hn1hVsHQTvIkhQ8XWqwciX0mAlVKIXwJhVc54PNexnrptayUzIIskXd+fLc5C7KyCfI52MRUgIrlm3GqLLqphhFVCe/5T0JxHrEY+hrBYiYG5VBMBKSxC0rDURKbqeqqFmcRQzrtYWitec3qZUM1nOjIlLFMmZeLdWXiDSd5E16fns3CJ2bl2BZP9YswQ/lhLYhCX1wKzQsczdVe1Yzwodyz6T6z5//gCyO3V0YaGinqhIRMx5JATnNu5SHQ50W22sNIiEOTr1j62WP2vttQShVntb13s96lTq6NiLmutcfcc8mpJNmkJHbd2Ufl/sg6wDK8+mAqhJbuJa0psllrlRiC61ycdfYnFQlOCh578SWRvKdJv4XIhFERi/LNesvp1xglFRcoJei5MXY3HyYnaTTW5Y+z+OVwjHKaXpbEx9o8ZgeLAXu8masz0faabRitjYBd6R+LVPdemF92WPGHLdo20kcSYmy+HLdViL4bQHsl6LZUTUXM9I3NU1cQ2tk7dCUsIieghjTTg62nVVi4T4eEUpDR6yNtJ8teRVonBUg9xGtVxc+XIfotspuQPuizuAwqOn5FI9aVOY+ywgJ+LZuXUFdm5dwUSgITGELQ+AnbOALPq6dRjABCovHAH5OvzV5K9wRRSFhyX3Q0sCjCyP95b5IK7rbIxvWqoQiDxapTpOtPhcs/+64AjhSGwrnsaS5hB8DOOcD8dhVGSQmUik2MWD3Y7iYLej7Dvvil6WE4tKnwx2zOi9b9QY/ObriyG5EhKefYX1y5fJILFPxzXArzVWnk1VCMcZEUGsBAddr5QVOLZlDPPEEc+BBCkX++IOICJGeW1TO9GardM40S2PtaSxWR5rgy3WRpovLqdW2oNvL2ZtvVGi0ZZ6mo0ptvTvjqMtj3wilZS80/Ve3xGosT7ZKu5IHAJy3CPdkPM3/2ISHVug9fMJc8ii5ChhI1r9yILHW04oAQ2VHVBbdufWFawgNlkxxmdaTmPevtor+VgXYHGvJYp5w09VICqrWNVixI+Xt9pkdTMBYyLQ7flT7Eb8jTu/QfjFlVjgHYmEZ1/B3IlpuNi1QJE0BzC3NPKWO3vLeNDx4kW0KLjJTRiQa1YC1ku7iNZcS4jjpPXbkrzJjHq0PIqJctTKcWRGycv02npWMd0eKn0yMCDNhC+izQU5JWJSKwEyZ3s+Li9vi/xC+bwIneNmVpoDMK/DKLqu8usBZBEw3ejMkjwlGELw61p/xUMQWj8giws1V1VejKjVdCQhRiU5RGFGZTuoVqOWNTGvyN0seU7MYU/VtqldyjDIS96O3JwcNl3LTVWEt1jWNlEOoWV9FCH3VUIsFQPI1zU9xNq5dYWZxZHgExKJx0UNtXIvBJVjAcAsk4B8jvLjScgL0RSF++IOsN91oCbZ03+z12Fuq56NykJHvyVri4rgqjHmyrNnMdLfH4GBgbjlllswceLEBpNLxZHo4rGW/B3EI2DZvVQNS7GQtravT0Sx+Juvr03uLbqAbBw4UjwaJ9XUqANwXYQjUONWaqt4FN1QLSW0sZbsRms+H5tmyQW0NsQvy2XunpTBL800msVAUqwW3fzylh1eILY/LAtB8TM/H5Cn02ctjnUBelW8jG//1xwGv5rfLxKZ5C7GW2qijasxpTSdibGUvNP4qZ8Jg7y8sL36pv/eMh+EX1yJqKxiJvL4TLFq2VfJgidmTBVdI9WOiaWYQlsR40xt7Y9iZuuccbWexOPcXDmhCWWn5AUh/51PDqSWadZWxPOFUOuHkhnx7qTuhhAEBQSwDKv8AxbRHZavySeKA/GcDUvqoRCfasmzyDUbAHNXtIQoEklEAUCwfwXmf/cWE+UEy7ZaLQrVrmFAFoeEKCBpHolHns2nT5tN41G7D+DFY23iHvlsq5bEIzFjYs3vC1BzjdP5kB1ZhukhwIPbp6Fv1BgkVMfw5ubnWxSJagKRxSUC8I3ej5CmoUgIVtb5NCSG4Itoo+JcFMn6qDUSls9XdXWlfkaui0JsyxiF4G3Mbqu2iMfGtF21QRePteTvIh6tYa+rq7XEOvUBn1TIFkujSEhQEHLz85nQ5AXnb76+GOTubrYMrZPWp4vP60N9xDyKbpD1AR+TCFgvy8Evp5WsRKvOH9+OxIgjxaA98AXnt3bzxcndHzDLIwCFYCShaE348fA3n/aKx8W9lmDOh+rWS+p3ca8lWPrjUsUNN93Qk6VUWi63JSsPWZnKd5WjML/QTDzyYhGAmXjUKt8hHkMS+ZYeCIjTRWs1oLRC2mo5LAiXrVi86LLFYs1bttl+cWCpDqn5m2x6glOBIvZUTUASanGJtvwmPJK1QNXaaCmmGag5h/g4RFqGt/gQdL3wbUSRR20GpJmQ8Gf18TdGo7y0BXtoQ0JSjI3j3RvFftWsjiJiiQ5yW00tm4SYw56a1+OxLkqxCFi2OBK8eNx8+jQGeXkpxKP4XbHcmAjkTn4Xv/n6qsY/2hMTSaL5xBcfmSXEUYMskGK5lgnt3mcZTncNm64oTVIXtAQfTZ9VnWRteLAXeyAhxmtTUrW1I7ayc4EXoKJVnTxlRjd9DPuf+KhRiSxdPNagi8daootH+yyFN8I1lRdwvJCrb3ihaEu9Th3H4SjxaFrWHsYDcpZnKqBen5ZH+oMW3Qy1BKToPkdCQ61moNYNOwmV+haOouCgpCmRhedR/qZ6vTC6Qcl0fw+AfYJRxBaxWJe+F/dagtKmvRSCl3fTokQVQI17oVpNTRJNWsdcTTTyy6iJMzXXYx7eLZvGxdfSJMuUKBjpmPKWSEu1QkWsnXN8nGRhTqFDxGOXjC44FPYDAPl3OTRkA6uxSNfT2HvGYumPSwGYC0ZeCNsiIknkkdXFlmXIMsOLQbUYSwBmCXHomlGr8ce3UeuD3A554SDWdwzwa2214LwlURXjKWcMXXzFG+Mzx9l0TfIPf6yJSH5+//dnwTlB/u24nPAyAMAp4T1VAckLSRKdfDtHJNAZVHkOADBleaqqeKRsqmJSHHJfHd+0FPEYKtedHfE0krJnMjdevmamWlkVAEh49hUkLJ8PAAqBR0TEnEfuFdnFd0OIgcVEPn35aQDKhxla1wF56BQePaWwZKtdL5U+GbhacRWHex9uVCJLF4816OKxltxs4tEWC6Ity98IyyKxuaICg9zdmZUQgMIqaI+ItNWdVa2tlngU5+k4HkeLRyrRUd8uq3RzTzfctsQ98uU0gJqi87w10REupo6o60gWRtGyQjc1LtmBWC/1NLM01pfoczQkIkl4ANCMjUzJO43Co6cwK3SsmVsqUFOz0hbLlnhsC7hSJeK5JCJmPrU3FjE9wI3F0dI5wltRaR18fU2xjqXWdihwkOWxS0YXDHpoLXP165bTk7VxLemtEOdqN7tan7XcTl1LeqNv1BiMXBeliCWk/aWVbZdEOy/0aF28+7CaQDQkhkCKly3cI9dFYeNdBQoLFW99lOJzFQ88ACDREILLCS+jqNMm+P86GM4J72Fx1WK2fFmOnEhKjD+0FUtWRhESjqldyhBz2BNJraoQZ3QGdsu3rLwngSgct730unK9Xl64nPCymYAU0bJI1pa8Inec+OIjtB3wPADZTZovyyFCVkcx3vGVB95gWWp5Sx5QU39RSzjykHCkhwW+0fsV84vTeuLy8ra4c8sW9p2EYEreabOYWEv1ga3xaMePbuqYx8a0XbVBF4+1pLGKR0sWQDEpTmOBahfxDHJ3Z9NJQNpjebRHPIrwLrJiwH3H4mJdQNYjjhaPVPKivsQjfxNA8YRiDKOWgORdEvmbUfGGlixSjhCBIiRWRRdLNcSYPdqG+GW5LCvg5nc+k+Oh3N9rNMKRoJvdXhUvM+vPvWU+aL74DuyLO4AEQwgSpFwWO6Z1TomJctSgY68WT6jljqp27MUyNGquqmJ7e9xYA4IC4NHHA+W7ys22hXfVvp7ikVwmyepIqFlTAHWXVX66CN9uQJoJIzr5m4lHPh6Uh4+L5OOexXhLgmIhqZQH7+Y69p6xZu6P26prSdJnPiGUmPUTABb2nqQQaZMzFmHBszHY7NpCddstwccyWkOMdbQlzlFNNKpBGZC3vfS65jJqVklLqCX0obHS9pJYPNjtqFlGXvE4ATWxocQrD7yBQe7uSHBSd1flrcdEWFIP+EbvR3FaT/hG71dYFWkafdYSnnQ+8olzgJprVnTX5x9IqMVIkti9dLai0YrH6Wf2o1lL83AlAGy79IQ5Oqo0VvFoDw2pfIZW7CAvCNWE2o2EH4/aWHQR6XgcJR57/ud5NHVtZrU9Cb3axEWKNf0AWXzZKh75dtbiI9WKzgO1tyqqrU8rFo8XQZZEAiXO6VO6DqazWY1OPBJkhRw/YTyME4zI+qg1uj1/imW8pfg/LWGoNk/t+FlKXmNJ1PEWx8jC86rlMCwtq7VOrfZaiWh4rod47Pmf5xEx7HlFchktSyK5kfOZUK25q/IZUoGafUhCUby51vq96O87D3FdZ8NoStNcDz8WsgjR7xDVe0zEevTaehajIoOw9MelZv3Q9UpiBajJCqpmFQPkgvTT25TWWjzaa3XkIZFoyV2Vrava/TTVDisiLxgBaMZIWnNjpflkdTzY7Si6Z/lhwbMxbN8e7HZUsUx/33l4/JdA5hbskh2IYP8KhUtqmmk0PnH+xCymkCchT46zpsQ3AJhopPnkngpAISotQQ8lRCs6YO7SCqiXsxEt5Te7eGxM21UbdPFYS25G8ahlcWwoIlJNQIqJbERulIC0lOJbtz7WH/UlHi1lV6QbXz75iyUocx4g32CKGTbFJ7rWRClvhaLvWmKSj4sjqyHv9qoFLzJ511hLY7KXy7fL7nKxLWMapeWRh7K10r7d5T0CC7wjkWYarereKaKWOEdsb4+QI8Fob7kWa/Ai1dasrOIDC6sPMBxoeTz80CAYTWlmbqpqfBu9AAlSrpnY1IK/rvn9zLuWa2VHJVxLejOroFZZEK0YSLEfMX6S4OM6TcZoLL7izdxRKfssjYEXlmS1pJI4VF4D0C6xQZxo8bmZGzqfGdkSvPsqwQtINfEI1Liq8pCVUc2i6GiXVb4OJZUQonfxvHskawF6OrtZdTtVg49dpOXFRDiiWytZH62JRn4dYjwsf17Rb4saWvG3jVFk6eKxBl081pKbUTzailrdRq12fC1Ha+2tYc3ttCGJRx5LLrC6iHQsjhKPXTK6oMXZPjYvV5vyGpQ0BlBmSAWUArI2sW983UB+THwsJV9GwZoQqQ+XVz4+j76vHbEV3lcyNbOcNhZ46yMgb1ub8Bfg8e+pZsJRLMvBH0tLIpN3WSZsdVcV4a2P1mIf+WQ5WuIwJe+04tjW6fxxkHikGz7vK5kAgKU/LjVz7eShjKUAmMWYRy07K90oGxJDkPCnPJ2uYS3ro1opEHE9AJj7vJYVtG/UGHaTb0gMwYhO/lj3axEAKDK+8jfzCVWB2P6uJxMVlNyJhAAfEzsjIoi5YvMWMUCZPVW0zMUc9kRqlzJMWq20GFoTj2qiMa/IHXFnnNh3NeFYVxEoJtBR68vWJDoZ78v7mlxVy3JimQin48Vjj3gUrY8kCIGapDfFaTVxveSiSiU5iIS8ELMSHdSfKC558VhXGqPI0sVjDbp4rCV/Z/GoxfWwUF6vjKmOwlrspC4eHYsjS3X0Glojuiy5GQLKbJa2WiApZXlsyxgza6G97rBqwoNHzOgJmAsTKq8A1K0uoBpacXjRxtWspAVt66jIoEYvHoEa62PmlgVID3BTpK4H1JMiiRlTrSU8siTKbC2rQW3tsUqS2KT+aXlebPDzLS0v9mWGA0t1JB15U2HVI7SusddzahIgUayXFhTHRla89VJPs7hFvoyLVtyjJXgLppb1kofiyyiRDtXtA2qS5gAws0rZapFSQ0tUieLRGmplOgDBbTXcAP4G1lI2VbH2o5bl0VbxaUlAktWRzgWy4pLVkdyixZIogJxEbHuHTM0kOCT2AKVgFCEByR/LIbkSQpqGsu9ijKRae/67taQ8auMRzyXqszGKLF081qCLx1rSEMVjQ0l0I1ocHTkmR4tHLffS62mx1AWk43CkeAwI1XbP5OMVfYIHmpVCsNUCKfbJ32jaGs9I8O6NahYrLSsWiUZTsknx2VHYI0zK33wXUVnFjd5tlZgxUbY+Sr1mIOHpESxmiE90Q2U2+HMtc8sC1cylQO2ti3VBzTLJl1zh21iySoqIfaix0ce1TsXEefGIls1YLKEWvJijchvdOgyA87MnMCt0rF2CT7ymefEoJrlSG4Mlq6RYJoGspGKJDS3U2vHZN7VEA938q1kgCTVRZWvMI29xVM2cWi0ek1pVIdi/QlMc8lQJ7qtO1WU8CEe6qxInWnyONen56J7lh+CZLmZC8mLXAhZLSGiVSRG/88eJT3zDf+fLcUTEyNcXX45lX9wBdiy1rIzWyn7YkuFVi8YosnTxWIMuHmtJYxSPDUVcOgJH1G60FJcI1L+A/M3Xl5UW0QWkY6jPhDnWMorWxvoo9k99a7nBWrpx5ZOqAOYxctbi7Agx9XpdhAlZ3Mi6aG29WR+1RsLy+fC+ktmoSnVocawLgLUGGCcYWdwjIJdR4Euz8KjVawTMM6PWl2Dkaz/SOmxdt1UrYjX2CF5Hisdeey+ZCTJ614qBpNhHAGYF0rVQK+0BmGek5KfzWSp5canmHqvl3ipafrVEiJiRk59P8IJCy8KlZqG05M5pi/VRzV0VqKnBaIB5IhxeOG4+fZqJTjXxKWZb5ct3iFbHvCJZIMQZne1KvkOQ2+omj0mY8FCV2Xy+jIoIf5x4Ebg9teZaFEttqKHmuioKTgBmiXhEQUkuzWpisTYisjGKLPotGTNmDJydnVXbXL58GStWrLjps602udED0Lm+iPGKBqfZ7HU911tXSGzVRnT95utr1eJYH8JRbZ2NzQ3378Lxgi/NpvkED7QovmJbxsA4wQjjBKNqQXZrWHKLrfTJUNyE0ueSvC1sHo2tML9QtVi8T/BARWZXERq7KdmkeNWFGRFBNgtHurGeUpqONen5WNxrSZ3W3VDoNXAKoo2rmXDcuXUFIkts++sNCApgYp4XZI4QjmpZVmk95IKaHuCmEISRhedtjqGkcVMf9LJHOBaE++POO26zcYssMx2D2HXDX0tj7xlrVuORn//rWn/2mc5RsdSCiGtJbybwXEt6K6xLvHCMNq5WLWlA+44eImVuWaAYF30X1zkrdCz2xR3AvrgDCPBrDQCIONLLTISEJfVgLxGaZovrqiW3SZEYz0WqWVQt0f/9WRjk5cVE3ebTpxUijuYBsmisSniZiUMAqmU4aBrfjuCFI2VsDfavqJVwPNHic7Qd8DyCZ7pgcPkiTG9TyvrzDF3JLI9q5SwAZfIbOqYJwbnwjd7PXgQdqw0hBuaWuiHEoBCJ++IOoDitJ2tLn+kFaFueAflc1RKI9grHRKxHaFk7u5ZpbPzwww/4+eefb0rhCOji8aaGF4VkdRQtjzStvi2SDcXiac3aWJf6jvauvyEk89FRp13gY6rTrbmQupb0xpzt+bVyWwXM3ddIHAJgYo6/Afbo4wFA/mMXs6CSGAwICkDmlgXI3LLAquXRkdYse0QC3VwnLJ+P3S6xNmWUbAyIltMppelWy3TwFOYXIiXvtKqA1MI4wchEGi/gaDq1sQQdtxkRQUw0iusQEcUon1GYz8QoWsfU+qHX8GAvfD7sc4vtbWVPujLrI1n11qTnY016vkKcRRtXs8/kQeCSHQiX7ECrWVrVIIslLxRMxuiaz9X7m4QkXQ9j7xmLXgOnmO3vXgOnKKyPfFZUl+xAAGBlHwzLe2JKaToTk1rwVkpb3F61OORZounOmtqlDMe6qJfi4ElqJVvptr30usIqOMjLSyH6SFDy1kbnhPfg3Hs+Yg57mpX1IKFJApLvn59P8LUbLbnFiuQVuaMsJxYnvvgIZTmxONjtKJa0/QqeoSvlzLNNS+GSHcgeHliChFmCIQRhST0Ugo8EIE0H5DIdvPDjLY/UF4lRHnseBNQFSq6k07hpeqMHoOM4bM16aquQawxurvZa7tQEGwm6+hZzuli8ueALegPyTXGAX2vAr7XdiTAA2e11uI+XLC4wEAFB1YXVS5Sigs+wSTedrgNXwKOPBzKTF5i18+jjAdh4mQQEBSDd5xpiW8Zouk+qLaNWRkJ0eVQTPnwimYRnX2HTDy1fDVRnxWzsjIoMwtJqQWBc+xEK8wvh0SdDNdYRMHc3Ljx6CibOkm1NQJqSTYgEYES1UKuOOSX4Oo/p3DyxfMYM7jPfNyv7UT3dmhhUa8Mn81GzgAb4tWYJRaZVODZ5EolG/gGFbEmURWFmVEuYsB4wRiPeOBRhST0wC3I5hRGd/BFbbJ87OsU6pkHp8tqr5CzSfKrPi+p9ScLRkBgCRBuZqDUZoxGPoUjEehhNaciMaol4DGV9rTf1RHRUTRIdEpAAgK5ASmt3YNh0NqnP53MBQJFNFqbRCENNVlWX7ECLbpWAMimLpRhIoKacB6vXCNtiIMWYRqeE94Bql1MeZmXcrRRBeUXueOWL6UwoinUceTdWXkheTngZ26wPT5PpbUoxBXL5k/6YB2AlxjeVrY/xGGp134qQ63S3DgNw55Yt2BBiUIhBRdvquEQ192StRDwkOK25oI5cF8UeTNgLn5W3zwXtc0Wn4aPHPNYSR8Y81kWkiRlOxb7qKgBp+YYqJBuL26do0VSzcOpxj3WnPmIe+0aNwZTSdERlqYt/sTg4f6Nuj4CkzI58cXHAvG4jX1pDbR1idk57LIBq2V35zIC2xLIB5mJBy3KlKBtQLR7PvPVP9Cldhzfu/MauwuINFcq62jdqDHPhpSyqasdY6/jxok+MO+T3u5oYdBRqQs8R8ZdinGVBuD8TNucvSg6JeeyS0QW3uN8CoDquEOuRlD2TlU4AatxRx0mxbFqCk/Im31Lco1oZDT7OkeKYxZhmPrsyXwuS+qOajQlVgWbj4cclWi4TsR6Lr3gDgKa1lGo60jrUsNUq9Zuvr81lLMRrW7RGasU8qok+gItP5Ep58P2IIpSS6IhurNsEYbrtpdfZsjFeXsBuSbO2pGK8lecwZbmcUbvtgOfhGSqLR170W4OEHJ+kRkQs0SGSYAhBgmReiqMu2PJgQY1ErIdUHAu/De1x7eJZ/Dm91U0b89iYtqs26G6rDYC6iDJrLqd1FXy0fEMUjg0dsmiqCUf+HdCFY0Pj4cjR6Bs1BivPpiIsqQdO7v5As614IxltXI052/M1LTKWSi8AsrAQ3V7F2n90s25KNmHl2VRW9gOocVe1p4g8kZJ3mq2PboALj55SLQItutLx8ZLkqkiiMX5ZrtlyKXmnEZbUAyPXRWHkuihs75CJhOXzscA7ko3jZkErRq4kbwtK8rawWFTRbRWA4ljT/hSPKe9mqjbfEYhJc+j4qmV/VftsCTHOsvDoKbaON/t2csj4+927xMxNkBeOQI3AWmJYyR7MJlQFsveEKtnVkL/eeOi3gM5f+g0gqw/tD9eS3jBOMCpEpriv1OIzE5wKsHPrCotupaIbJFm7eGvrqMggfNt1Mr7tOhnT25Sie5YfziR+g3vLfHBvmQ+8r2Qq3At5V0k+Ro4+8/9l1oRjDOf+SYKRT5JDLx7eZZRcV7e99Dq2vfQ68orcEXPYE3FnnJhwTGpVJbu+hhs0+xEhl1f6PH/AXPadBGvq6dM2CUdik8ckbPKYhOltSjHuRD82nTxWtI6jWE9xewfbvDCG5EpMTFJM6/Y5bna7IVuKxQQsJ/pRIxHr5fqqexLgt6G9XcvqNEx0y2MtaSjZVtUsgg3VSlgfNAbLo5bVUZyuC8i64yjLI6XiDkvqYWYJ5CnJ2wKPPh4wJZuYQKJyDATdUPJ1HdWg+ZRsR63uI03nv5NFiq9DRxYLa0KVh2Im1VwptfoRrZqWBCtvbZxSmo6Tuz/A2hFb2f5KyTuNtSO2YkppOhZ4R8IlOxBxZ5waveURkG+O4x/+CZ++O0A1Cy5hi5twbWDHaXn1hGfrcR0wt0DbWm9SFQfVeeTT65MlJyyph1n5DV6sZYXWJBDhLX68FYdusrUyoNpSnoOfxme05Pvm4xoBMGvhyHVR7DeFagkCQNtzw5Dx/moseDYGD2YvZPOJ6W1KMWV5KjZ5TMLg8kXsfcGzMdjs2gKAbM272LWACULeLZVECrms2ooYh0hYE2V85tQYLy+knj6NvCJ3M0sjUFPGg5bhrZaihZFPqsP3R30oxh1usCt5zqDKc+zzZtcWiPFcxCyPYpkOa4gCMCLmPKv3aEt7wP7ENtbGs//yeVYrVLR4E0nZ8r2o+FvemC2P+/btg7u7eqmOiooKhIWF3fTZVnXxWEsaingU4bOa/h3KdjQG8WgLunB0DI6s81gQ4a/Immpr+Q0SWlpCSk2EinUixXZ80hy1wvF0U2qL8COxQvUp+W2i9ZTvKjerO2grauPjBW96gBv6XB6Hok6bWOzMyHVRAAD/XwejqNMmtAl/ASmt3THnQ8fGu90oZkxcIsfTcfuFYh4BMNFeX+JRCzGesS798MKxNqU8eJdNPkNvl6e64HDvw3W+po/lz0JW6+cx6IQX0voHIHpbIbanurH4SoIXgaMig9D23DB200/uemFJPZiVd0CaCV9EK8tq8Il3APPSHDSPF4f8Mu6GEAQFBCBhvYcixlkUqGTRJospice82Rex4NkY5jbJC0hqBwDJe2WhRKKRrEKiiHQkWuKRkuTwgq1jcTFCQuXsoWRDTDJdVhWMIqldyhSlNwZ5eSnqPaplYrUkHu0l5rAnpE7HmGgktNxW+XIcoigULZG2uqBqlWFxFGrjMCSGQIrPZQKS3FRFbnbx2Ji2qzbobquNHD6bKp9R1ZowvBmEoy1Yy656owkJCtKFYwMltmWMwlUvcHeRqohSm0blGfib6F4Dp6Ag3N+mdQUEBaAkbwvru3xXOVxLejNBKQpQEo5qiG1JoJTkbTETrHRzWphfqFoOICAogPWnVvaDBBG/TmpHrnr74g6gqNMmBO4uwsh1UZhSmo61I7Zi7YitKOq0CQCwwDsS49YeU92exsj4TG0RbKlES31D56dYlsNW+PIugHb5Dx5LwjHh2VcwpTQd5W++C2k5IEkRWFVgu5ugJaKPr8dbvz+CB3+bgujwTnj3LiBnxnlF8g8+mU6lTwaW/rgUb/3+CIymNKSZRmNb8TQkYj32xR1AtHE1XEt6IyE+HkMN+9ny9C5mVyVoX4kWS3oPS+qBCikXWUe+YNcMPzag5iEPZYolyA13b/RqPJi9EAe7HcXBbkcBAN92nYxRkUEYFRmEbcXT4Bm6EoPLa0QNCU1Adrf029BeYTmrb4L9KxDsX8GshIO8vJhwBKpdRk+f1hSOzN013ACEG9D//VmoSnhZUeqDXF0B81IdFDNJ2CJQLSF1Ooa5J73Zgwd6acGX4yAS8kKQkBeCCB852dCQXAlhST3gG71f4aKq9pkv8aEmHG0poUTs3LoCLtmB7CGfJRLi42VL9J4EtF+ku6nerOiWx1riCMvj9bb+icl1GiM3i6WRRxePjsORlsdeQ80TmPBuZ7yFUauIN5+RlXc7VeP1nKWILDyvsAwCsNmaaEmE2BJnycO7xdqC1vpFywgvRnlL1S7vEUg+/hLLijj/u7eQ6f7eTeGyCshuq4t7LUGfz+cisqSJIqMtUH/uqtZQS3Ck5WJqnGBksXyFR08hYsZ5bJ/jpmjPZ1G1l/I33wUA7P84HoB8M71z6wr0bTUTiQ85xhU9c+9/AMjX2uXlbZFfWIgKKVeREEurTAxd0/195yHYv4JZk4ymNEQbazKd8tZHcsVWS7IjZmQWrw3RxVVsO/aesQrhOCoyCEt/XKpwhfS+ksnafNt1MgBg7klveIauZKUkNnlMsroPjw6RLWh5Re51ssYBlt1W+78/S86mCiA3JwcAEBIayhLdbD592uLyfFIcSnBzOeFlhesqoEyWw7uu0vbx66itBZJKctiTIIeHt0TmXslh0/najWrfAe0aneQ6DZjHxhLkgkwJfxb2Vp4fYv3dshw5uVRc19lYfMUb4zPH2fS7rVseGze6eKwlDdVtlbBFmDZG19XGLh5DgoIU26ALR8dSH+KRRB3dGPNZMekGT8yIKiIK0JS802YusCTYeCFmTTjyLqJqWRx5bHGL5Jfjs4Naa2srdINM288L8JS80/ipnwl5Re5YL/XE2HvG3hRuqyQcl/64lAlmekBAx8OejLiOxFpsYrpQ5oPaUnKbfXEHWBZRir2NLDzPjqdo2bY0Dv6BCwmxUZFBuHD2AqbcOsUh4vHr355nwi5haDnyC+X9XyHlKspkfBFd43JOYyNXT8/QlViTno9XHngDg6pvIBOcChQCURSgYgZW15LeinqRYnsxdpR3XbW0PAkC3p2Q9iUAxTbkzb5ok3AEwCyUvV8arbDQqYkqiufXQhR/fKwjLx55SBBWJbwM597qWUcvZ8jZmnnLonPCe5oxihQ3yaMVQymOM+awp2qMJmWaPeRZgkSsr7VwJNQyqWplV+VjUO2Fj1FMLZvEhKOt5wfP0SGyx4g1i6MuHhs3N1Q8JiUlYdOmTcjLy0Pz5s1x//33Y968eQiyckN96dIlvPnmm1izZg2OHz+O22+/HTNnzkRsrPwEpKqqCklJSfjkk09QXFyMoKAgzJs3D5GRkayPhIQEJCYmKvpt27Ytjh8/btPYG7p4vFlp7OKRRxeOjsfRMY+xLWPwes5SRTkCin3kk1skPhdis5gSYyLpJts4wWgWa2hpeTW0+rA1ZpG2jcSwlgWyNsKRxhG/TL5R560ydHP8xp3f4O6vjPIYbgLLI5XpoO0WxXhBuL/NAkvLJbS2lj5r9Tet9c3HKBJTStPRp3QddnmPwALvSJb8iD/G0cbVzAIiWtjUuFJ5Cfuf+MhhCXPIEyDauBrdOgxAfmEhInNy0OzHaBb7SPGI1kpyZEbJ45GKYzH3pDdLYqOVqZK3FlqycNK8AWnytUcxlWrjEI8BiWCX7EBMb1PKLI1r0vPR33cepreRs6/aKw5mTFyCspxYlpCHLE6igKQkcLYISL6MBlkDSfCJmVGrqi2I/PI81BefEEcUiGK5D62+tEjtUqYpHFl/NsQ3qkH1Mh3VzlZ44bj4ijfGneh3XVxN+x+fh+S50xuVyNLFYw1Nb+TKMzIyMHHiRNx33324cuUKZs6ciUcffRQ///wz3Ny0YyeGDRuGEydOYMWKFejYsSNOnjyJK1eusPmvv/461qxZg2XLliE4OBjbt29HTEwM/vvf/6Jr166s3d13341vvvmGfb/lllvqZ0N1HMLNJBwBeXt0AdlwkTOApmK4YHkpPHoKK/1SMdzHSy6ojWoRIJTT0BKBTHiVyDd/JB5IpBXmL7B6Q62FltWRT85SmF+oKFDPC0t5LAsUcYqA0t2Wt3gQatPE9REkoIZPMGJOUg+kCfv3ZhGOMyYuwfgJ45EJ+fxYWz2dzo3MLQtsFo6AUsjxNR9tRXQptSQMbandyIsWEktp1d/7lK4DStchDUC0d6RcImOZnBhp1z2Z8vlQAgQElSvOc3powScScjS03/ZxlTHSQ0MROscNc46eYha7Xd4jEFVSrCnyAKDX1rMYFRnEktGMigxCWXYgTMZoAEBO7hB2o59mGo3Spr1Q6bNUtS++BuSANBOk+Fx8AVkIugousYRrSW/sLFnBajUCgCt6w8UgZyqe3kbOqjo3Jxbfdi3FlOUfYQrkmEZoCEfKvCpOA1xw4ouPML1NjML1VazrWJs8AyTmYg57ArvnI6b62r/MCUbCmthjlsnDAHZL6P/+K3BKeA+bT59WiEatvizVnrQmHAHZcsdnpVVDzUpoqyCsi3AUs6BSyY3FV7zlxFCHPTGnHn93+ay+GzwmAJhefyurR35z8oKrk3oyqUonuf7jfffdp2dbvV6cOnUKbdq0QUZGBh566CHVNunp6Rg+fDgKCwvhpVGzx8fHBzNnzlQcsEGDBsHd3R1r1qwBIFseN2/ejEOHDtVqrNfT8tgY3Uvri5tNQOri0bE40vJonKTMliomBqEU/4QtWVW14LOp8stT+Y51vxapWh/UXFEtrZfa88luXpv8mmYBcXtQE5C0TsA8ro+2jwSUcYIRQw37Mf3HBPiVz0ZjhdxUx08Yr5gevywXO7eusGgFrkvMoCXUSqo4wk2W3FrnbM9HxJFe2N4hEzMiglhsJJViUSs/Q4jnjeiWXR+Wx2jjaoVrp7shBBXVhdQBMHdcPiOqFlquqmPvGYtxUiz7z9oQYmDWTLIY8klzVp5NxfBgL4XlkfoW95EoInlGRQYxl1Q+IQ4RPNNF1R1cTTTy89oOeB4nvvjI5iysoqgUscXidznjFYV47P/+LE23VR4SgEz8VZfYUJT70Fh/+8PmopGwtcajNfF4PeCFIlAjEIlBlefYcRxUeQ6GX9vX+oEdnWf8OceXgBHbbvKY1KjdVj89mA9Xdw3xWHEOT3UPalTbVRsalHj87bff0KlTJ+Tk5CAkRD3W5vnnn0dBQQG6d++OTz/9FG5ubhgwYADeeustNG/eHABw66234u2338aYMWPYck8++ST27duHoqIiALJ4fOedd9CqVSs0a9YMPXr0wJw5cxAQYJ5BEJBdZS9dusS+nz17FnfccYfutnqdsUc8inUUGyK6eHQs9opHreu653+eR1PXZmZum/xNt5rLIc23lsCGyNyyQGGJ4vvhoVgyQHkDrlYSoz6gm1ctgSjCx2raWoIiPcANPf+V2OhLdJDFUeR6xjVqrSt+WS5GrotC4dFTCPBrbdHyKQpZPv6R3E13eY8AAHj8e6psXeUyl+7cukKRMMmS4NGiJG8L2rSPtEs8Wrqm/zX4HrQ9NwyHPEsU7qtAjYCkuqOWymzwiPGMInySId/o/WaWIxKxO7eusJqshxDFJUHCMXimi2o/ebMvss/2xDse7HYU3bP82LQFz8rWR0uJZLTEo1hbkax5lmIh+ZIb1M5WoaMlBG3B3mQ5dL/Bxyc60sVUCz6+UnRDJdqeG8ZEIsEL5evt6aGLx8bNDXVb5ZEkCS+//DJ69eqlKRwBoLCwEJmZmXBxcUFqair++usvPP/88zh9+jRWrpR98SMiIvDee+/hoYceQocOHbBz505s2bIFV69eZf306NEDq1evRmBgIE6cOIFZs2bh/vvvx08//YRbb73VbL1JSUlmMZJ1xdaajDqWaejlOLTQheONx9p1LafKlz/zVkdeyFHinNrAJ9zhk2OIN/6RagtDmTAnIChAkbhH6wazNpBgtFU40rtP8ECLwpEXOfviDqBnabqcra/OI74x8MJRLMsy3AH92ypAtdokPheCRBv6MU4wIpJ7SFJ49BSzMAIAAtwwA2DxjBQjmfDsK3hwUGdZKKK34nyR3TK1z0X+wQSdO69Nfg0Xzl7Afs2lzLF0Tcv9vyXHKla7lkZXz6uQ5BIJw4O95KRAqBGXfBIdWyHL4vBgL3zi/Akihsq/9xtQYNbWJTsQgPJapcRBVDaE5ssxlepCvCwnFsEzV7LvopDkPw+erW1pZG2qrUj9fefhRNZHCJ7pgjXp+Zh7UhYllrKvalkdRTdUEomKhDReXgAX98iEo5cXsFu2dxzroi54+OmicLQkBi2JV1sRheL1EI4AzIRjUvZMFptKohFQty429vAAnRtDg6nz+MILL+DHH3/EZ599ZrHdtWvXYDAYsHbtWvzjH//AY489hvfeew8ff/wxLly4AABYtGgROnXqhODgYDg7O+OFF17AM888o4hp7NevHx5//HGEhobikUcewbZt2wAAn3zyiep64+LicObMGfb6448/HLLd1moy8gJTx37B1ViFpc71wZbrmiwHvBjQSl5iq9WRBJ94A2hNGGjViQTk+DCx9qJWfyvPpjKXWBFe/NkCWZeIwvxC9soU4kDVakMSZOERU8E3FsQb1cDdRYpXtHE1sCxedVlLNRaNE4xID3BTWPrqirXzLCXvNFtnYXUc4Jzt+ej5rxpRFm1cjZHropCSdxo9/5WINuEv4Nc++Vh5NlVV2Fg69oDywQRdP2vS8/Gfb361Z9NsuqbjMRRJ2fL/Lgk3QBa/ADArdKyivSXhqGYtpBqP0cbV+MT5E7P/Lb54OwA8/kugQiSKmVnpvdInA4bEEM3kOZQYhyyMWhZIAJpurSLkrho80wVlObEsYysgx1OKtSAd4e1zuTp5Ds+g6rIbPMe6mL/46TypXcosWhGpTiSrF9nI4C2OnqEr0fbcMIWbKm9xrC3i+aJ1/thyXuk0bhqE5fHFF1/EF198gb179+L222+32Nbb2xu+vr5yXFI1d911FyRJwp9//olOnTqhdevW2Lx5My5evIj//e9/8PHxwfTp03HnnXdq9uvm5obQ0FD8+qv6H1WzZs3QrFmz2m1gHdAtkuaI5S7U/qxINDZUt1Xd6tgwsOW6lhPnyKUlXEuAyMLqGMiIILhWh7bQjR1ZEq0l/FBzLzUlmxQCQi1piZwNMkNR6oO/KefXR8uqlfsA5Hg0cIk4SPiKy2gtT4ixWPyYeKsj9eETXCOeyf2RWVvfdIw4uhGoxTnyjFwXhZ0tY1ASFMD2C3MF5dySeQs0ew9wQ0reaZzM+wAF4f4YHuxVLy6wBeH+aBP+Ak7u/kBOBmVcjVklK7ByXRTWxh3ArK0rABJWW1dgJ5Vb2T1VPqeF8jM88jbblwhnVGQQPt70o13bYO2arvTJQJpJjjmMx1Csl3oiZZ2c+Tdh+XyAi0PsGzVGsx8esQYjZWLG9h5AtGW76b64A0BSDyC4JocDJcIRxw0AUnwuKrkx8su0vXMYgLdwsNtRHEyXp4u1Von2HV7GQQCDs2oskCS4JmfIN/9tBzzP3stywDK1UmZZz1C577KcWAT7V7D/W/5/V+0BLp9Jla/LyLun8m346akoU5TU4K2JvGWSJ6lVldm0+oCsrbYkzCGrJG+hjfFcVKvyHi7ZgUiCfK9I+0LpourpEAujaKnWslyrxTtaiqnVaXzcUMujJEl44YUXsGnTJuzatcuiuCMeeOABlJSUoKKi5glSQUEBmjRpYiY8XVxc4OvriytXrmDjxo0YOFD7D+vSpUv45Zdf4O3trdnG0ejCsP7oWFzcYIWjTv3xs8bDn9pCN2yFR0+xafzNPW+9IwFU6ZNh080x3WSKpTsItWyatA4+Vk1rXSTg1ObHtoxR1H9zLemNgnB/+AQPZC9r/avhWtIbvQZOYeJILT7TUsKY5OMv2byuxkZsyxiz+M/IwvMwJZuYcEwPcIMp2aQ49ukBbiw+MXB3EXOrdCTGCUYYJxgxPNgLC7xlJ2nXkt4YuS4KlT4ZGB7spVnzMyAoQFH7VMtiTW0K8wtttmo7kgvtvlOthwhAUXM1Je+0mVVeq6A6UPPgiBeNfHvedTHBSemyyifoiTauxpzt+QrrIwk/15LeTCimqQhHajf/u7eYZbC/7zx823Uyxp3oh3En+uHbrpPxbdfJbB69L3g2Bse6yDf3Sa2qZDE20wXBM13gGboScWecEOxfgekhsmgk4djfdx4TpNuKp9mVJEbMegrUiEWxRAc/n+YF+1fgcsYrZtbE1NOnkdqlDNJR+d6KRKNW7UagprSHo+D3w71lPmYvyrTarcMA1p5etgrHRKxHItbDJTsQ95b5INi/gr0A2QWXhGP7ww3DNfVmEo6/Vd6KgsrbVF+/Vcphb/fddx86d+6MDz/88AaPtn64oeJx4sSJWLNmDdatW4cWLVrg+PHjOH78OHM/BWQXlNGjawLWR4wYgVtvvRXPPPMMfv75Z+zduxevvvoqYmNjWcKcAwcOYNOmTSgsLMS3336LyMhIXLt2Da+99hrrZ+rUqcjIyMDvv/+OAwcOYMiQITh79iyefvrp67cDdHR0HEZ9ZOJ1LemtuLkHatxY0wPcELi7yMyVlG7qrIkuPraxNqUXeBGmti7ecmgL/A003TxnblnAXFwtJQURCeCsa1pjJngL2itfNM7U7ce6WI8HrfTJsJo4iM4zsaQG/7BAPB/rAonGlLzTiDauhinZhDTTaATuLlJkAKaHC/wDgMwtC1gbPu6WtpHalORtUT0Habo4j3eDdkQWYB4SYeSquv9yzX4kIbd2xFa5HM/ZVMUDFn550dJIzNmej5wZ55lAoGyuufn52P6ueXZPmp9mGo0002iWkIiSC4nbT+sVrc58OyrZsa14Gh7MXogHsxdiSduv8GD2Qmx2bYH+vvPgGboSmVEtWVxcUqsqHOx2FNuKp2Fb8TSsSc9nfSa1qsL8796CwWk2TnzxEesfUIpQwDzGz1LYCG9hFMXktpdeR1XCy6hKeFkxryrhZUUdR1Fo0veqootAuAHB/hVWXVDFGEwtRHEsfu9YXKw6jaYf8ixRJNTJOvKF5rpIHIovEqBJ2TORWjZJIZzJfZiP3byRojF4psvf2n31hx9+wM8//3xTlukAbrB4TE5OxpkzZ/Dwww/D29ubvf7zn/+wNqWlpTh27Bj77u7ujh07dqC8vBzdu3fHyJEjER0djffff5+1uXjxIl5//XV07twZMTEx8PX1RWZmJjw8PFibP//8E08++SSCgoIwePBgODs7Y//+/fDzq8kopnPz8Juv7w2JfwwJCjJzUdVdVh1PfZZw4a0qgCyyjBOMiht4SlQjtrUELzq1hCNvjVSLd7QUn0hjsCRitQQhCUmyRmll5SSBIOITPJDtC976aC3ubf6AuRbnNwSOdQEWjS5D+w4vY8bEJZgxcQl6VbxstQTHnO35tU6sZA1L/RaE+7P5ZCUk0QjIgoQs0QFBASjfVc6OGZ0H/X3nIbZlDAKCAhTnminZBI8+HjBOMKLSJ0Pxmcbl0ccDhfmFzCLfa+AUZt2m2FgtxHjaukLjWi/1RJppNItlpOlkDdoXd4BljuUFpFpMIuFa0hszIoIQOscNG0IM2Bd3AENyJSRUBSIkKAgRU81FzMh1UXDJDsRQw37VjKri9tviRsvHTvKMigzC/O/eUoi/8U1LYfBdqZhW6ZOBvlFjUOmTgTXp+Wze4iveONjtKGu3rXgaprcpRdtzwxDsX2FWGkIUkmQ55F9qFkhqu+2l1xUCkW/LWyH5/gBZsG176XWkVrfv//4sXM54RWFhJFFnr4cSiUDAPCHQb76+ZlZGYkiupFrbUQ3aj/EYisVXvJFaNom9iGD/CgyqPIeYw56IOeyJSas94behPSat9mSWxroIx6NDjllvZAUxY/bfWUjejDSoUh2NietZ51HHHEtigS/RoSYYr6c7qy4U65/c/Hy2n/dnZSEsLKzONeH83/LH7ffWWOLI3ZBuql/PWapwNQzwa43YljEsdpCKfasltiChKYoNrYQpgGx9EuMk+cyqalD/trSxpR2/nQTVaaxNiRA1sZX0/GV4hq5s0KU6KKMqnynXGnRsA/xaM1GSZhqteGjAl8GwBlkLCcqGqrascYIR0cbVCrdTXjhag495tVQaho+to8ypvPWS9hePLeefo+o88rVbaUwE7Q86HvviDiAsqYfiugbMy3JolelIyZNjKIfkSor/AN5tNSypBzvmY+8Zyyx9WlmS6feEsrBaKpszKjIIS39cqtoPHSeabzJGY/EVb0Vf/X3nKQQlv34RsmSWNu2lKBkBqGdc5Ut18LGORFV1Uhw1i2AMlzTHKeE9xbzcnByEhIaaLQPALJ7SWkymGlqi0RIdi4sRsnAqcie/y6b9PnCgptVRq2+yKvptkF1Rjw45Vqe6jNbgxSOtU22e2nweKvMC1Jx3lMxpg8szjbZUR/zev+Dirj7mixVnkfhQ7WtNNxZ08VhLdPHoOAxOs2sV/2nN2qT1p3C9xKMuHK8vufn5aO/tbVedRxG6rrtkdEGLs30U88TEMWqigUQhfyMs3nSJZTl4RAFJbm1hST0QWXheUTaBd3klwcoLRlHw1gVeFKt9J17PWaoYG29pLMwvVK1pydPQxSPdDPHHmPYzbatHHw9VsfTKA2/g7q+MWDtiK0aui2IikkQEiUFrtReJWaFjmXvx2hFbFfUIaf+LY6RzRIyHpfmLkxcrRIR4LmslgrJW/5POebVzRqxvKgoUR4nHLhldcIv7LYp5fMImch2naw5Qjy8ktKz2KXmnFXUiSUDywjHh2Vew+Z3P0HzxHUxAqsGLUxqDNXEJaLv+imM2GaMRj6HMuqqW5ZWPE018LsTswcOoyCCUNu3Flru3zMei0CILoCj+iM2cxZAEpFgbUqsfSwKSb6NFfXgnDXr1SeROflchInnrozUxOqjynEWBdqMgEWltbBMeqlI8iKBapLp4bNw0mFIdOn9f6itxkJ4w5+9FfYt18YZZS5SJ07WsO2pWIrJmRsw4j4gZ8ueR66LYdCqbwFO+qxyAuaVRrXRHbRG3wbWkt1nflT4ZZtYv3j2RvmthnGDEhHbva85vCCzsPQmjIoMQvywXlT4ZWHk2lW0TuWBGG1ejINwfKXmn0TdqDPpGjcHKs6mY/91biG0Zgyml6cx6O6U0nZWFGB7shcKjp2CcYGSupfHLcpmLafyyXPT8VyIC/FojwK81tnbzVbhWpuSdZvF4fBIbgo4Xf34ANYKw18ApZgLQ1gcPdYlN5NdhSjbZZMmtLdHG1YpzmYQQvc+ICMLIdVGa7fnEOOI1EW1cDZMxGsODvdg83vI4JFdi7owJy+czgUUJdmh5QL6+xt6jLBfCo/abwou9pT8uVcQtqi3nWtJbUUReTaTywjHNNNpMONJ8MTYUkEVRXpG72XRyRzUALKaRj2/kYxpjqi2SzgnvIa/Inblpxhz2ZP1UceU7SDhSfwbIYpRflyVxac89g61ur5vf+Qy/+fqyd9G91RqbXVvg6JBjzO1zcPki9rqR8FZQSyTvdcKxI+8pPBMOdjuKV55baXE5nYaNbnmsJbrlURuyJIo1Kh0pEu2NcROfKOquqzcnZ8+edYjlsed/nkdTV9tK81hyvbPkusovw1sjo42rkfDsK0hYPh8Jz76C7R0yAdSU7qDyDnxpDbLmaVmWasvKs6kKN1Vah2iBUrNM8tjiihm/TC7Snrjn7gaRHVCLY12AgpI7WbmM8jffxcndHyC2umwF7QOyCpIlkSxc5W/K1oeorGKsPJuKn/qZcPdX8rFvE/4Cy3aqlvbfJTsQj/8SiI13FeDxXwIRWdIEPsEDNS1/fHyiaGXkoWMqni/8NP7mz1r5Fi3UrGY09lGRQazUCV0L5bvKce3iNRS9UeSwa9rWxE98xlReHPWNGqOw8hLkespf899G1NREJPf63Px8i3FvO7euUP3dULMKWoP6qfTJYAJQHCttK80jK6y4npVnU5mFm983/PdErGexeXlF7hbrKqqhZmHkE8CoEm5AKuf6SpZLvpwHtbuc8LLCZZZHzSJpa9hLyMKp2PzOZ+hYXOxQ6yW5q05Zntpgs5XaaoEE5PIwRF09Cm4EzAV+6xnATWPM588CUa0QGBiIW265BRMnTrwpk+Y0iDqPOo0X0eWUBKOagKyte2ptsfQjfr3EpC4cbYePXWyskHjgY72AGvdSmqaWjZQJrAmjgeXyzVjC8vls/pykHpgxwYjIZBMgCEeCF3W1LYdAY+drSYrUjF0WEaI4FGMBSTiJn3mmlKYjKqsYcFd3Z2tIbLyrAJB6AgA8/j0VAGCcINf5zEyWt7uTFIFf++QzV91KZCA9wA19StfJVskRW/FT2RsAAP9fB8P5z/cQPyISO7euwMqzqdg1TM48632FW3FoJnaFTse29GnY1jIGKJGPMS8c+XNAKwtvYf4CNi5+ushrk19j/b+98G2uVqe6cLTmvgqg+iFDb7P2a9Lz2cMPEjAefTxgWuT4epaWYIKJy0GkFJxjFGKLhNMawfq28mwqEpzGIKEqEAlOBRiC6phHK8JRRCve0lIcJj+f3knk7dy6AkuxFOCMXju3rlB85wUksfGuAnhfWSn3z83ihSQf72ivcARsz3zKk1ptrRST7wT7V4AKrsQc9gR2S3A6OpMJ1CohdpLPlUCIuRO0hGPu5Hcdeg/Bi0ZAvW4i0DBqJ/ptaG9zgp1jR2p+2/sfnwfLFVAbNz/88EODEsVHjhzBqlWrcOTIESxatAht2rRBeno67rjjDtx9991296dbHmuJbnm0DV48Xk/Lo71P/+rTEtnYBVF9wh9H2k91EZH1ZXnUsiACyji/9AA3i2UUKNEJWaO0SlpowfdPy/KJW9RiKe2NeRST4IhWUt5ypVbHkUSJmoWLRxSUu7xHICqrGJnu7zVoyyNQnTSnaSnKS1vg5O4PFMcz3eeaInkSZcmlNvHLcuGSHchurslNr0+3mr9iMaaSh38wIMaR8ueTljWRsMd6aGtb3oqoJSK1riV+GfqcuWUBcBnAajjkmr7ccb+ZuNLCUm1HUTgCNRZDSkBT2rQXEqoC2fzc/Hykh4aiQspVFIlX65cEISXIEdtYskryy/OQS2yvrWdVLY5qy2utR2vfUEZRoPbxg2RppBIbahZM0RpprRwHtU9qVaUqagd5eVmMhbQEiceQhVOBFds1M8jag5ggpyEzuHwRFjwbY/dYr10822hjHm2xPDak7crIyEC/fv3wwAMPYO/evfjll18QEBCAt99+G99//z02bNhgd596zKOOQzE4zTYTjPRyFGrCkS/Fwf9p2SIK69uFtT7LSDR2eJFI+6khim1ejFX6ZLAadxTnZ2uNRlOyCbEtYxQF020hPcDNLJmORx8PADUxj/w4a1MSgm4M+fFV+mSYCUQxaRC9AoICFHGQ1uIb1fbZqMigBi8cAWB85jgsvuKNBd6RTGiTiBse7IXXc5Zil/cIGCcYEbi7CG3CX0D8slzEL8vFzq0rcLFrAe7+yqhwSaXYyL5RY1i5Cyp/4dHHA+k+11CYX4jMLQsUJS48+ngw4W7Pgwh73E5F11VrkIC0B15s0udeA6egZ//n7epHiwvtvlON3SUo7pA+20Mi1jOx1WvrWdU2IUFBiKwWKBtCDAhL6oFuHQagW4cBrMYkMSoySCEADYkhCEvqYdYOsCwcaZvG3jMWRlMajKY0RXteOPI1LMnNladv1BjNWEy+FAVh7/9qXpG7IkaSYhvVSGpVZbasRcINQLgBr3wxXeGuOsjLi43TWqIdLXInv8tiGm0VjjGeixDjaTlmsTEIR0C2itpqfZwxccl1GJGOyPTp0zFr1izs2LEDzs7ObHp4eDj27dtXqz518ahTa8SYRgBmQlGtTX0iup7Y8vTzetSA1AWkdayJRtqHN3JfkjUJkIUavfji7ukBbhbFG3/zJgouNUg0RhaeV1g1yaoligAaEy1HsXfiGHiLxsqzqRazN1INS752IyV1IUjQePTxYNso1hSkz9HG1Yosk7bGcDUU2h+W65h5X8mUXVWrBR1vpe1Tug6AbGlc4B2JNNNojFwXxWLmKNlN5VjZX3DkuigMD/ZiyW/oPONFttp5pRVPSmMSLZdqos6ai/OoyCCbXFLVBKCIVnmL6wGf8CbauFohskgAkTWOhJooigD5mHzi/An7bjSlsf5tFc374g4g68gXyDryBUuCxQtYQI5N3Ll1BaT4XDYt2rgar+csVbit0vUTbVzNrmtyUd25dQUryyEiCkZ++wCwhE/UZ9+oMYrjqrZv6oIiRrEaNUthsH8FUruUsZdaG0q20//9WUg9fRqpp08r3GJJRJJotJZMhwhZOJXdM/zm62uX6KQ6kfEYingMVTw8YuPisquSIDs65JhDai/eaOZ8OK5BJPv5u5GTk4OYGPMQlNatW+N///tfrfrU3VZrie62ah+OjncUBYSjxN/1SKTTEC1rNxJb3FQtWSX55R3ltiqW6qj0yVC1lKnV1hMthFr190g0almL4pflqrqUAfKNIZXvEMtn8PD160isiUkw+OyQ1uCT8lBsJ79OXugCNcmAqEYkX8JgSmk6PP49FeVvvguPf09F0vOXMf3HBBj8ZjcK6yNxrAuwuNcSluwFqHFPLjx6CpGF59lxoDIOVBIi4dlX5AVWbEeClIsppelMaPLlIwAwC7fW+QRou0H3GjjFJvHHY629vf3x2FKDlHBUqQ5yW+UZkGZCT2c37Is7YFbEPSypBxN1aiJpQ4jBzP2U6i8CwDgpVtE+Nz/fYo0/vg8e0VWUH5f4+0DXsVZSHzFzrBai1dFSgXtK7CT+d1r7T1ZLjgMo3VTtSbpjliCnGincgM2nTyviFwd5eaEq4WXNciG8C2vIQjmmmcps1OVe45BnCRKxnn2Px1Dmwk6uqiK8kGzI1khbxze4fBGCZ7pg1vwnG63b6u1zz6CJi/qYyR23ISXMuf322/H555/j/vvvR4sWLXD48GEEBAQgNTUVU6dOxZEjR+zuU7c86mjiSKthfQnH62E11HEcoujnv9tiUdRq72hr5OEVh5k7ppZwBKApKOnmjm74SVSJliNLboaJz4UorJtztudbzFpqS0ZTR0A3/mo3nzMigjAjIohtL8VhRhaeR+HRUwBk0ZhmGo0+peuQHuDGsote7FqAJSMb7s2RFiR0jROMKAj3Z9tO9TgJEo5kqU4zjZYz6i6fjwRJtixFZRWz4w4oj6k14WhNiGkJPa3SGHz8ofji0bK0WbPA1ca1ui682OM1DDXI4pHEkRSfa1b6hoSSOD0kKAgbQgz4zdeXCUcRKpPB1z0EbPt9ov546ygvHNXcVkVLJb8MuZiqlRoRoZIkriW97XbZJcTQEWsPYrWS4wT7VzA3VP6zNdREZlKrKoVwDAkNRcfiYuZeypcIAWoytYaEhiIkNLTGHbW6zAYJSTUOeZbYPFZAKRx5/Da0b9AiUQtbx7zJYxLyZl+86Ut1/PDDD/j5559vuHAEgBEjRmDatGk4fvw4DAYDrl27hu+++w5Tp07F6NHqD6itoYtHHU2uZ2ZUewgJCmIve7ClJpMuROsP3u2UXmrz+DaE2jGntPf1Yck1PdhecTNOLqNqyXBEYWhKNrGbPNEqx4tNe+LTSIDFL8s1u7mjm8GAoACWnIVtR7Xw1CpEHtsyRrMA+us5S5l4JiGt1re4fbQ+XhwUhPtjRkQQdnmPQJ/SddjlPYJZ38KSeiA9wA33lvmgLCcWi3s1vriY8Znj4FrSG8ODvRDg1xopeaexL+4AO1YpefJNabRxNYtfpWlTStOZtUlMjkL7MLLwvOYxXJy82Kx2o1ofWvClV4AaF1ZeKPI1A9XeqZ1WcXqRgKCA6/awgyg45o4TX3yEN+78Bi7ZgSyBjDX4Wo2A/D+ilfDGZIxGVuh+RaIcHudnT6jGLfJClP+NcC3pjaGG/XDJDkTRq/MR4Nfa4rIEWR2X/rhUVSyS2y4vPnn3VILGqlVahK9TyP+/1rVkBYnG2pT7AGTRmNqljMU4khAEaiyPgFLAUvZVUVDybH7nM/ZZFIr3lvlYHeu9ZT7MZVWrPe+iyguyxigotbjRGWL/bsyePRvt27eHr68vKioq0LlzZzz00EO4//778frr9mc4BnS31Vrzd3Nb5UtvNFRRubnC8g+3mHbbWrv6pDG4rjpamIlP30n8WcOeMezPykJYWJhDs62S9Yx3I+ST5JBboprLqJplUqs9Eb8sF2FJPVTdFEWXWL4/UQTyYo9fjnd1tdbekqWLb0tWmsTnQszm09jIRZb2CQnHyMLzrPYhAOx2icWJFp9jfOa4RuW+OmNijetq+Zvvypljq/dpQbg/hgd7YZf3CJadtfzNd7HAu6Y0x8a7CrCteJriONByAJW4MHcZFo8lf74S9mbcFa2GYhbUusJnUxVLhojrv3D2AqbcOsWh13SlTwbG3jOWZUSlTKiROTkKoSQKR6Dmd4x3W6X3RKxn/48JTgU2jS8sqQd8o/cr1stnXSX6+87D478EYt2vRczVlsZYnNZT8+ECURuLoi3uqnVBy3UVUIqzOKMzUq0ko+GtlSKDvLywmasFCcBqcht+bIc8S+q8vWIf/HfRZfVmEopa9D8+D8lzp9+0bqsNcbuOHDmC7OxsXLt2DV27dkWnTp1q3ZcuHmvJ3008NhasCUhbqc+6j42lnmF9ZD9V23ZHCsj6Eo8F4f4I3F1kFtNH3yNmnIfhWe1+45fJ8Wwnd3/A3Bn5WmqiyLQk2kQByVtD1UpnWEJLxPLbSWU0FnhHMksEL55FIc1TEO5vVlg84dlXsL1DJluWps9MXMlu1vq/PwvzB8yFZ+jKRiMiefFYEO6P2JYxTMjx5Vlon4xcF8WS5rAal9XwZVd4yneVs1IdtmRLpaRH1tqTIKV2tRGJasvwlkut9QKWxW19xTy6lvTGtxHzFA9Ec/PzFS6pv/n6YpC7titibn4+fvP1xSHPEjNrI9+XluUOUMYw8tMC/Fpj3a9F+CLaaJZBVW0ZnjTTaMVDGjWG5EqKGEzegknjFa2aNN0RwrG+0Cq7ERIaygSjJdEqQkltHLHNfIIcl2z5fEneax6nqUVDj3u0h4YssrRo7OIRAEjyGQzav0m2oLut6uhcRxpj1lXRhbQu2CMc7XFPdvR+vdDuOxYf1GvgFMS2jGGuozMigph7KLmyWhKOQI1Frk34C4gsPM+EY0reaea+SH2RBUHL3ZB3oRXFGt2M2yIc0wPc2DgkKQKSFIH4ZbkK11fKjNqndB0SnwtRrHNGRBDbFjV3uvhluRge7IWwpB4wJZvYPkhYLrvf9fxXIgCwjJCz42sSjGx76XUE+1dgTXp+o3JjpSRIw4O9WKKg8l3l7MEDPYRIfC4Ew4O9MHJdlJlwBGQxxWdcJUgAWhKCJXlbmGgjy5Wl9qMig8zcXusiHEXXVWvuq2r1ROsTeljR33cei+un95CgICRUBWJDiAEbQgyq2TB5QkM2YJC7uyIJChESFGRVOAI1Fnhx2toRW9FswGVFVlhC7XoTt3Ff3AFEHOnFBKCae+udW2rcldXGSfuBF5NqJTl4d9Xr4bmjBdVMVcuAylset730Omvb//1Z7LMa95b5OEwsU1/eV+SHZ9PblNq1/M0iHHVqSEpKwn333YcWLVqgTZs2GDRoEPKF+xlJkpCQkAAfHx80b94cDz/8MH766Se71rNixQqEhITAxcUFLi4uCAkJwfLly2s9bt3yWEt0y2PDhZ4G8wxyd7fbKmnLn6AtiQG0aOjWRzVB5qgxi1ZNNZfW2vTZ3tvbIdlW/d/yR9HRIsU8uvG3F9HypNUGkGPjyCpFWVDJtY+wJ1aS79/WGDNqmx7gphrjSe64dNNLWVSpdEjg7iLWBwlR2vb0ADdmbZxSms76PLn7A6wdsZUlkDjkWcKezDcW6+OxLkCvipfNrI2i+zI9HIg2roZLdiC2FU8DoBRgZAEsydvCjreadU7NomirVVJcJ78sTbdmObQXLYsmxVkW5heaubE6yvI4YfpcNHNxQe+XRuNEi8+x9MelGHvPWLQ9NwwnWnxulh3VFsSaxvx03n01oSoQBqfZ6LX1LDKjWsJoSjM7/q/nLLVqTbTX9ZRcWkW3WHu5t8wHhzxLFBZZQOl6aWtYiKNRsyKSSBQtkLz10Z7+rJX/qq11ctJq9TqWjmRw+aIGGWPY0C10arD7/jOA1pDPngVatYLN2VYjIyMxfPhw3Hfffbhy5QpmzpyJnJwc/Pzzz3Bzkz2A5s2bh9mzZ+Pjjz9GYGAgZs2ahb179yI/Px8tWrSwOu433ngDCxYswIsvvoiwsDAAwL59+/DBBx9g0qRJmDVL++GJFrp4rCW6eGwc1NaN9Xo9PW0MAlKMTdQql8Fjb+kNR7nIOrJUxy3utwCAwr2UBJg9Yuzy7S9j20uvy2nauZhAEhhUvoLEVJ/SdYo6jWLZi9rAx2xaGre4TrV+ADDxSCKX4PcPUGPlSXwuhMVG8svQDfSEdu+jT+k67E97mO2rkeuisPGuAkxo9z5SWitdBxuymJwxcQkTSJU+GewYAzUZU1PyTiO2ZQz6Ro1h5R3WpOczEcWLJzrmfGkXEli8UNQSZlqxkbQMYFkc2uPCyotONRdWa9PU3FgdKR4/euFJhfXm6JBjmHvSW2kBauNttU+D02yklk3CIHd3JiClqpmKOMdErGeJUdQKwsdjKNJMo1XrXqqJxNqIR8JS7KIaJBZJDJE4sqWuY32KxxgvL6uxj1plOEg08nGP/HSyPpJVcttLr7NYyfoSxqJ4nDFxCfJmX7RJ7DUmF1a1sd7s4rG223Xq1Cm0adMGGRkZeOihhyBJEnx8fDB58mRMmyY/aLp06RLatm2LefPmYdy4cVb7vO222/B///d/ePLJJxXTP/vsM7z44ov466+/7B5nU7uX0NFpRFC8ir0ikv+TqE8h2dDjH2lslpLbWBOWltAq3XGj98mqgjJ8/68ZAIA1A/Mx6p7/Z+/7w6Iq8/ZvSgsRf8BuEsOmhAVsaepoV7pRhLZJKwiYuq76Wi+WgpaK1foDW2AV0XaN7F0DLak1dd0sEcFvuKVG0WZXOmjSBlSEtkBqgSISijXfPw6fZ57zzHPOnBlGBZ37urhgzpzznHNmzjDPfe77c3/CMPrNVUiMS0FeUz5Q0YApAqHUQmZaIgotD+LASw8Ar5Qj44lBMCebcejlm3Bm+VSgfiumbY0Bop5EnzPPYFtFMKYkmxHNheREV5/DsqMbsNQJ0spvK2v9IIMWaSTQ9tEA8MQgFHIqJS3niSqgDtEZlXUPqgFYSIVNVibP260l2Bc4FWvGz0M4mjG00YTPH7bg6ZcWY/RwK4qGByHnu3nYbh0JAMiNABDROUnkynWzWf2jOdmsCgni7YalBdnIa8pHxv4aADbbKJ98SuCVZ4DUZ/V6rqiDsm1EQmlkXN6qapQ48mPLztndWPVoDAComq3ThDYHakLJoEEkrW2pgK86SA5QCGN+43xGFomEAQpZFKHcTDAWZrNyTyU+NttIqTPQIo1atlrRrmtT1Bx/F3Y0adURjCSw7p63DODUQ62gHFpOhJO3s9K6fNjOVw6IqzPnIKt1XLluNiZAfaNhwmnlcWdUDz3QRlNTk+rxjTfeiBtvvNHhdmfOnAEA+Ldfm9988w2+++47PPTQQ6qxIiMj8e9//9sQefzpp58wYsQIu+XDhw/HxYsXHW4vg0d5dBEe5bHrwaNCXhrIVESj5+KoVtHZ18RdyiMfmEOgtFDAvgUHD5GA8cmlvN2Th5iUqNXTT8tKKkNxSE+MfCwDff+k3ZvMVRBBTHulnCmJdG6kkJCSeuD1NBa8Q6DUUTFMh1RInw11KutYVKvSE4x6QgKKEnN/4YxOO6kiBZJUJb7PI70WsjYpPHilmVfjeJunoyRVrTFEkEXW2WRWwF5xNBqUQwoqWbNlFl13KY9nvijHyz/abKKAUvfIq44D3uqvJo8cVp0MxGL7MGG7JHJSJXm1UUb2KFHVEXHkw3FEJdBdkAXjiBZMkRRqfS9eKuLoiDQ6Iq1EAkXwiiM9JtWRsLOhwamQHUdIOOLn8KbXhNNrEZ7qjYrMVvab/1/XWZRH/ji1/hdfi8qjiLS0NKSnp+uOb7VaERcXh8bGRnz44YcAgH//+9+49957UVtbC5PJ9pmcNWsWjh07hj179jg87qeeegrdu3fHCy+o1fhnnnkGP/74I9atW+dwDBEe5dEDDzRAX0YdqWt0Bp1dhdQCqZJ0/FeKOLoTP978EY68of52n8LVri3l7JtE/IgUmKEmlz8mfYv4Z/+Aj81rgD0KaeTrBAHADPUk8mMzAIt9816ehG2raMDt+8Lw5WjlmMSayujqc0A7caTgG1krDVdA57q3aCMwtQixAJZiBmKhEMMDWffgANrDQJCGtFfKkf740xg+5xS2VTSgz/Bn4JO+EKkZeUDaJgxtNOHOd8z4/GELTr7zN3w+z4JxL61Aze078Pavq3B4WLRSAxlYxcbxqYvEi5HzO53ySFi5bjaODwFy71JUyFAA2F+jpK22vxcRcZEq1U2sVdQicrb1CjRrHPl6SSMwhcfBFK787ciqytdk8vuWqZX8WFQPSuc1PVpR9ENhq+UVVVZ34f6T09CraTQ7nhGHBiDn6+7IQX/V5JYnkPzfi/vVAyftx806mYqdwc2wtiRiwFvdYZ2YCOAscCSdrTN0SCNrPwMA+UMaEXjXLCR1q4elPWwn92IgZp94GADg9SU30R7VjAUZChFNiJzfvr3yVILfWqdVSBn01Ecike4iha5YQI2ojUbG01Igb0h/AfntxJAIIimRBBlxdKWFR3zLWfQ/YrzW8eDwYwiH8h2zdK4SHrZy3exOQRwJjUcTsaOv8dTYawHffvutihQbUR2ffPJJfPbZZygtLbV7TkxHtVqtTiWmbty4Ef/6178wcqTi3jlw4AC+/fZbzJgxAwsXLmTriQRTCx7l0UV4lMeuCSO9IHmySF9I4vJLia5IIF2BEfLobC2lu5RHzAAiJikWVSJlEWRZbQe/HFC3V1i5p5IphNTqos9z7wJQ0kapjyMh1ryJKRGyfpGywB2xhQYplaI6SdsT0XQl9McRIuJSMCZmJjsHsfXI2KXnkG4tZ4rrj0nfqp6niWoGtqNq69/x+cMWHParY0mk44JWA7D1cIt/9g8YPucUZt01S9nfOsfWnSuF40OA3AhbGw9ATgq1eh7KINZIEmS1kgAMK53i+PQ3YMzi6uzzhLqKAvxxwR/tAoMA9yqPg/fc6XB9ma1VXC6DuK4zk3utfYrPi/vw+rI/8oc0ul2JJAxtNEnDYhypjloqoLjdpQ7XkR3nV0FBUhVSVk857qUVrHbSUdCOXqgO37MSAE7sehmAYkUVA234x/0HKpN63ha+ct1su2vRnUTSlYAd8XoXx7gWlUdnz+upp57Czp078cEHH+DWW29ly6urqzFw4EBYLBYMGzaMLY+Li0Pfvn3x97//3eHYUVFRho7By8sL+/btM7SuR3n04JqCI2sLPSez51zJCPKrEVpJq0bAB/lcit6ZI8fNAaC0XMD+GkTEpWB6dBj2YTGb4JqTS+wbsbfP4ZaOBVMgLTkW9HnVAswcizPLfwsAGPt1BEIqKm31cHvuQWF7CqlP3EZGRIkcTsEMQEL6Tu7/GwrDtyKj+hzSzJvw3PMmfOxXh+J2kkZ2t9CcQTDP8QfgLx2Ht5SSqrgvcCr6/ukZQymzijVzJoB2BbVdYSUSW7UlmB1PSn0x9nPb8nfvL7x0FplpRQCUZaPrt2JS0AG0DqtS3eFPf3UNfIo2YnOdYgs9PqTz1T4S+h8BkjAbuTnAhs82KIm67USbXuOIuBSn7KJ0DfLqH08k6yoKWMASX4PaYiphvSIBe8JKJI7gSu9GvW2NnNP06DBshmu9JvWw+O9FwM365FGclPOTYD1LK23Lq5dG4IiQEmTjDXirP/oDSIAf8oc4trKmt4Wqbp46Wl+xsmp/5xn5HtUib67WRWpZT7XWlfV7dDQGb0/dPW8Z4tNfsFtfVEKdmRv4Dc4DoHy/TNilWD6Xgm9H5A20uwiPf00q0OVrV+RKGQBdn1qBP51JJXULssYBN2oorefbAOzG3XffbSht1Wq14qmnnkJ+fj7ef/99FXEEgFtvvRU333wz3n33XUYeL1y4gJKSEqxevdrQ4e7fv9/xSk7Cozy6CI/y2DUha+PBq4paX2iXmzheK+ojQa8tiCyQR2v9A4cOYdSoUW5JWyXbKhFHPkGTQORRS0kiu2ghZ0GlbaqiglnSqlaSIil1stpFMRmVxqPx014pB2BLaSy0zJAG5hBRPPB6ml3tJSHWvAnTtsa4rFqmvVKOQssMPHfrewCA5d88qDrflPpi7PdWWiVEteZhv3ci1ny0HEXDg1idY0p9MbIDo1kICb2ms+6a1amVRwKvQNLrQXWQPKEDoKoBFMkdv55eW47SgmxpQq852cwUSL41B2CMEOqt50ybEKNwl/Ko19gbsCdyehNePaVQtLw6mjhr7VdmndUaix9jp4/j6H4eFTW+aB1WZRfE445kVSNKozME05m6Q0ff2dQLUrSnyqBFOPX2MejFZ7DzL/9gjytqfLFkmBKslHsxUFobTI9XrputunEhhuZ0VHmUqYu0D4KrteS8tVYPXVp5XDwOvTXIY9P5NvRZtdvwec2ZMwdbt25FQUEBwrh5X58+fdCjRw8ASquOrKwsvPbaa7j99tuxcuVKvP/++4Zbdbz++uv4/e9/z8ZzBzzk0UV4yGPXg4w4OgMPgbw8MJK4qqVWNjc3u4U8YgYQMjhEpcJs+GwDAKiSMxN7Jzi9D1EpMoXHMTtsYu8EZtFsHabE/hdaZmDlnkqsGDxLRVyp3QPfV3DL1CL2vEhIM54YxAgmb4Ol5Fds3IM9KxVC+mPStyplgsJvKMjmznfMrNVESn0xC8URIbbsANQJlIASkrPdOhKx5k1IzchDyywTTu7/G3uezimlvhh9nnsXbbfcicw0hWgGXiztlImrWjjWNxVepSsZsU+pL2bKo3hd8PWKop3VaAiOuC6BJ5CA2hYH2JNDZ+ynRsgjXcfUx1TvHC4HeZQpgJdaLXHG2urKuvxvLegRTaN9jo2uy6/vyj70wCeiAlC119AC9Xx0REjHvbQCN7RbV/OFpFaZssnGF8gjoBBIRXlU6gT9BuehIrMVB4cfY+uUxmZjQfqLCE/1thuTJ2TiDQwj1wiF24hjATbSx5NaZ27K0fZJ3ZMQUZjCqaZyeMijAq26xddeew2PPfYYAEWdzMjIwPr169HY2Ih77rkH69atw6BBxjIMAgMDce7cOUyaNAkzZ87Eb37zG0Pb6eG6Do/ggQddBB0lY5e7+fG1Bp40dgbiTJPgzcWV2FxcyVS7kAE3qVouOML06DDV5JzGVQJKlL8TeycwIvrIF6F45ItQpNQXw7ssFNsqGtj+aMJPv/Oa8lEVFQxLjgWh+2swbWsM9hZtxN6ijfCpi2R/A4r69/avqxBr3oQtU4uUcJ92ZXT4nFPAzLEY+3WEtFF5znfzkPPdPAC25NO8pnwl8AaKDbcqKhjFIT1hTjYj7ZVypL1Szog2qYTTtsYwmyrZUJ/etRgHCh8AoNjETu7/G4K/nIDgLyfg9mk1bB/ZgdFIf3UNds9bhnSvQRjaaELA2cnIjbh8lq6OwmtAJtJeKUdKfTF7TYg4GVXsHPX6rKsoUFlYI+JSUBUVjIi4FISEhSAiLkVFHOsqCtg1LpJDGkf2HP88YE9AHYGOgbdMXwmI5Crl1XxDRO3YxOM4NvE4U2xE5UZrGcEZcuoskZURiQFv9VfZage81V+3Sf2l+L67rbZW9WN0GwCqFhoiSBWk30bHjvf3d6g67p63DPkNDXbEUQ8y1ZGve6RgJACMzNHnJ8tyAYB9+JT4+ZO9v44QnuptyAruil189omHMfvEw8hty2U3QD1wDKvVKv0h4ggoBDM9PR319fVobW1FSUmJYeIIAP/973+xefNmNDY2IioqCuHh4Vi9ejW+++47l4/7ipLHrKws3H333ejVqxf69euH+Ph4VBqofzp//jxSU1MxYMAA3HjjjRg4cCDy8vLY821tbfjzn/+MgQMHwtvbG0OGDEFxcbHucXh5eWHBggXuOC0POjG6Ut2iK7WAXRk8YdQ798vxuowcN0c1GW4xldhNcrVUR9kkmu7mij8yJPZOQOj+GsQcqsXu2kWMWJYWZKO0IBuWHAtKC7IRur+G/QCKOrVv8mI2Lv2uqyhgJDL55pfgXRaKoY0mPHfre4g1K0mnPnWR+HJ0Je6LvwN7izbiRK83VUR0d+0i7K5dhMy0RIyu38palnRPfwF9TM8g/dU16Bf1pB3xHPlYBmLNm5jy2C/qSdXzqRl52D1vGXbPW4ahjSZU1Phiy9QijB5uRcssEzBzLHbPW8YIZGpGHlMZiMTWd4tgd707O/ofUdTSmEO1iDVvwuj6rdL1xJTU6spqO1JIoGWlBdlM+aP1iWjStSqrjRRJKz9x1CO0LaYS9B3dl6nmm4srddeXXe91FQWw5FicJp7ugkyVc2TXm3B6LSacXouUV/OR8mo+W0a/eUJJgSjuOj7atx54kkiP+bFIpaLHjggk/YiPyVp6qb9Tad8iyeMJXLy/PzsWPTWwI0jgekISBg0ezH6+CgpS/pYojoAS9uU3OA9J3ZTWMIv71aPxaKLq8/bhsAWs/+OIQwNYKvDKdbOlSp74Xuthwum1aDyaiA+HLWC2WB4Vma1oPJqI0pje+HDYAlRktrLtxHVlj1edtPVE5dvheHDlcf3112P8+PHYsWMHvv32W8yaNQtbtmxB//79MX78eBQUFODnn392aswrSh5LSkowd+5cHDhwAO+++y4uXryIhx56COfO6fcxmzx5Mvbu3YuNGzeisrIS//jHPxAeHs6eX7ZsGdavX4//+7//w3/+8x8kJSUhISEBZWVldmN9+umn2LBhA+666y63n58HnQ+DwsIQ7+vr8heeR3288uBJJv1NauUdt9/uln38/kFlHCJ9PnWRTCkh4uQIPEGUNV6nv/Oa8lV2VEBuRdRaRj9ksRXvVPPW275/egatw6pQUeOLE73eRODFUqz5aDkAG8Gg+k7+MYFUTLK9frklGJg5FtO2xmC/dyJS6ouxL3AqUxVP7v8bU9j2Fm3E6PqtKLTMwJ3vmHHYrw41t+/Amo+W47BfHca9tALhwc0Y2mjC0/c+h/3eiawNCaDYXSn5kMYmbC6uxNK563F8iN1L1OmQVDobY2JmYmijCbHmTSpSqNdeo7qyWvoc9UmkdVpMJaiKCoYpPE5a86hVP+kM+OtV6/PAn5MYfkOfJV7d7yrY0Xe+6ocQnuqN8FRvpLyar1putHaMCJ1ePaW4TyNjAmBEN/n+NhybeJyRXtpffMtZ9qMFI999WkTTHRCJKqmMROaohtERiOwBSr2jCFIIRbUwv93iym8j1kHubGhA2y32oUzhwc2qsdYHvMP+JpVu9omH2fu9o+98hKd6Y1zQarf2sT2x62W2j+zHExgxXDp3PQ4OP4Yl5huQVZaqHHOqN5bOXc+UUT2FPTzVm9lxk0pn48NhCzTX9eDKol+/frj33nsxatQoXHfddTh69Cgee+wxDBw4EO+//77hcTpVzeOpU6fQr18/lJSU4P7775euU1xcjClTpqC6uhr+GtYBk8mE1NRUVcJRfHw8fH19sXnzZrasubkZZrMZL7/8MlasWIGhQ4fixRdfNHSsnprHrg9XayAvZ9sO4NqtfXQEWW2ku1p1ZP+Qjbf/La8VajEpKasyMic2S9cC9bebEu5v1z6BWl640lZBD3ydmZEaNqpF0xs/rylfVZMIKPbSlPpi5Hw3j02awoObWesNCsBJf/xpAEDbLXdizfhVdn3cKDgHsKUbig29eVA9UWcPz6HgnCmnmuGzoQ43/FchxFTX6MiWKoKuQ7ou+bYcPEGUpbICCuHMzckFAFX7D7Eul4d4s4NgybHY1WdqkVQaQ+uzRLhUNY+8OigG0mgFiogtFXi4c5JvFEaCT3gEjJ+DnA+62ymj2Y+rXRRGQ3cctexwtJ5sG70AHcBWqyhCqwZRi1S2pS9U+ju2j5XA9V7M6tMm7SvJ10fy9ZXO4kSvNxFwdjLWfLQcHw5bAK+gPFhrE1XXHwCH7S6MQus6CRg/h6mELaYSTPI6AKC9pymAVScDscR8AyIKUzAuaDVyPuiO40PAaszpOA8OP4ZxQauxuF891ge8g8ajyv/t3bWLMOLQAOlno0vXPOY8jd495H0bm348jz7JaxAaGmoobfVy4cSJE3jjjTfw2muvobq6GvHx8Zg5cyYefPBB/Pjjj1i2bBneeustHDt2zPFg6GStOs6cOQMAmqQQAHbt2oURI0bg+eefxxtvvIGePXti/PjxWL58OUsSOn/+PLy91cXGPXr0sGu8OXfuXIwbNw4PPvggVqzQ9tPTmOfPn2ePm5qanDo3DzofulJ4jgf2kPWBdBZan+t/vvcluvnIvxxkiaUiZIEj/LLNxZXY3DsBPnUKARMtsLHmTdhbtxEtphKHJNLRvgD5ZF9chw8uobRP2Xo8GQjdX4OQuvEwhcfhDbZ8I/YCABYBWI3km18CWoFxGXXITEvE0EYT4v392R38llkmhHurJ2qsvmme8vc4KISRtgdgF+hzYrCvEp6j92J1EmwurkR9zEwgDYgosjLCWFdRwF53wN6+qgciYS0oYcSRxuTra0UiZwqH8DiOqaGOSCPVtFJKb3FIT6DtBJZyxFDcB6+uUt3tGPNMTNsa41IAlQij39V6llLZZFeWfMkHkGCdaz3yOgJHxxkwfg4W96tHyqv57O/FE4GUV23rE3F0FK4jg1Z6qpiUKmt9pTcmv328vz++amhgJJAna+JYgwYPVhFImcLYnWu9ka9R77jkTHfkS5Z3T39B2rrDEU70ehONRxNVhPRErzcxPToM6/EOrLUK2SKCGJ7qzWyjBCNhOFrXnnjt0rJj/Y7Db3AYkrrVw1qbj1UnbcSRx7ig1Vg8CFg8qA2rygG/uVQmZquh9Buch1VHE7EYD2NV+7MfDluAAV93hf/I7senn37aaUhxbGws9uzZg9DQUDzxxBOYMWOGimf16NEDTz/9NLKzjd+47DTk0Wq1YuHChYiIiNAtBK2urkZpaSm8vb2Rn5+P77//HnPmzEFDQwOrexw7dixeeOEF3H///Rg4cCD27t2LgoIC/PTTT2ycbdu2wWKx4NNPPzV0fFlZWcjIyOjYSXpwxUFkg/+CcrbnlLMJcx5cOnRUlXX351pLodNT+MQJM1lDAZtK6EjF5PchW5cUKXE8PtnTaJ9BnlDwKhOlxtL5tJhKsN06EttpLhIL7Ks3Yb93InY2NKj6O4rYPW+ZSmVU1gUysB1ZNal4etdiRM0yYdtNCmF87YhiFetK0xRKv32j7jpVWw7+Nw/q18iDJ5r0t2gJldVKypRAsdaR367Y9DO2TC1CoaWEEUYZlo4NU46x/XojFbQFajJpdz7JM1AY7g8fN/S6d/SZ5ifZYg9HI+qObCIOKGmTK9ddfvVRBiK1FZkvA48nMOJI5xkwfg5O7HoZyfe3YdXJQKVpfd/5hhTHeF9fVb9ILWh9rxr5/hw0eDC+0rCJUs0zvz2vLvJ/t6UvxA2RawAA+UMalYXt/1t490JFjS+y+rSxx0vMNwDt+yer/M6GBpbOyrfuMNI+JODsZGBwHnB2MltGtY8AkNSuPPIIT/XGhEzjNyOMrhee6o2V62Yj+f42rA94RzkOrwyssqRi8SAAsNUu4iRgvXBBtf3iQcCqo4lYMiwTuReVdUtjeuPD2oeBfrZ6Th6X+6aKB2qQo3PUqFGa6wQGBuKbb74xPGansa3OnTsXu3fvRmlpKX71q19prvfQQw/hww8/xHfffadE6gPYsWMHJk6ciHPnzqFHjx44deoUnnjiCRQWFsLLywsDBw7Egw8+iNdeew0tLS349ttvMWLECPzrX//CkCFKkcwDDzyga1uV3c285ZZbPLbVLgKeNLoDl5M4emyrxuGsbVXrcz3yn3PslEdn2iPIUBrTGxFFxhwLYrP2jtaElRZkoyoqGPsmL5aOx1sayToZEZeiaiEiO0bRnuhIKUt7pZy16hiVdQ/GLj0HzBwLbNyDM3V/ZTZVHjQ5O+xXh4wnBrG0UgDoW/l0l2nTQTg+BIhoXshspoD99cS/DwBYKxaxzya/nUwpFG88GG25QaDrgBRHUWkEjCnxRCL5daltDA+Zyu6sbVXrM220VYczASSAYgWleq/ObpkGbOfqFZSH3IuBaDyaiMX96nWJY7yvL7y6Kz0KrW2pqueMEEkZeHJJ36e8PZWeS/D3xwWuF6PMnspbWemmE7XXoPRS0YZK/1foN08Ixb6OWhZVauOR74ISmdStHrkXAxmJzG9UyFXCET/kRqxnyqNMIXeGiBFxIyUaUMjdqpOB8BucpyS/9gt0MIoCugYA5TpQXRMn61loDk8eB7zVnwWaVWS2smNP+Z8XkfKLlKvWttqZzmvTpk34/e9/jxtvVB/zhQsXsG3bNsyYMUNjS210CvL41FNPYefOnfjggw9w66236q776KOP4qOPPsJXX33Fln3xxRe44447UFVVhdu5wIzW1lb88MMPMJlMWLx4MYqKivD5559j586dSEhIwPXXX8/W/emnn+Dl5YXrrrsO58+fVz0ng6fmsWvBQx6vDbir5lEkj9RL0ZESyIfLyNYpGh6EmEP6147RuklnoTeeLMWTiMiyo0p/S749CU36jRAHAvWT5Ps0Au21jxv3MDWSlNen732OTewoWTU7MBreZaGslnLJme5dkjzmRqzH5uJKRg5JNRTJOKCowkQep4T721rGcNs46pUowpl+jLRfHrL3XaaMAoqVVdYDVLatWC8JXPo+j2K9oyOIyb58v76uoq4cm3gc6BeI9V55quW8GsZDJIwitAiks66e22prVfbUBH9/ZFkuqIifSB55pZG24ckcjQEoBFJGDMUekXyiavnRo6pjIss9kVkit7wdViTAPPhejwHtSuSJXm+yxyUvKcnUVEd4YtfLqhYb9B3D21q16hkBsO0B27UacHYyEvzWOnxfeXh1z2Tr0987m5tZ+UAGtsNam4hVJwPtlMf7yl7EiEMDANhak7y+47MOfa6vBLoqebz++utRX1+Pfv36qZb/8MMP6Nevn8qVaRRXNG3VarXiySefxI4dO7Bv3z6HxBEA7r33XtTV1aGZ+2dVVVWF6667zk6x9Pb2RlBQEC5evIi3334bcXHKl9KYMWNw9OhRHD58mP2MGDEC06ZNw+HDhx0SRw+uLniSVz0wAlJF9Agd3y8vrynf5X5XPIGkxx2Bke1ldXGlBdmIrj7HJv/Vx06h+tgpWHIshohjVVQw+70vcCqGzzmF0cOV+5XTtsZg2tYYnFn+W3y5JRgVNb4safXpe59TpRPu905EznfzGHGMas2D3+C8LkccCY1HE5mqS+Bf89KCbFW6qiXHwl53Aq/yyoij7IYAvy+9a6LFVMLawohqpxb4sB6+rU109TmVvRYA6zcJ2K6R4pCeeLnthGYYT0cRezqH/U1KDtlUKX1UC3y7gpXrZqsm7ov71Xd64ph8v82SyVTWk/WYfeJhBJydjKRu9ZhtTYS1LVX6Q+CVJ0AhjXrKo7PfkV8FBaEtfaGtJrGhgQVlEaHTasVBxI7UEFIgiUguMd/AlsX7+7MfekzjiuSUPweReNL4u+ctUy3XS5klIhxwdjIjjUTaKe02PNUb06PD7Igjj4PDbcEmdH3SD9mSl5zpjvBUbxZgs2RYpuoGgVf3TLv3lEd69yr2k4ZJ7G+zpRDrvfJU/6MjippwX9mLaB1WBa+g9psS/QKBfoH4cOxqHBx+zFYfDGBYWVcqMujasFqt8PLyslv+3//+lzk4nYXTyuNjjz2GxMREzTRUZzBnzhxs3boVBQUFCOPUlT59+rDwmyVLlqC2thabNil3Y5qbm/HrX/8aI0eOREZGBr7//ns8/vjjiIyMxCuvvAIA+OSTT1BbW4uhQ4eitrYW6enp+Oabb2CxWNC3b1/psTiyrYrwKI9dB0ZUR2fvkNI27oCj4BeP8mgcl0J55CezRhNQRRAZlIXjXGo4o0qJSZtEUIpDeqrWY7VtElRFBaNf1JMYXb8VseZNKLTMYMSC+j1SmiyRxNZhVaz+Mf7ZPwCAqlfamo+Ws/MYEzMTgRdLlXCcLkYeWSuRKC9YAXgBMB8yqxJHKazIUc2jTKUjdKQNh5j2KvY3Nao288crhgDx50f26Cnh/ipbLNvPBQCb4DblkVpV8AmjYnsNEbz1j//df+BClkLZFWAXiGPQrqgHV22rAJDgtxb5jfN1658JVH+olahK5LH86FF8FRRkpxCKiBeCGXmFkf5u4xRFraRnWt7dYJBORY0vqxckBZDh/XQsKFmrIlmAvcq4dK5ia+XX4wmmmHy6ZJi95ZgnjWmYhPS2UAAKYeQxKuseu/69AFgLJsD2vdhiKkGseRNS6osRc6hWadnBXWO0z9yLgaj/eCIy7nf9u/pKgP6XfL94Lnp7ayiPrefxy1XrOkXa6rBhw+Dl5YUjR47gzjvvRLdutpibn376Cd988w2io6Px5ptvOj2204E5Z8+exUMPPYRbbrkF//u//4tHH30UQS4qMDk5yp3ABx54QLX8tddew2OPPQYAqK+vx/Hjtn94vr6+ePfdd/HUU09hxIgR+MUvfoHJkyer0lJbW1uxbNkyVFdXw9fXF7/73e/wxhtvaBJHD65+OCKGV1JF9BDHzg36YlQm1cok39nJORFHQGnFwYfi8HC3VRWAqt2Go/H5czKFx6HvaCUgJbr6nB2B5EkFTyhC99fAHL4VgDLBWLmnEiFRwdhi3oShjSZU1Pji0HALztRNxX4od+LHZSh3qrt/+zmwcQ8AIH6jP87U/RUAsLy9d+Hn9z6Hw6jD7C3HsfJ0h16WK4L+R4BjfVPhBYU4Wl9fCq+clQDUhE9WO7qtogFTOEKmd/05ujZl7UDSXilHxhP2YXW0v+KQnhj5WAYOhFTq3jwgYqh8biyMOBJpFM+vrqIAieFK8vCKwZFoMbWH8hiwuzoLrTTRg8OPAV/bLyeSSMQyPNUbS7EegPK78ajiLEi+v61LEEiVpdANxBHoWIAO1fkNbTSx52XqHqCQtvj0F+wSVdlxcP0eB3HbALbaRLKXyiCG7ngBQOQa5DcsU40lgsZtS1+oWRtJrYZ4pS6pWz2yanyR28tW92i9/TjWR9hbVAGwBFZFAVeTS1q/NEYhYS2Wkdh+ArAExSJtWJWdPZVsp+ndq1gNukgaJ5YrutJbSz5h/8cBYMXgWao2OwBgTla22VbRgC1m4MDracDgWRh+IgGzAmZhtlVRPvnjaLqjCVdzBGVnSFuNj48HABw+fBhjx46Fr6/t+rvhhhsQHByMRx55xKWxXap5/OGHH7B582a8/vrrKC8vx4MPPoiZM2ciLi4O3bt3/n+g7oBHeew6cLWfoyN4+jx2PrhTeXxswl0qokUTblfCcniQlZX6a/HQCjRxNuiEQK0+ZMEpfOIqTzb4kJRtFQ2oPnYK0dXnNGvaALk6VRzSkwWrkALpUxfJekOmP/40dv7lH2zClW4tR2pGHiof+V8AwC2/2AOfDUo9DU3cln/zIJ679T3E7/orBpzWtlt1ZhwfApXyiMddG8fV69DZPpI8ikN6YuzSc9izUrmRoEfu+DpGwL42U6ves66iAH1H9wWgBPQsuvc2HIk84hbl8dvpp+1qG4lQytRHXmkEYKcIETp7UA5ZGf0G5yGpe5JdgmZHYFR51KsD5L9L+efFJFOxFhGAqh6RtfjhQNtTjbSICyVPs78pZAf79afFYh/IhPbjchScw7cXImRgOyKKmqQ3FUVrOa82rlw3G0vnrkfj0UTsrl2E0pjehmoYRZIIKHXn6a+uYSqjqDaSykj/xwGbTd1GIJW67C1TizBta4xdnfRzt76nqrPs6Hf1lYAzymNnOa+ffvoJb7zxBsaOHYvAQPfcMALcEJhTVlaGvLw8vPrqq/D19cX06dMxZ84cVXDN1QgPeewacHdQDg8Peex8cBd5zP4hGz1691A1TedtdpcCjsJ2tNYX224Atom6OdmMWXfNshvXERnlrbpEBIkoiAokoA7TAcAsiLRNVVSwoki2k8x9gVORHRjNrGpRrXnscVRrHvZ7JyL+2T/gzPLfIue7eazOkQJzumJQDuH4EMB6LBU7xz+DE73eZNeYMz0deZDS5yh5ldAR8mjEwmpONjOVQotcRsSlqHqJEngCSUFBPzX/5FbyCKiJokgeZW0FxJAcEe6oeRTbhLirvcGE02uR/XgCBrzVH8fnpwNwHIDjLDpiXQXsVcmEI36sdcbTuxarLKEJXF0jj7b0hYz85bcTSVEtTDjip/q/wWzkEtB6WuvkD2lEwhE/1WNHkJFH7zLFLkpWVtn/5OnRYewa45NXSY0MT/Vm6p4eZMSRB1MbByn1cSKJHD5wPA59vQuA2rbKgyeYANd/1lSCSV4HmIX2zA9PecjjZYK3tze++OILQ7kyRtEh8lhfX49NmzYhLy8PtbW1eOSRR1BfX4/9+/fj+eefR0rKpZlkdQZ4yGPXwKVSHQGo+kReKniIo3NwJ3l8+99qixuRMcD12kcttJhKGMmTqY6uWln5lh96CbH0HNWeaSmMInHkyQFfx0YhKLKwFXOyGc/d+h6zcsX7+yPdqrTw0KorWvPRcgBKWm2ffzV0WdURsKWtjn5zlV39qxESqdXv0UivTi3iqKcqi+vQNRAy4CbNMB1Zaw5+OWHlnkqsGDwLMhABdnfaKk2+RfJIbQZO7HqZbaunOvI3YtylPHakJYMj8Oe5WLuVtssQCaTRHAGqewSgImOAvcIX7+8Piv240N7/kdptUD9H2oZqJHnSSYqikRtPPGl0RCQBY+SRB5+wSqio8WWOlHFBq9nfYoAaoP5/PiZmppJ2KmmjkuC3FmmYBMBGDgEbQQSAdK9BSLeWs8e8ckh16kZQaJmB8YUW7IpVksnJ+SJiXNBqFHy5oMumrXY18nj33Xdj1apVGDNmjNvGdDptta2tDW+//TZiYmIwYMAAbN++HSkpKaivr8ff//53/Otf/8Ibb7yBP//5z247SA88cAV6tYRdBVfDOXRF/PO9L1WPSdWjybC7EyH1Ju7OEkdegeR7ReqNz09KjASi8AmsgH2z+tD9NZgS7m+XvlkVFYxY8yYc9qtD67AqpdamnTgS+NYcANjfLaYSbLvJF14Dui5xJGwurkRi7wTUVRTYpaJGxKUgJCzETpUzAr2EVf7mhwzmZLPu86f3nQZge+/1Uli10nhp2co9lVi5R6mdpHRZ2XnonY8r0FPz+PYC4aneSn3j3PUIT/XGweHHND+H7qxR5usr3Qm+1lNsoyADBZvsbG5miZx66qKryqMqLEYCsTcjoKiK+Q0NuCFyDW6IXIOKGl9GHAFgyZnuSPD3V/WF5GFEeRSXHx/imDiKxNcRAs5ORsDZyYhvOYsTvd5Egt9aLBmWidKY3iiN6W1HHAF1mjeVP/DfRfRe0c9hvzqkYRImllsxsdyKtwZ54augILw1yAujsu5BSn0xpm2NwfBDyufeK2MQCi0z7CynRhFr3gRrWrndcRFaTCVoMZVgu3Ukfrz5I5f24YHzyMzMxDPPPIOioiLU19ejqalJ9eMKnFYef/nLX+Lnn3/GH/7wBzzxxBMYOnSo3TqNjY0wm8345ptvXDqorgCP8ti5cSkVR+DyqI4Ej/poHJcibZW+vKkWi2o9fOoiO5RqSaBm8XywTUfGAmwTfZ48Oqqj5MkFP/Hnl4mpmUZBqlXaK7a72yn1xcj5bh5ah1UhNSMPa8avUqWuAsCd75iR2DsB06PDumS6qgxin0dRLaT3QaYuAtqvO5++qjWuUejtS5YEK4OjGllZsqpMQXWX8pi8eBV232xfZwyoez2KFlUjn8fjX8tDWFzFhNNK4mZHFU0iy1pBQTx2+vRif2v1ABRJopGwHF5ZlD6vQbpIyePJHx9E45CsRXnhgpC2qlX3qKUs0jE4OkZ63oj6mOC3liWtAkDJS5sQMH4Os3PyyCpT3gNZfTyhNKY3Uxb14F0Wiu3WkexxrHkT9hZttCN5/P9pCsqRpa3y4wJgvSspGTb78QTcV/YiW4/2Q0rk2d77OmRHvxJg8/7/GYPeN8jzRpsuXESfN/Z2irRVwnXX2XRCvmUHtfBwpc+j0+TxjTfewKRJk+DtLS8cv1bgIY+dF5eaOAKXjzx6iKNzuBTkUQSRPZ5IuUIgydLDW3s6Qh4ppXLF4FmMPBgJ2uEDSmTYVtGA6LrrpISBt/HmNeVr2lRX7qlEyICb2B3tfYFT2fP7veW1Oms+Ws6Ov7MHkujh+BBlUjl/kx97HNG8kFlURdLHk3W6SeEK8eOvSaM1lUTaxPVFFVQcywihFMM1CHR+4hh07u62rcrAk6uUV/M1e+vJ4E7bKqC2rrqjjlILVF+ZfH+btJUDoJBFspfLEM+lNxpVH4lMyghZ/yO2z4vdvtpbb6wZv0pKAKWIsk2URSIJ2Egf7ZdHVp82PL1rseY2Mjgij6S0EnmMbzmLVScD4Tc4j5HJ+JazWB/wDgCwMJwRhwYg+/EErDoZqCKS1BoDAEtNlUFGEsXaRHGZI7tq4MVSRhRl16lW7TDVaL6+47Mua1s1Qh4703mVlOg7pSIjnS/DcbpVx//8z/84vRMPPLhcuBzEkXC5AnM86FygCTApJKL10AiRzGvKRyISdEmerIm7bEJLZJZq0Yho6DWB5/E/z+xS9WLk4VMXidD99sSFAnRsypIF0e0EgwgITyaXjg1DrHkTLO2tIPpC2de+wKlKbdK3nwOw9XakSdDVojYmHPEDn/E5PToMSQXqdhUi9CykMoh9H/XqGwG1uswTtzExM5HBqZ8imV25pxJzBGXSCDGVXV+ATZHoO7ovUKlePyTsNH5u/dnh2K6AV/cGvNXfoTqndWPnUt3Y4GsyxYRYIzCiNgLtNtZ2hWtV+2NSIU/0ehNLhtVrKoc7m5vZ9+Bt3HKt72AZcdT6fFPNIgBVaw494siTt4oaXyzhU1O5VFURMkvqEvMNCG/vHWmkf6OMOFL/SiKN+Y3zUVHji4D2th2rYCPf8S1n2d8r181m7V+OD3kBI7AW6wPegV8A0GItYWrgqKwNwJ572Hbe0Y1YPMhG5Jd/86DyhEYLTRqHCOPeoo3wgXJDkyeRpC4C4MLK7sSxx5VrLBu2a42uVRmhXLluNtAXwDrg59YmAC/breOB++EKOXQEp8mjBx50ZlzJfo0eXJ1wpjeiDLyKQ2oKH5SiR/JEMql1LOZkM6LbyYAsNIXfx/MvPq9SuojAVkU1IFESbkDJmLxypNeigcZL7J0Ac3KJ9A432aKyASANrG3Hne+YMSXcH7N6zUKp7wtXBXEUz4EsqzxM4XEqArmtooGptDwJ5O2/fE9GkTiK6/Ogx1VRwaraJvNoM0pzbPWHInEEwOoU+3LL6PoQrzuppVsujCAiLhJ1+wrYeLR9dWU14L6uEirs6DsfWGdTQwDbZ5LeHwotaTGVYHOx/RjjglYjR9If0gi06i/5Ze4kjrJxaD2xDpIRmZaHMRvATh/n9i9ryxHv68uIIyl9Wp/vhCN+yJ+3DJi3DPH+/qwdx+55y5CPRlX4DSGrT5sqJCc8uBng7KS7h9h6Psp6Ntqlp7YTxrb2YB4ikTIrq5biSGpgGiYhA9sBtNs7z05m7TVyL7b3eQx4h6mR9L7koD8WlKzFweHHcLD9+rPExOLjdlVQtJOOyvJD+rBPUPiN7f8tryBS3aMIWqcQSuCNNaacqZXeZaFY3K8eKa8qfYoXwHaNunJtenBlcPr0aWzcuBFffPEFvLy8cMcddyAxMRF9+vRxaTynA3M88KAzobyykoXKdDQu3AMPjEAr0ZLCAFpMJchrymd/U8sBQKlF5MNAaCwZIdRaRkSQfvvURdoRBDGVb3NxJZ5/8XkkJSexffPnMz06jNUWEmgdnkxExKVonj9ZMIlMlBZkw5JjQcYTg2DJsWDa1hgUh/RE2ivl8C4LRWqGUiOTUl/MiGNi7wTMumvWVaM4yiC+r9WV1SoL6+l9p1WkjreMEqFLqS+GOdksfT/otS8O6YlDPto1h9XHTrFgGz7gpjikJ/uhYBtzspn17bTkWJjN2pxsVrXc4K/t6spquzAcmRpK15wpPE51Lh2tJdYDWUP55FWaCGc/biORRKruL5yBcUGr8eGwBQDA/s75wPW+1o4sqa4SRx4D3urPfkTw9lh+PfEHUKtiIhzdsE3wW4sEv7VK8qcB4kjL43f9VdW3kUgcoFhQZYRt97xlTCUc99IKZPVps5G99trJNeNXIeGIn24dIz82pbkaWVcEKY9DG03IKktlCuSJXm+ywJukbvUwWwqVc263sQJKKm7/gQtVKb9jYmbq1o8S/n7D39lnd1TWPRiVpaiTInGU1TKmp6Vhb9FGTI8OwySvA9hduwj3lb3IQqT461ZMB3YGn8d96/K2HjiHgwcPYuDAgcjOzkZDQwO+//57vPDCCxg4cCAsFscBeTJ0uM/jtQpPzWPnwc7mZkOF+45gdIzLaVf11Dxqo7yy0u71uRw1j4B6Ekw9rACbMkPgY8rJXkrqowgj9YnOgB+PJviy9FU9q+zm4kpVoI9oz5XV7YlKqyw05fSf/wqfDXVMAaBWHFeL2qgFqncE2q2ryUl2tbN0benVO/LXkBhEIa6v9R7wvTtpPQAsyIYHXdNikBKFRvEQ6xZP7zuNvqP7srpYAHbKO90U4X8TSrdnA5vg9ppHCsbhbadE2I5NPK60tGgnj0Si3EHojEBsJ+LqGHrb82E6q04G4sSulzXXXztDmyDF+/pqpoIPHvQW8hvno+SlTXgxUj22o885WUkd1hG2k0CqUSTlUWz7I5JFWUgOH9LDk1AikDS2GJCjpWaKONHrTSR1q0fuRYUgJnVTri+zpRAWcyzyG+ez3q+AEoYTUaSkYY6Jmelw/FFZ9yAo9gBqC0eqfsvURlqfCCS5Q/j6e76mkb9e3PEZODr2c/T59aBOVRvoCGzeD0DriJsA9AE6VWDOfffdh9tuuw2vvPIKunVTDKcXL17E448/jurqanzwwQdOj+khjy7CQx6vHPgvqq+CgtxCHJ3F5SKQHvLoHC43eSTrH02MZX37CKbwOFVogU9dpOaEuaPgx6NjddQDUAv8efFkEZCrQzKbJQ9zshmTvA4g+eaXAAAxh2qvqjRVPRwfAuCBdGSVpWLJyzcwcgXYlFtnUmz5GxeAomw7m4LLQ0Yco6vPoSoqWBWGFBGXorouxMAbc7IZ2ypsdWLi50IP4mfiUgXmTDit2AH5pFQ+dVX2+FKD6jB56NVU0kTeEVF0tM+A8XNwYtfLCBg/R6Wm0vjJ97cBkLfOIIjfibwiaaTGUaw71AqxCQ9uRoK/P7OVivZRIn5E6GQWV9n4Rvs0GrGrEsSwoRO93kTjUVtAmCxhlUAJqnuLNgJQ/g9vmVpk6BgdgSeKfGDbuKDVzKIanuqNisxWu+vKXZ+Jn1ub8N/Ffa5a8tiZzqtHjx4oKytDeHi4avl//vMfjBgxAi0tLU6P6bGtetClILvD6S7iyCfHaeG22lpPUM4VAv/ek135cvbBJAseT46qj51i9SI0QabaRAB2ASY+dZHYVtEgVR5pW3eBPw698R3tkycIfECKlq2Qt1ISMeJhybGgdVgVACA7MJqlVV7txJEQUdSER74ItSNYBGf6O/LE0ZJjgSk8jvVr1ArcSXulHNZXld8r91Sq6hkBRWWkXo6kTBJxJFsyoCaEfIuNiLgUzLprFvZNXox+UU+iX9STbD0KlzJS50u/f//g7YZfj45AVieY8mo+1ge80yF7nhFMOL1WRRzJaq4H/niNEkfaT/L9baqWJIv71atIK62T8mo+W29xv3pN+2qC31p8FRQktbAa6X8oC6yRhtic6a6Mt9/KrKf9j9gIacIRP5DGtmb8KlTU+KqII0/2aHze2kpqpdgbkvZF+1MtF9bVwolebwJQah79BuepiGPuxUDkN85niiTfemNMzEzkNeWj+tgptoxsqDzSH9cOBBIRa96ElXsqGXGcHh2GEYcG4MSulxlxBBxfV5f6c+GBe9C7d28cP27//+3bb79Fr169JFs4hkd5dBEe5fHyQ1Qc3Q1HCublJo0e1dEeZFXlrwX+dXKn8vjYhLsAqPsgkj2TFDgjISF6qamuKI4yhZO3xJ7edxqm8Dg726oR5dHR8RBxFvvxyc6bV11FKyMpj9tu8r0mFEceS+faB+bw4G2rAOyUW1Hh49dx1FtR6znRwqoF2TXEJwZr9RIlUL9UZ+oZL6XyGDB+jl1YjKP6QKDjLTTEsckWeHD4MdVzev0j9RQgPSWSziVg/BwAYHZVUhf9BuepAoMW96tndXh6LTu0vju1WnIAcoJoFI4UTEc9GgmkZorWUyKQXlDCcxz1etQDEUfAZlVVjdE4nxHznT69UFHjy26wTdsagynh/uwmJW815f92BtO2xuDtX1exx/x7TtBqQWNE5Tayjkd5vHyYN28e8vPz8de//hW/+c1v4OXlhdLSUjz77LN45JFH8OKLLzo9poc8uggPebz8cJY8Ui9GR+vwGBQWpoofp31dKbXxWiWQfD0jTxj5ZYD96+Mu8pj9QzZ69O4BQE0eXbV+GoEj4iZaUfkei4BCKslCy4MnfO4IIeGVVxqTXhuxFhSw9bOkfpKWHAsu/GohMtMSEXixtEv3cHQFPHkkgs2nrRq1naa9Uo5pW2MQur/GMPkzup5RaH0exGuZf8zbUgHHNb6XgzwateB1xB7qCP0H2gJhxgWtNhTG46j+jNRM6q3Hv9bjglbDb3Aeq2s7OPwYpkeHMVvl7tpFLG0WaK/R7WbftkOWrMrDiPLIgyeFMnJp5EbT8SE2UmjoOKK8WB9IUXXcKbHHAsZtrlTnCMCu1pGQezEQjUcT2fEe9qtDBrarFEgZxJpFWwsPfVIZeLEUjUcT7W6cUKKqeI1fiuveQx4vHy5cuIBnn30Wubm5uHjxIgCge/fuSE5OxqpVq3DjjdolOlrw2FY96BJwxZ5ohGDSOmS5EYmjB1cGRBZF4sgvuxzEmiZbZA+U9ePjQVZRI/ZTmSpj5FjymvIREZcCn7pIZjmitFR6TMdKf0fEpUjDclwBTxgoUZP2R7bGkLAQtpysmURcq6KC2fZJpdcWcRRBRJGUbHrMv0Za4K1rRgmhs8SRbKj0noeEhbAfvRsp4rXME0cZjH5m3A2eoE04vRZL565nPzJLHk2g3WHXE/c3Lmg1RhwagONfv4ATuxz3v3PUx5E/xoPDj2FzcSXGBa1mFkVAeV8ODj+GgPFz7IgjgZJlA85O1iSOrsAI+XLGkXB8iD3Z5FNStfaXP6SR1U/yQTl8b8eKGvuSloQjftLlIhqPJqpIIxHHNExiP41HE9E6rIr1t6XnRcjsqrSMiCMgT1ElBF4sBQDVNUbJujv6zpcSRxEeu2rXwg033IC1a9eisbERhw8fRllZGRoaGpCdne0ScQQ8fR49uMag9WVHKiX/29E2HlxaiPZUXm2UKY/llZXoHxjotv3zE2BFzbO01/oZ386dIDIWCiCiXUDUUytN4XFISk7SbQeiB9FeyKuKFBQk9vpT9qvs2xRus9jyVswp4f6Y9OtV2Fu0CPDVtuVd7eCVRr7OsSoqWAnG2D/IbhtzslkVasOH2DgLRyqkSA7doVxrqY/8c/Q84cemH3GgQ3uVQ5wki0E14aneWIr1TJnjl1dkqsNtXFHPqXefTd1bhHHjVwPtwYdL567XHVdLceQn9qQ6joBCFndjEVALYDgAjiBS/V0WgCXmG2D97zEMeKs/Fg9TkljvK3sRAPD0vc85dY4lL20CIuWKlbOKpAzU8kPW+iM8uFllQ+VTWcODm1FR44vFn6Vj55BnALS35IDNrhrv78/agyw5I1eBl5zpDhzx0yXC4cHNwNnJyAdU5JDHsGI/oFghfVrrALCzq/KPjeBMxnsIbL9mDw4/hvvKXlRZo0WlWkxbZeeU6o0JmWtVN1MulSLfGfFOcDB8rpNrby0//wzU1ODuu+/uNGmrBB8fHwxu75naUXjIowddDq5aVrVIoNH1PLj8EFVHR+s2NTW5Zb//fO9L3bRVLegRNNGiuBnGJ+Ji+wWyier1hyQl0FX0Hd0XpTnZLGmTWnVUV1ZjSrg/xhdaQBV0snYSdRUFSAxX12byjeevVdD7o2VPrT52iqUh8r0VgfbaxpCebF1nbKjius4QR626Rq36RUcWbDEUR6ZMErn853tf6p1Wh6BMiOVJsDSB5ifThIDxc7C7dhEOFuvXJWrtU7GQor1vZD0W91sAAFh1UrGvHgQQDueUWBuZtR3n5uJKYLjt/fhw2AKsOhnIlEXqW4laAP0CsbPdNrnqZCCOTTyO9QHvACcT2fYner2JgLOTDR1PwhE/IHI+8oc0OkUUeSKoVxPJPydTKBPaSV38rr/Ca4BCjq3HUrFzvEIWn961GF7pLyC/4RlW70gEUtXew4D6meCAQAJKqJCWDdXZukVxfUfbZ2A7sspSEZhaiorMVlZbO+LQABzvq6yzdO56VGRCRRzZNb/OdrOF3dToy1/Lx4CvnTqFqx6ffvrpFbWtTpgwwfC6O3bscHp8j23Vgy4HkdzJHjtDHOk5D2nsnCB1UbSpivWP5ZWV+M+Xl26i2VEoalwc+7ujVr3SgmxV2iaBT3rtiFWVaidD99dIW3PsirWRQN7GWFqQrer1CNiTEWrTcS0F5ehBDMAh8MSR0JGaxaqoYBSH9ERxSE/NRFYZcaT3XySEfF9KHlrE0ZHtW4tUXgrIAmp48GSR6gXpeIh8kf3TmX3SWLLP/uJ+9U6PSdjRdz5Tivhj5ffD966k5feVvciUxfiWs8hty4Xf4Dzs9OllpwY3Hk1ERY2vnV1Tr4SgIzWPzkBmW0044seIIwB4PbbSrqaRwC9P8Pd36rh54njYrw4JfmtVjwG5DdUdmLY1RlN59C4LhXdZKKy1icymGp7qzazLPCGUoSKzFRWZrSp7NV1jpDZWZLZixKEBLMlXCx6r6+VFnz59DP+4Ao/y6EGXgkx1FJdprSMjh52ZOF6rYTl64BVI0dI6KCwMBw4dulKH5hScIY2yEBqGdocTrwA5E0biCLzaCNgm/ryCSOmf1ZXZ3N+2Wj6ecFZFBSM0xwL8eSoAud3sWkBeUz5CJcstORZ8/Eo5YJmhq9C6QiCjq8/BPDYMK4+dUv6GLaWV3jeZUp2bk6t5HcmIoxamR4dhM+Icpq1eSsIIAMn3t2F37SKER4fhxW69gVqlfvA+iW1WFvpDn6+V62Yz1UaEzMZHZPVgsS18hkypfHsEQFEzKzLXAhrjy/YHqAkvr/7ypHd3rWKVbTwK3NdOgltMJVhVDoQH98JsayK8brgBEYWVKI3pjekX89B4NJG1mAg4O1lJDz07mX2vlldWAsL3rvX24/D60rlegOL/Ar4Xo+w5EflDGpEAG+kTQ3PQ0IC29jrIGyLXAPvXIOEIgMg1yG9Q1Mbd85YBkWtUY8hsq46UxsN+dRjaaMLQRhMAYGijSdeSahTeZer/HHzvR1IYAdsNjhZTCU68OkO1jagcEujv2ScexoC+/aV9R212bvV1TsSSiKhoub6WbK2dAa+99tolHd+jPHrQpWG07yKfCOdMmw8+UMfROs6O6cq2HqiVSD4451L1fOR7OxoJMnEEUl+M9HLjlRo9C6o4GTcythHQ/qnejVcTSZnkl4lWTPG4xBq9a404Hh+iTOqj67S/egstM2DJsahqG92F0/tOM+LJK5qytjM8gdK72WHUGk3XI99G5nKDSBaRN2tbqt06PEmkx+LzFZmtbCxeUaG/ZcQxPNUb44JWY1zQasw+8TCstUo4Tcqr+axtBtBeT+ZCDZmojuqptwqJVNJUAWCS1wElebXGFzhZj9y2XJTG9EZEUROSutVjd+0iFqZDje71iFDCET+niSOgna5q9P+EqBbKWovcELnGoapIxDB/SCPCg5uVUB3hRw+iynjYr84txBEAtltHsp/dtYuwt2gjs7mbLYXsOXKlTPJSKobDU72xct1srFw3266vqAhKXQ0YPwezTzwMwP46Ck/1xsHhx1i41LWWmt0VcerUKZSWluKjjz7CqVOnHG+gAw959KBLwVWFkEijUbIp7s/RNjS+FjEUn6ffnVHx7Aq4Uqqs2F/RFZjC4zSJHW9lLS3IVpExnohp2f8uVWol1WnyyZuAvc1SBBFv2fFeKQJxpZHUrd6OZPM3JfYFToU52Yzo6nOw5FiYzdQd0KqzpMAjusbEmkWt69XVEJ3nX3wegO06vpxpq36D87Dhsw2MOK4PeAf3lb2oqdbzJIysm+Gp3tjRd77U7kcTcz6xdUff+Vi5bjb8BudJj4lUItoXTcqNQI8EOALtd3G/ekYS1ge8g6Ru9ci9GIjp0WHIvRiI0pjeWDIsE/XdIlDfLYL1IJR9f7kjCMcV2BHMKC8AigVVtNkSIdUipR05B1IbSXGkZc5i2tYYAIrSuLdoI7zLQlFomQGfukjEmjch1rwJLaYStJhKWA9In7pIzLprFg4F5ONQQL6tphVgpJH6edI1QzccxBuOtN59ZS+qPgP8D31mwlO9lVrd9lRfMWTKY1m9sjh37hwSExMRGBiI+++/H/fddx9MJhNmzpyJlpYWl8b02FY96HKQJaLScoJM0eNrIZ0hbeK+ZGmsjo5Ha1yj63qgDyOBOq6gxVSiaq7ujp6Jes3U+T6OjkD2P9Gy6ipaTCXYVtFgR5Bl58nsrAVqq6OMnPBN7QHHhPNqR0RRE0q5x+Zks2LlbceB19OwEkB0++Po6nOoigqGWVL/aDe20GtTbz1KwgWUa8mcbGY2aEfBT3ztLkHsg0qP+RsHsmtJLzxqenQYXt/xmcPzcQabiythiYkFlLmx0johpjdKUY9cnR6UpFZiWCYiipra+zKGqRIneRJXkdmqeu7g8GOYfWIBwPXWW3UykI0tklQeoqKptqnqE0dSEPVANY8A0GItAcyxzKq6ubgSVU35KnskAEws78QtwqO8WPuNLMsFlooKOFYx+VRWd4K3rWZgOwAgv3E+Wzax3Iq3Bnmx9aeE+yMWNoLvNzgPszALFYWtyPC9EwtK1mLS+AOK+li3kbV6qTjUCjyuqIcHhx9TCOTjCThYpgQxoXYRpqdqB1ptLq5sf95me/Wpi7Srr/epi8SGzzbY9RUG2m9+RNtufogW1wmn1+It7/91+jXsLPiypkbzU0e0uTOlrS5cuBAlJSUoLCzEvffeCwAoLS3FvHnz8PTTTyMnJ8fpMb2sVmsn/g/QecGahX7/fadpBHo1QyQGPFnTqmek50RcSaJmNCkW8NQ8uoKmpib0+eUvO9xQfOQ/5+DCbQfYZJ0nkDKIlr+8pnxMCfeXfrHyEImkbn1jO/jUVmeecwV69WktphKHZIYgvn5Zcy5gd+0ip5Mquzqoefl260jda0tcVhUVjOpjp/Dxkk+Q8YR9Cw+C7DqMrruOvYcUfiOSvo7cDKHJ5bKjG7B0rPI/S++6EG8m8DcfZMdwseU8Dvz+5Q5/prN/yEaP3j0AQNogHf1sbX68umey3nw8meObvWu1GqEgEiJ4B4cfw7ig1ar9DXjLVk9G/RdlqiSv4PA2VpGo6pF9WysQYxgTM5PZIIk0kLK1t2gjxsTMBGBPHsXvNpl6lz+kEfEtZ3UtrXrkzkgSq8xSmnDEz+G4Rsbh+0A6A9GySkRxaKOJfd/zxJHqGk/sepmFOo0LWq3qSyoDf13wqak0hpa6TsSQvq/oPS60zGDvPQ+vjEGqwDQ9aH0HdvRzfSVA/0uWQ/uWTSuA54BOdV6//OUv8dZbb+GBBx5QLd+/fz8mT57skoXVozx60CXhSh9GWQqrUegRVKPbG4FHgew84CfAPnWRqIpqsOtZSOuVFmSrHocCwP4amJNt453ed5qlU5Iik1RQzbbzqYu0m/zTxJzAqzhaxM5dxJEfq66iAH1H91Udy7aKBlXoi57qpZxbJEoLslEc0hMjb34Ju2uv3cAc6htaFRWMKbBvoyGSL1YrKiGOWrWKALAPi0F5u5uLK+3WJSsyQVQPRYjvb0RcSnt4EoCj8mMXoUUc+VCmYtPP7ObLd1X/T3c8Z5DUrV6pNRSJowC+FjIpJhOlUOojZ3NiFC2PKGpSbqTEWmD97zHchxfRHwsBSrP8Gsj5GshBfyydux6biyuxdG4YAGViTyrP9ME21ZMm98f7qm+uyNpx8JC5GvSIo0gaAIW4jC+0wJpWDm+vUOyuXcR+E6kA7G/gEkTSyIfeKM+5ZgmlMeg3tQAhkkf7pd/UlsMRcXQGrhBHwEa0iSDSby3iuLhfPby+7I/+7dcPoFxDgFqFltXGbi6uVG7K9QWwDliauh7IHMAspQS6VkoLspH+K2XZrljl96isDar2H5Tm+vGST5Qek2nlGJ9h+19kTStnf+8t2sj+Vr4XbcdmMcciqywVu2sXYc9dc9AHLzt87TzoOFpaWhAQEGC3vF+/fi7bVq+o8piVlYUdO3agoqICPXr0wG9+8xusXr0aYQ4Ul/Pnz+PPf/4zNm/ejO+++w6/+tWvkJqaisREpaC7ra0NWVlZ+Pvf/47a2lqEhYVh9erViI6OZmPk5OQgJycHNTU1AIA777wTf/rTn/Dwww8bOnaP8nj54YotsaM9HLVIX0fG0SKx4pge5dF5uEt5xAwAN8jtqaQq0iRZ7MXHk0j+by3oKYyyOkee0DlLFGWTRWcgUzadSdw0J5sRa94E77JQNqkt9X3hmiGQRB4AMCK9dGwYVu6pdDpBlb9uZAoY/5zeMv5v8b3kLcaya5hURH69bRUNdsFIWsq9FnGlmxWWHAtwAcAm1+/ks8/0mcWw9vgzcLKeKX8AmCrz4bAFKvVRD6vKlTpBmVpJtYP8PgB1Emrj0UTsrl2E0thsRBRyrwH3mG+lQJDVN24urjRkTdUCr0yK14poVaTJvyyIhodI2PT6NYroqPIoPu/s/xaenHYEvB2VwJNEGag2Mr7lLFJezVfZPHk1G3AtvfT4EGBBiWKhpveWlEWvjEGwppWr1GWCd1koszCLzwFgtZjizU4Z6Bp75Df9kfKLlE6l0DlCV1Uex4wZg1/84hfYtGkTvL2VI//xxx/x6KOPoqGhAe+9957TY15R8hgdHY0pU6bg7rvvxsWLF5GamoqjR4/iP//5D3r21A4IiIuLw4kTJ7BixQrcdtttOHnyJC5evIjf/OY3AIBFixZh8+bNeOWVVxAeHo49e/Zg4cKF+Pe//41hw4YBAAoLC3H99dfjtttuAwD8/e9/x1/+8heUlZXhzjvvdHjsHvJ4+eFqTVtHwmlk5NPZWkW6Q6tHREVl00McXYM7yWPIYHviyKuOjhQWIkrpXoOQbi3XtBvqKT16cIU8AvZqZkfG1bI8yhQsIt2AkgC4u3aRUkdWOvuaII9EHEsLspH2inI9mJPNLFXVKHmsigruUHDTdKGuD4Cd4qVFIrWueboG6NqSXUOymwyOrNnVldVuI4/su/pkPas13F27CKUxvaWpq0axyia6qKypYvsNvuk6vc5E3Pj3QqyVNGJX/XDYAqw6GWjInqr1+R8XtBpL2us5KRgIUGrtqP6REHB2sub48b6+2Nnc7DKBJKXSWZspv72r4Me1a/PRDuoHubOhAfHP/gE7//IP6ViH/ersFEc9kFWVXm+CeH3wn13+WnEWdK65EevZzQweIw4NQPbjCVgf8A7bLwBmwfb6sj8WlKxlScH89vzxkTWbtiUSWnr/jUCfVZ2KZDlCVyWPR48excMPP4zW1lYMGTIEXl5eOHz4MG688Ub861//MsR5RHSqmsdTp06hX79+KCkpwf333y9dp7i4GFOmTEF1dTX8NZq9mkwmpKamqopU4+Pj4evri82bN2vu39/fH3/5y18wc6b9nRURHvJ4edER4miU4AGOQ3d4aAXl6I2vNxYPD3l0De5WHo2QRD3wqqRsLCPEUZyI85M/d9c4akEkg7z6ypPHuooCFJt+RnTddaz9Ax/MQne7n7v1Paz5aDnrl3ctYOnc9UhKTgKgEEAi0oSVeypVCjaBJ26u3miQKc4yRVIGW59PxySSVw4B7evSyHXL9utm8ujVXWkab7YUwmKO7RBxBACctCmQpEgOeEuxqNKkXGsyDdirwDzJpJpHekyJmSIJdRXUquPErpcRMH4OlgxTXhuyForrtg6rgndZqEPlkSAjkLwyqPUcD9l6PPR6QYrbaI2vBS0CCTiuf+TJI0EkkaQ0kko5tNHEkmH9BueprgXAdj3wNYyX6/8n9UcF1NcNj4Dxc9hNBq1rk2pqH7rtZazqM7JTkSxH6KrkEVCUxs2bN6OiogJWqxV33HEHpk2bhh49erg0XqeqeTxz5gwAaJJCANi1axdGjBiB559/Hm+88QZ69uyJ8ePHY/ny5exFOH/+PJNmCT169EBpaalsSPz000/Yvn07zp07h1GjRknXOX/+PM6fP88eNzW5ZhHx4PLC2XpIV3tAOgrscVRvyY/hIY6XD44+1/wkWexnx9duVUUF21n1RGyraEC/P/8Vff/0jHQ8LYjWVRPsbatG1MIWUwlTuVYMnmV4u9KCbEXt4pZF112H6v3Ka1NdWY3qSkWBLDb9jMTeCTD1BkzhyraJ7YSCAnZ4i2NS6Ww43w2ua4Empxs+2wBzshn7AqcCAFa+nsbWoaCZlXsqgfa2HCEDbgIAhOYotZGICkYo12+UCLkREjjrLuX93lynbr+h9f6LSb6mcGWZT12kEsIjhNwQ0aObDNWVSgov3ejgVUe67qsrq2EKV5bxKcY0ptJX1LglmuDoM83IYkAiUAsAXP0jTwIHQUUMtbDTpxfi2/9WtuHtyeoWHNNTlfdZTFelyfjm4kXAcCActhYIK9fNxlIoyZUy4lga0xvwykCWRQmh4q2mvJWQfvP7JhVoemoYGo8qpHHxIAD96rG7/SvNFuaTB1wEAoJthIcCX8SaR9HyyRM0LSKnRRDzhzSioo+vkpiqAXEsfntnCaMMRBTjubmpI+I4fOB4oEC5SUKkkRJXZa07aBmRxpwP5tvqFtvbttB7H46w9p6N9vteOnd9hxRJLfgNzmv/vCjYXbsILbFqFXtc++/NxZV21yFAN7FmIta8CeebjN2A6IzoXTIEPXyvlz53Q/NPQOSRTpW2mpWVhYCAADzxxBOq5Xl5eTh16hQWLTIeqEXoNMqj1WpFXFwcGhsb8eGHH2quFx0djffffx8PPvgg/vSnP+H777/HnDlzMHr0aOTlKXc8pk6diiNHjmDnzp0YOHAg9u7di7i4OPz000+qL5WjR49i1KhRaG1tha+vL7Zu3Yrf/e530v2mp6cjIyPDbrlHebw8cEZ5dLVtgzPE0ah91dkxPcSxY3BWedT6XJPyKEJPidRLzZQ954z9UIsoarVB4NU+fhutdhyO9t13dF8AtkkAb9+lICB+30SkSZUU1at9gVMRc6j2qq93PD4EiGheCMD2HoyJmYlpW2MwJdzfUK0jke1Y8yak1Bdj202+hhUnrXRFI+DfM5k1eXp0GJ5/8XlN8km1kPx1b04225FJ8TlAsLg6qTxqfabTPvge6SNt26/3UuYLSd2TbCtZ01jKalK3esArA7ltuZhtTVTbU7UDb9l6rlhIiUSKVkWC7H0kGyHfbkMLPHEccWgAXkxTSB6fHjv7xMPY6dOLOQP4fZfG9EbuxUBmW9Vy6uj1SaSgGyO2VK26Q1koD78t7UN8jl+HVxW1kmEJ415aB20KkwAAi5dJREFUge7pLzAC6WxwDp+26qjnI9U7AmBpqQSREPK9QC8FYRRBLWdKY7OBx+3bLtF33fhCC0tj5a9vvs4y49FBHXIUXAmQ8rhWhzz+2PwT5kce6VTnFRwcjK1bt7LSPsInn3yCKVOm4JtvvnF6zE5DHufOnYvdu3ejtLQUv/rVrzTXe+ihh/Dhhx/iu+++U+xlAHbs2IGJEyfi3Llz6NGjB06dOoUnnngChYWF8PLywsCBA/Hggw/itddeUyULXbhwAcePH8fp06fx9ttv49VXX0VJSQnuuOMOu/3K7mbecsstHvJ4mXApevgRjLbPcKUvozPkMd7X1/FKHujCWfKo9bkOXh6MXw1NsKluBsiWo6RKfjJOcKZFgqyvI788r0mZcCT2TlDd9SVrKe2bkl755FcjkFkfW0wlOL3vNHusRTZ4MnCtkUdsUVQHR/0uiWTRevxrSDcDZIQCkJMKo7ZUghEVko4/NydXVScpXts8aeTJLyUxOqp/7Ah51PpMj/znHByYfBNbnlWWypS3FlMJZt01y67HI6/WEUgpXCz0ayRCScE5HbWUArb38Ol7n0N8y1msOhkIv8F50v56zr7frHYtSCHREUVNbJmsfrI0pjd7zeq7RQBQh8E4Io88oROhRfCIwJHi15a+ELvnLVONI1MdxX3x1lat4zEakOMseeQtqQ7Hbm9jQudESrNoTSV1kcjlpSaNMkw4vRYvRir7zY1Yr/q8jAtajRO7XmYhP2SzBYCi4UHIDozGzg+m4UgnI1mO0FXJo7e3N7744gvceuutquXV1dW444470NraqrGlNjoFeXzqqaewc+dOfPDBB3YnJ+LRRx/FRx99hK+++oot++KLL3DHHXegqqoKt99+O1ve2tqKH374ASaTCYsXL0ZRURE+//xzzbEffPBBDBw4EOvXr9dch+Cpeby8uFTk0Zm+i+L6zgTwGN2PR3nsGNxd80goDumJkAE3IXR/jbTdAU+aZIoLTwQcqS6uIK+9ife0rTHYN3kxAGDKqWaMrt8KQLtGjSfGvIoJyOvR+N6O9DrwSiNBfI1E8kiBOVc7eQTUtY48qqKCAQD9op7Eyf1/U6m1VC8qI/dahJ+WG1EbZWmrjoKUeGup1g0PvbRWLcWRQOPareOmmsfsH7KxoNdcrCoHWodVAQDrZ6gHUlMolZKSJfmE0+Nfv4BjE4+rLK7Dj44E4HqycYupBIcGH2A1mvmNykQ9wW8t4JUBWNNU65sthWx/fIKq7H3lA3EoNXb40ZFsvQ+HLWBK5vToMCR1q2fnOj06zCF5BOwJpIw8OlIhRfsqACT4+wP7lf3qWVL52sr8IY2oqPHF4s/SWfsOHnq1jR0FTx5lrU1ElLy0SVUXWxqbjf4v2l5nIpR8PWRnqBvnW4iIy/ll9P4k71mNnFWLOxXJcoSuSh5vv/12pKWlYfr06arlb7zxBtLS0lBdXa2xpTauc9fBuQKr1Yonn3wSO3bswL59+xwSRwC49957UVdXh+Zm2we9qqoK1113nZ1i6e3tjaCgIFy8eBFvv/024uL07/BbrVbVHUsPPAA63u7DGVxKhdUD4wi+PVj1OLr6HJvclxZkMxWuxVSiUlzob0etOcTJP/WKdNT2QiR4dAxbphbBuywU+yYvRkVmKyoyW7HtJl9W66aF0P01dvukejPAngzEmjepCEGLqUSqytJ2/GvF41JN1DojkkpnIzcnl71uVNeX2DsBib0TEHNI/f+EriHxdaurKJC+/4D6fdpcXMkmnlrry4ilI5KjV6M7PToM06PDVNc1f53EmjepzkdUXQGwmslLhdOf/w+8umeqFLVY8yb2wy8bX2hhf8uOFQCzt06PDkP/gQuVBNeTNjXy0OADsJhj0WIqkX4GALDnWkwlKnVzenQYLOZYeHXPRH7jfFj/3oaEI36I3/VXhURa0+yCfp679T3MumsWWkwl2G4dqftaiOmpOFmv+l9BCZuAcq3kXgxk73FSN+UcxTAYHjKFUc/K6qjthmr7/fp6R/8j9sQRUP7neD22UrrepSaO4t8iEvwU4lVR44uA8XNUCviC9Bcx4fRaTDi9VmVT5Wtf6XlxncuJHX3nSxVQcRm97oV9k+3W9eDS4PHHH8eCBQvw2muv4dixYzh27Bjy8vKQkpJiVwdpFFc0MGfu3LnYunUrCgoK0KtXL3z33XcAgD59+rDwmyVLlqC2thabNin/3KdOnYrly5fjf//3f5GRkYHvv/8ezz77LBITE9k2n3zyCWprazF06FDU1tYiPT0dP//8M/74xz+yfS9duhQPP/wwbrnlFpw9exbbtm3D+++/j+Li4sv8KnhwJWA0SVW2vjNWVK3xPOjcqPmyRlrzSFCSL+0n22LaJKCdKEn2UbFpupay1GIqQV9TX5TmZNsplXuLNrKkRkJS6WwsKFkLn+GRMCc7bt5Oqg+FmPDnw+/HUqAeJ68pH4ntKhlvzSQiINvvYb86RbH0fcHuuasN/Y8AK4/MxtK5QBKSYAqPQ7EpH4ngCGKTTYnkU1jNyWaU5tjqS8XX0pEayN8E0LInG7U6KmPpk1FlwqtWP8fEzMTeoo04XXGaXR+ya0KvPtgd2GkdAyBeqSsssycMQ299T5nEW2YgNq0c7f3SmW11Q7vi6INI1TnT7921i7C7tt0O2h62Y0UiEJCoEMsgeR3kocEHAADp3aoAKGMRQctvnK8oc6cz0f80MACZOH4EyB8yHxCqHA771WFvUSU7PoLspgDZdYFF8Bts37oF4INybMdjthQijSPazkCmEiZAv/aRtiNyqVfH6AgJR/yQ72StolHIbijLvu9taas2NfKwXx3SMAkJfmuRVZPK+n+OSH8RIzAAgLpH6MHhxxAOIaH3kC2V1x12aQ+uLvzxj39EQ0MD5syZgwsXLgBQxLVFixZhyZIlLo15RW2rXl7y3jevvfYaHnvsMQDAY489hpqaGrz//vvs+YqKCjz11FP46KOP8Itf/AKTJ0/GihUrGHksKSlBcnIyqqur4evri9/97ndYtWoVTCab53zmzJnYu3cv6uvr0adPH9x1111YtGgRfvvb3xo6do9t9fLjclpXRauqO9RGo+06PNZV1+Eu2+rIf87ByePFrJbQUc1jXlM+ouuuU9nujNYzGu2rqNd7z5xsZsoBTyABsIbQehNy0TIoIxp843bqT7h0bJi0KTyBrJc80l4px9BGE6Ja89DnXw3wGpB51VtXAS5sop3I8X0vZa8lr3iJwToRcSnsPXVUs8q//q60+hCvTz0iqhXyoqco8qQRkNxscFerji/K0btXL7Z8wFtKzm//gUqg0YhDAxCe6s3aa/DhNUTy+debrwEWkyWN1h9+OGyBXZprenfFUpuB7Yo9db9Vnib6QDqsbalsfcBmqRVBNlbRwkrW2xZTicqWazHHai7PKktF67Aqpyyrzn6+ecWwI4SRxtIDWVapllG80cv3daTHYs2jOF/gE1X1FMehjSamOgKKmt14NBEndr0sbcfC35T5cNgCDHirP7Ox8jcAOoON1RF+bm3Cfxf36VT2Tkeg/yWLFwPeGr06WluBVauA0NDQTpO2SmhubsYXX3yBHj164Pbbb8eNN97o8lhXVHk0wltff/11u2Xh4eF49913NbeJjIzEf/7zH91xN27c6HDfHlz94ImhrNej7LE7wH9BieMTSfaQyCsLmjAbCcuJrlMqAPhJMt+KwMh+HEGvHYglx4LNcZUojc3GgvQX2fLwVG988JncMic7Bi1SkNeUj8TwBKAOqIpqwO0+Fgwfq0z2qQ5UbMcghgMRCi0zMK2iAYh6Evf94keHx3a1YEff+TjuC+TmhCEpOQmhAKqgKI0/Jn2LWL86JNZtREiYokYToQRgl8jKgpwMkEGjNZNaoOvYCCHiQ3QA22RXJFw8QaS/L4XayGPsZy8j7vYXWW+6/sOPtR+fcrw0WSd1kFcJiUyZk4EWqIOjZK0xNnxWAh9EqgimDOsD3kFSt3qVBTW9TWkWj+6TkH4hFTubGzFfUit4W/lEwOBXhEgc6biyyg5gNxbBYo7FcxToYt6EWABehwYBhwCr2fYaAMCSYZlIwyRVz8IMrGU1mR0FTxzdAUf1lLwCHe/vD8wci6/+8g9pWw5HxFEGPRIpLpt94mGktBNHqmnke3/S7xGHBmDA18rNjx1952NC5lrWBsaDzoFPP/2005FiX19f3H333W4Zq1ME5nRFeJTHK4NLoT5qKYLuJo2uKpgeEmkc7lQeu/kYuysn1pV1JFHVEURrqAhzshnbKhpYaA4AJCUnaVoBKTBHVLFkia4AVImtsqAc2fHI9lsc0hMfL/nElr55DQTnEPj2HYA6vn5v0UZVaxRATqo6GrAkI5Bi0I6z6Z16kI3FK/Ti9axSId2kPCYvXoUhy/sCsNX8aZ0fHzhDx0/WTQBIwyTdsB1RjXQECuA5Wj4RgO1/fnr3KmRgO6y1iUwpBYBjc9rYc/wxAWCfKVIN+cd8v0daRvsnlMb0RhomYVTWPfh4ySfS4+X3C7Tba/3UBFIvEdURHPVp7ChkBFUki+NeWgEA2D1vmZ36yG9TfvQoBg0eDMwci51/+Yfufoks0uuXhkns7/zG+Sh5yWYJ5pVHUdHnb9JMjw5jSqNWOmtnxNWuPHal83IFHvLoIjo7efTqnglrWyr7fTWhowRSKzHVkX3VnXCmF6WHPBrHlSCPgDxBlYeWDdQZUikSOK3ekaH7azT76WkmWnLHKSOOZFfV2q9RkEJJ6bX9op5E3z89g9ycXCSVKhOea4FEEoEkBbH62CmEDLgJ0XXX2REpWW0sLe8I6H3mJ6GicihbX28sIxBJqqNt/3s4HzXP1XT4M532wffw9lW2J2JIE2+yFJN1lazfAePnwG9wnoo4Eijd1F0ge+jEcqvd98NXQUGI9/XFzvagwMN+dZhYbsWjFx5lxJMIXFZZKusTSRZcOlfxfSVLvqyhe15TPt7+tc0SSwm1gHbbCSKQ7LeLllMxMdWd4HtIjntpBSof+V8Atu9/njQSeGIJgPV75B/z4G2rMlTU+CI8uFllWSXyeLBdEedJo13AkQa6AmkkeMhj18YVTVv1wH2gOG/63VHiSON0RnSUTOkRwttqax0SSnfAGQLsSWDt/IiIS9FNo+TJGv+3VhqmDDTBDgkLQURcipTATQn3R1VUMLZVNEgJYnVlNeoqCtixUvJrVVQwIyPU04/fr09dJNvvtooGth2/Lf3mX4uqqGCEhIWwxzTu0rFhqD52Cvu9ExERl4INn21AVd2tsB5LxfEhYD9XK/ofUSbzuTm52DK1CEvHhmHL1CKV4kig14zeH3OyWfdaMwq6nsTgFz21kY5FVEKcuQmyubgSz7/4PBuLtqU0TwI9nj/n0vWwazyaiP4DF7IJO9+PLmD8HCzuV4/NxZXIKktFfuN8ZJXZvk8neR1gRMuSY7H7cQSZdRdQQlWojvGtQV54a5AX1ny0HOu98pDgt5Z9Pz164VGWrmq2FGLNR8sB2Ihx49FE1ouSyMi4oNUYcWgAe21DTd9genQYZt01C7PumgVL0yGMODQAIw4NwMtfLmBjLe5Xj/TaXhjaaJKSogS/tXZEKMFvLfKHNCJ/SKNTn2VXPvcd+V8xaPBgRTlsx+55y5RekhrkUCSOBNkyHvy8Ijy4GRU1vkjDJNU1FTB+DgD1Z3BzcaWKOOp9PpPvb2MtMyh59Uqlr3pgHB988AFiY2NhMpng5eWFnTt3qp63Wq1IT0+HyWRCjx498MADD+i2Hbwc8CiPLuJKKI8iobtalUVX4CrBIiupWH+oVY/oyvjiuK6O6VEgHeNKKY+AvN8jgX+sZzsVG6XzPf/45XqQJb7KII7rCI4UIkrV5Nfn9yWCgnPufMesShid5HUAj3yhtB0hNRK4OhVJ3sJKNsOMJ5Ru8zK7c2mBfdKuDI7eK2eUQvFGgqhguaKgi+vLLLOEH5t+RMovUjreu/XMYuT6BDNFh+rH+McB4+cw1Y7UR16JBGwTfABs3Q2fbdAljGTDjTVv0rS7kvJIdlHeNrq3aCNaTCUsFIuOecNnG1RjaF0XIw7ZUjtVKZ3t50XN3EVEzpuBE73eBKDU4+30UQKHTvR6EwFnJ7P1EvzWMgtmfuN8xPsqUbA0PyHFVK+noxGIJLEjITpZfdqwxHwDLqQvRPf0F9CWvhA3pL/AEllJNSWFUrSvallZeYjf9bKb0US68xvns9daVjssC87hr2FA6TfaVdCVlcfjlSvQu5dcemw624r+YcucCsx555138NFHH8FsNuORRx5Bfn4+4uPj2fOrV69GZmYmXn/9dYSGhmLFihX44IMPUFlZiV5cCNjlhIc8uojOQB4JRB7dSSS7MintiFLn7vpHd/eI9BBIfbiLPGIGEDHJtWTKPy74o9SSJ0sy1SOCZEHVaggvW5/Cffj90t+80uNMwqtWzaY4Bl8DqUeQCcUhPTH6wmy0zDLh5P6/YcvUIqTUF2O/dyKWf/Mgq9fiJ81JpbNV0f1XA6FcOne9lHzQ686/fzLCL3svRVVPDzQxdXRN0DWXm5Nrp344SyDF/RNkttmLLedx4Pcvd/wzDQDWNGSVpbJ6R7J2Akr7Cr7xOoHSLwk84SQ1D7Apfo6SZQnbKhpUN0186iKRE5yoCqKZtjUGodNqEFGYYlefqFVTyRNIvbpVWTIuYCMk9LoASkhO7sVAJHWrR+7FQAScncwIJK84AmDkcWdzs+rGLK1HZDK+5ayqjvP4EP3P8/EhgPX24/D60raNO4moFiiN1VkYIY4VNb5YMkzp5Rnfcpb116zIbMWOvvOxdO56Zqumx3ZjcDc2xJ6KtH1nxNVOHl09Ly8vLxV5tFqtMJlMWLBgARYtUv7HnD9/HgEBAVi9ejVmz74y76/HttqFYG1LVRE62WNnwFtdO7NN1VkMCguz+6Hl/G8RvCrI21c7QvjEcb4KCmI/HnRevB3s41LDclN4nGqyRpN+CigRG47zlk4RRMRKC7LtjoW3MJqTzSgO6alKheUn8lrEQq/pPMGcbFZtPyZmpt24NAY/EZaFBtF4hI+XfILd85bBZ0Md2zY7MBrxz/4BK/dUYlTWPchrykeseRMSM6tQ3y0CWX3asHTueuRGKD9Xk8U1Ii4Faa+Us8f0+oo24tKCbId9RHkrqCPQ9eqI7Ofm5CI3J1f6nNY15gpE9fH3D97u8lg8znxRDnhlMAvguKDV2Fxcid21ixiZJNvq5uJK9kM4OPwYDg4/JiVjfLgOWbf5a92cbEbaK+WINW9iP1PC/ZnaSITv0QuPsm2mbY3BlqlFMB8yq4iijDTSjQdReeQJIGFc0GpVLd3m4kokdVPsuY1HExk5VvpWLsKSYba5QURRE1MceeUxv3G+KixnZ3Mz4n19MXjQW3b79+qeiQS/tdjp0wtrZzRi7YxGFmBzbOJxu/X5zzdPHOk5V0HN6h1BJI4JGvbUcS+tUFlXB734DAA4/L7PvRiI+JazAOzfr5XrZqsI48p1s7Fy3WxUZLaq6nLpul06d73KtnqlcCX33VnQ1NSk+jl//rxL43zzzTf47rvv8NBDD7FlN954IyIjI/Hvf//bXYfrNDzksYuCLKsdHYN+8+NdTUSSICOOIomUkUV3BebotebwoPPh1lt+ieKQnlh2dAPymvI119N7jmAKj2NBMapUw4JsmMLjYAqPM1TDJtZK8nWPS8eGMZLZYiph69JEk1ei+o7ui76j+7a3YFBP+mUTU34ZKYH8mOLf/KSZJtKEbRUNbJ2U+mI22doXOBWAMmGm84muPofQ/TXIeGIQRsa+j1FZ9+CRL0Ix+s1VGP3mKmUSv8UL2OKFiOaFXZpA+tRFYkzMTEzbGoOqqGC758X3SUvlo/d9enSYSgHnn5fdjDACZ5JXXVEhSc3jLazTo8Pwz/e+dHosLWRZLiCpWz2SutXDb3CeilyTgkjhOHQsu2sXqWohxeMl6yqBVwjp5s7KPZWqvoiAzaYqbkfYMrWIrSeuq9XzdUzMTNU4fL9KfhmdI5He3IuBKI3pjd21i+zskbkXlT6U9d0iMD06jFkrCUQaxbRV/jnANs+gH7K2ArbkU55Q0g/VTeYPaURWnza2jSPy5+xNpaw+bap9aSFfx6balr7QZmf9yz80SeNhvzpp644Tu15mqiPVLPJtZABboipdk7trFyn9QgG71FWx568Hlw+33HIL+vTpw36ysrJcGue7774DAAQEBKiWBwQEsOeuBDy2VRfR2dNWjUK0p3Zlu6qrcHcgjYwkemofLw/cZVu1vNIfj5t/yXrtdaQtAg+7Jt1OTuJ5C6mYwMm3NyAyqrUuD70aumVHlZoq6jMo9prk7amUwloc0tOuoT2dK5/USjWPABc2MXMsvhxdadcChFqQbJlahFFZ92DkYxk48Hoa2w+d+6y7ZjFra1fB8SFAboQySRwTMxMp9cU4uf9vdv1FxZpaI1ZVsSUHjUHvQ0d6QMps2B2FTCl1Z82j9Wwy0E8hQ17dMxkxIpANlUiV7GaKkf8F4nYi+eNRaJmhGvPBQ9mwppVrrse33JCNn94WivTuVaz+eFzQalVbkjExM1WtIgBb6whKkOX38/S9z7H0UJE41neLsGvbwdc48uDJIkFcjyegMjIKwGGCqxZhdLh+lJeKGFbUKMfrrGWV0lq7p7+gWw952K8O3mWhCA9uZsrjfWUvsgRgUhx5MsnXNwK291a0ppLyJ9pYOxOudtvqt99+qzqvG2+8ETfe6DhHQbSt/vvf/8a9996Luro6BAba/l898cQT+Pbbb1FcXNyxk3IRHuXxGgcpjvRzrRHHSwneosqTxo4QRw8uD/431I+pZCv3VGrWFzlrzxMnnpRMqmdf5UFpqS2mEqZoiupeRFwKUzQJshTP4pCeABSyKTsPOuelY8NQHNIT5mQzI3VE1qorq9lx0+sl6w1HCi3f7mNoownjXlqBw3512NnQgC+3BMPLaw+Cv5yAqqhgWF9VyGpxSE9sq2hgKmR09TlkB0Zj6Vgb0aCEyw2fbehyKmT/I0ot57ig1Zi2NQYxh2qR2DvBTtkl0gfILabie07qtLgOAJzedxqAfcJpRFwKe+zI8pqbk4uQsBBMjw7TVKE7Anf1mCScaXsGXkF5wElFdbO2pTIFTrSojgtajXFBq+FTF2n3I2J6dBhTfgg+dZGsTheAnerII9a8CS2mEvbz3vAU7C3aCO+yUKR7DVKNSZ9JvjeoSEwpqbU0pjcjwvXdIjT3P7HcykikxRwLizmWEcfSmN4sxfWwXx02fLaBvWZ8+xJrWyrSMElO9riayJ3NzSrCWFHji3hfXymxpG357fnekTyM2tf11suyXFA9Dg9udqnWkdJa9YgjoXVYFSPkO316scCb/gMXYnNxpUo5JPVxXNBqfDhsAT4ctoAplaJNdEff+Z2aOF4L6N27t+rHCHGU4eabbwYAO5Xx5MmTdmrk5YSHPF7D4AmjWD95LcHdSp6MGBJh9JDGroWQATcBUAgkgSeSRu15egpjdWU1+zEKmsTy9Yvi5JafxJ/ed9qOnPLkiz8PmsTSOnyQi1izSccP2Go0+TTJkLAQlBZk2ymJ4oS3osYX/aKehNU6Ft2//Rz9op7Embq/4vOHLRj7dQRun1aj2nf6408zqyugEOHikJ5YuadSUc/aE0y7ErZbRyKxd4KdFVokY3o3Gfh1/7jgj6plfI0r3XgA1DWGsp6PIsEkbC6uZDW+YiCTeEz8j965iSTO3QTS2paqEEjuMaCcO7WxOLHrZZzY9bKhvnp0jPeVvShdTuBrGQFFHeRbXsSaN7HPL33+tltH4r5ChUgWWmaw/yF8exCt5Nb0tlAAYOfglTEIY2JmYkzMTEwst6pI3luDvJDeFqr6/reYYwHYlEnCrLtmIfdiIKvNy8B2pGESvLpn2imQBNoXS1z1W8v+Xmzjxoj39bWbg/AqJGCzqvIqopEbRXpOBHpuyZnuSDjix5RDHrRs3EsrpM+TcyLe31/1YxQ7fXrhRK83kXy/Ysulz9zB4ccQnurNlldktiLng+5YdTIQA97qz+pwRVu1p+bw0qJP0zL0OfOM/KdJ6Q96991344477sC6des6tK9bb70VN998M95991227MKFCygpKcFvfvObDo3dEXjI4zWMa5kwXkl0lEB6+j5eehzZeARTwv1VpIcmdc5aWFtMJVLSRdAjAzJVklREPuFSLzQFkCtVWq0FVu6pVD1XFRWMkAE3GWpFIEKLENOkd/e8ZUipL8bu2kWIOVSLPQNLkf7qGpzc/zf0ee5dxD/7BwBAurVcpVoCwIHX01Rjhgy4CSEDbmLPdyX1EbBN2LdMLVIFEwH27yV/PWgpfURexMAdflsZOeMTOvngGC0SqQWtQCYjQU18g3R3Q8wLoBpIUpnEtFWeQMv6UMpARJR6QYo3S3Y2K33++NY2/E0b2TK6rvl1tAikV/dMwCuDvY9kg/UuC8Xg9p6GfH/B9O5VSO9ehayyVOReDERWWSrymvLhXRbK1snAdvZatQ6rQhom2ZFLLfDqIt/KQ3W8HMSekUQiZZ9pIn8iqZQRTdl6/BiA8j9JxO55y1R2VJEkksoo9oN0hKGNJlUA0e7aRSq1ka4vUhgBMDvr0rnr2TVIimVXsKteK/j000/xn//8x2GbDgBobm7G4cOHcfjwYQBKSM7hw4dx/PhxeHl5YcGCBVi5ciXy8/NRXl6Oxx57DD4+Ppg6dar+wJcQHvJ4DeBqDMBxNy5XHSHVPoq/Peh8ILJCdXWkPmpZWGXIa8rHrLtm6RJO3n4qI5JkRySliMbqO7qvdBIuBqLQOtWV1cyqCiikULS8AoraWBUVzJSQxN4JCN1fo6pXpN+0PVlW+ef0QJPpihpfxByqRYupBEXDg5jltfrYKaS/ugZnlv8W6a+uwdBGE9JeKYc52SytH1s6NgzVx04BUOyzLaYSlsbaFdD/iDKZLxoehGlbY5DxxCBGvEXyJ0KWrKulNuop5bKEUUDdg1FGNh0dm96NDbJhax3PpYIstfxErzdZD8eA8XNUCqyYgjkuaDVmn3iYLZ8eHcZ6KY44NAB+g/MQnurNQnkCL5aqtl/+zYPYXbsILaYSpiw6e1OKwnhEDG00IfdiIHLblGRc2sfQRhP8Buchy3IBaz5aju3WkXbEs3VYFUta3TK1iNV+8iqps9CqdRQtrI6Q4LdWM8hGRhodrScDBfLI1MXd85axOkaRGPJKY1v6QrSlL5SOQe6j22prMbTRZBeaM+LQAHbt8djRdz7CU73xYvoCbC6uxIldL7PkVT4k5+DwY9J2Hh50bhw8eBDDhg3DsGHDAAALFy7EsGHD8Kc//QkA8Mc//hELFizAnDlzMGLECNTW1uJf//rXFevxCHgCc1zG1RKY44EaeqoeT/T01ENnCaErSqQnNEcOd/Z5xA3q54pDejIbpztDQmTgw1H4wBkeNHH0qYtUPRcSFoK+o/vi9L7TqnAUcVut4B6xDyWt6yjch8JzjPR4FMNyztT9Ffu9E3HYrw7pjz+NnX/5BwBbaAWgTGypcXpKfTFG12+1UyN5Ejsl3B+z7prVafuciUi+vw2PfBGKLVOLUGiZobrO6LXXCrqRoSP9H/X6A8rA9wOV9RgVj0n8rQd39Xl0+F19sp712eMha85Oy3l7r9iwXVy/8WgitltHIta8yY600bKVeyrx8ZJPNO2ogHJzRusmyqise1R2dH58PimZtqVl/FiFlhmq5/nzaDyaiCXDMlWKI29XldU8EnnUI4riOqQ88uPxy+Zvktc+dgTHh8h7OsrspzsbGhDv74+2dHt7/A3pL2gmspKTYudf/qEijkMbTYhvOYuUV9WWdUe9HbuywtiVA3POfAr0lpfpoqkZ6HM3utR5uQIPeXQRHvJ49cKRLZTqF8UgHFfgSvqqhzhq41KSR8C5yXtHIevtmNeUrwqtWbmnEnO6BzhVL0nb8nWTsr6MpvA4NtnkySe1HQFshJoCWAhax0PbWq1jAYCRRMK4l1ag5vYdABT7JhHMqNY8ZAdGI+OJQayVRWLvBNVxAIp1lRRIoL1ms+kQgI41FL/UoD53az5artnDkYj86X2npYRLRtQIWimtYo2jK9AiqXrJsOLxyYgkERZ3pa06Qx7514RPXxWPjbcYytp5aEEvjXVU1j3sbz58SiSURDR58OSRSCY5JnhSyZNUPogn1ryJ9ZcEbOTSpy4S06PDVOmqaZhkRxzjfX1Zj0dAnzASKFWVtuUtqzSu3TZH/Nz+edYijzLwVlVXQEmrgC3NNb7lLFadDGR1qlrWbboZRqSyq9wcE+Ehj10bHtuqBx4I0CNnvN1UjzgaIYJEQD3W1a4DmpBdKvDBInwSKwC74BlLjgXR1efs7KhGYMmxsAmjOLGntNYWUwlLMeXBk1pSYinwx1HfyhZTiXKsG/cAG/fgsF8dS1ytqPHFyNj3ASiqIWDrh3Zy/9/Y5Dl0fw1C99doKqHR1efYjyXHAnPv4YhoXoilc9ezn85oZ41qzWNhOfR6yiydWsRcJJq0jN4PXhmkcfnaRsBxwqoIPXVTrMvkz2V6dBg7Nv48+T6VdFzu7POoBz5Ih/ZN4Hsl8n+Hp3qreu6J4FNUecJItZAyfLzkExUppKRWIoEr91Qi1ryJrZNeMchuDCKjlhwLlo4NY8Ff/D7o89RiKmFjjsq6h332qOcqrUPEkWod6W8ZtCypst6GfKCOSBw18UA61s5odLqXoyMsOdNd5XaQYdxLKzpEHAmtw6rQOqyKnTMRR77GmK5BuknBE0XesgrY6h0nnF7rCczx4JLDozy6CI/yeO1ApkSKSqFMOXRFmTRCOj3KozYutfJI0OuN6CqcIQp6IHXPiH2U1hdDOIxuK4IIg9a2xSE9MXapUkNKlq+WWSZkB0arLHTTtsagX9STbDveoiqCekCS4sj3mKTn+XMDlDYTneWOPfV5HP3mKkTXXaepAvMWYkcgUqelKIr2VdGOaRS8/VQG8Tktiypflyuq+o/8pv/lUR4h7/3YeDSRKY9U10gN2PVsqrLXkQ/covdTtJ8SWXxrkBezafOKok9dJMbEzFQphBPLrXhrkBcAe4VSBK868hZYfgxAIY9Twv1Vx8cfGyED25HfOB+31dZiUFiY03WMBLHfNKChOmoQTHfYWUUiSkrkuJdWsCCdBH9/5Dc0sN9GICPNBGbfbzmrSu0Vb+RQv0fg6gjG6crKo+WV/vD1kWtvzS0/w/zEcYSGhuL666/H3LlzDYXmdDV4yKOL8JDHaw9EIokIGiF6zqiKjsbzkEbHcBd5HPnPOTjw7su66/L1aPyE19lEVrFGjEATaX5ibQRkbeTrHq80iMDFmjcpvetmjkXbLXeiZZYtiCM7MJpNaNNeKUdKfTGyA6ORUl+MA6+n2ZFCHrzyKluP7LWk3oQMuAkPnvrGXafnMo4PASKaFyKvKV9KHAF7Qs5fa+IE0xHx4xU9d8BRaiqRR/G8nLF9u6vmMfuHbLQem6tqDyHDeq88JHWrV5HIxqOJKjshoLb8isv5x4D2/4Tp0WFoPJqI1mFKb8ZRWfdgbMI5pIeXI71iENLDy9lynjwCyv+d4pCeCIo9AMBG6Ph1RWJKZFQLZJn9eMknKnJKEPtV0j6HNpqYk0aG+Jaz2OljH+5B9lav7pk4Wj6RfcfJQv6ISJ7o9SZLKCUk+K2FtTYRA97qr3luRqGlZFKYDtlMK2p8DfeBPOxXp3rtZOS7osYXfoPz7Egi1T2uXDcbE06vZWnAm4srcfzrF9g6XQV0Dh21o18JOEMeu9J5uQIPeXQRHvJ47cGVFhke8nh54S7yGLw8GNd5yyfzBCJEfPIoYUzMTFUMvxGIk2xR/XNFDeTrEzsKmYJnBETslo4NY5PZoY0mjHtpBTLT1CmWe4s2omh4EE7u/xvreTgl3B+HXr4J2LgHe1b2tOs9Ke5D79iKQ3oiZMBNmBLuj+8/PGT4HC4FSHGs7xaBjCccMBqoA5L0IN7M0IPRGx2yoB1HxJFvKSL2EQVsCrf4vEi+3EUeF585gFW930HuxUDMtiZqrk/qY1K3emSVpcJvcB4ajyZicT+lJpISVvk6yHFBq9l6Yn0kf970WtNr4FMXyWywT+9abPd54EN06DEPGTkEoEkQ6fmg2AMqAiNbj8aQ2VNFIiSmsVIdI6AQR4JIIPkaSTEsxxHyG+fbtfRIOKKtPDqqkSTSSCQRUGysdvsd0sisreHBzZok8rBfnSpRVVR2CRSWs+pkIE7sst2wJHV7R9/5Khuq2EpGVL759FUenY1gjvtuNXJWLe5SJMtDHm3wkEcX4SGP1x6cIY/uTFz1kEbjcBd5HFIyBL2aRktVExHpvwKm3h6MxN4JquXOKpBkNQXkKiNfQ0Y2xssBPnRDT/3TAp9Sm/+8YvOK9/fHKssFli6ampGHzLREDG00Yfk3D7J0SCKSRCDPLP8tTu7/m6r2UzxWS46FkUnxeHmSeaXJ49K567Hhsw0A7Ml42ivlmLY1hl1TpQXZqIoKRnTddVLrp16topbKKKtXdCU4x2gbERpfPDZ++z8u+KPdGK/v+Mw95HEx8K9JCgGfddcsXQJJ4G2ss088DAC4r+xFRhb58zAKnjgCYIE844JWY4n5BlhnjkX5gr9KiQaROj4RVXxeBNleefsr1TeOXXoO6dZy3ePlA3IIvH01vS3UkFVVS30EFBLJW1VloTkyUkkElSerCUf87AgekUo9AqkXmKNHSmXb8DZVmeLI988MD25GyUubEJ7q7ZKVnk9jFVVLIpqdxaLP43/NPyDjfte/q68EPOTRBg95dBEe8njt4VKRR4/i6D64kzxe73s9W76tosGOsBBRIUVo5Z5KrBg8iz2f15RvRygdQY+sypTIYtPP7LiKQ3q6RO4cgW/1IWv7oQciayMfy8B+70REtebh2x/GYlB7o/IvtwQzaxyfrLrfW5nY3/mOGVumFiHdaxDa0hciMy0R07bGaJJH/phX7qlEdPU51TETkfWpi2SNta8EyK6qdQOArMd6qbV6kFkn9YihTFmUrS+up1fPqJWeKkuRJBIpq9N0V83j4jMHcKMQkZjeFqqxFbdO9yrsLdqI6dFhCDg7GfEtZ7E+4B12jKQc8oojncOIQwNUdZF8bTF/Y4k/Zxpv8bpYJVjqCzD7anrFIHxpCQYAqaW0tnAkABthdKQwOgPRsgqok8c7Cp4A8ssIPFHkQcSSJ48AsKBkLV6MnM9+E7QIJCUeax5fe8Krlq2Vtq2o8WU2ZAJPtvmEWsKCDD87hRGAilCSdVUGPetqZ62PvNprHrvSebkCD3l0ER7yeG3BFcsqD/HL1ROMc2ngTvJ45A1llsHbU7XIE5GSbRUNmBLub9dDUW+yL1pc+RpHvs2Bs7WPRiEjV4D++RoBkVlzshkHCh9ggRPU6wwb92D4IVstJNU4epeFsslXoWUG9gVOhc8G5U4+2fpkBFI8D55I8zWR7PyaDl329h1kVd1cXKlJHCnASIs8RsSluKQQyrahZUb6LdLx8lZTsb+oVn9Hft+yXok8xGN0p22VyKMR0kggRYyvgaSaSC1y3mIqgcUci4iiJumYsjrJzcWVKI1Rzs9sKQSg3LTiSaJMedRq7aFlk3QFYlBOelsoyisr8VVQkMpyahTObuOIWBIcWVcJss/98SEAorxUITjUkiPB3x/Yb2Xb6tVFisSRh4w4AmD1mkvnrmdBTHwbGACqZTwR7KzkkIdIbiecXosBT1k9NY9dGB7y6CI85PHaQ0cJpDPwEEfX4M7AnE0X/5+qp6KW+sYrjzR5IzJIfRkdKUW8xVUvuRJQ21uBjpFJnuBRYilfN9gR8kjjA8qkNv3xp1lz7HSvQVhluYDkm19CdmA0awvQL+pJjK7filjzJmZlBaCE7ECtVFIaJK/+zrpLUX5Fciae3ySvA8j5wL6eyZ2QTTBFtVF2LfFN5GWvvTt7jGrZXTvS85GHqCRqkSY9Muwu8jjyn3MQd/uLAIAlwzJV6Z5GsN7LZlPd8NkG1h+R75PI3zTi+0PqEWTZuZfG9FbZRPcWbcSYmJkOaxoB+1Acd5BIIo+DwsJQXlmJtwZ5YWK5VZWu6kxvR2dgZFyeXGolrpKyqGVh1VIex720AjdErtE9RrLJahFHqn2Ukcfci4GYfeJhpLyar6pnFD8j7HjaLdNEJA8OP8ZSgDszgeSxdO561H88scvaVt/+kw96ess/U+darXjkzy2etFUP5PCQx2sPl4o8eoii++BO8tjN50YANhWF+h5WRQWrSMvKPZUsyVNMROwIHAWSAGr7oLMkUuwNGV19zmFqqbOg1+fAhXOwppUj/fGncWb5b9nz2YHRABSFcVuFcsd/y9QieJeFIvnml5Dz3TxWF0nK5LStMXj711UqdZKppE22OsbciPXgQfWF2yoakNg7AaW+L1ySRuO03w2fbVC1PamKClappURo6VqiZQDYtWSUPFJNJG+TNhKc40gRdIZEaq2vpXjSfvSWAcB/D+ej5rkat32mW0wlmHXXLDQeTUR4sK2hvSPw9Y+88qiXpJrUrV5TfdQDpbAOK/ZT9WSkNjZbphY5TE7tCIisikhvC0V69ypGJgcPesuOhHt1z7SF5bigSopw9P7w45O1VAvHh+jbVhHlhQvpC5lLQiSOWrbWBL+10lAhkbTrkUe+TQdB7zNFCiWhM9Y1iiCV9ODwY9h920z0+fWgq5Y8dqXzcgVy3fUyISsrC3fffTd69eqFfv36IT4+HpUGJujnz59HamoqBgwYgBtvvBEDBw5EXp7trmBbWxv+/Oc/Y+DAgfD29saQIUNQXFzsln3rQRYv7cHVA3eSvEFhYezHg84LImVE5MzJZtZPkE8fpabdFCzjDlATdd7+xy8Tl1dFBRsatzikp5Q4EpaODdMljvx5E0LCQuyICu3jx6RvGXFMf3UNsgOj0eeX89DH9Axbl+x51KCcFMlHvgjF5w9bMLTRhJhDitV7y9Qi7K5dhELLDEzbGsNIJ2Ajbv2P2JpoJ5UqP0TEQvfXoMVUAuuxVLc0GD8+RLmT3n/gQmCLFzZ8toER1Yi4FEbqZXWaW6YWqY4fUK4lugkhghTn0oJslBZko66igCmZoftrVMtF8MvrKgpQV1GgmpjS3zxx5AmlXigPv73WMYjkVJwU883RHe2ro9jw2QZst47E8m8eZMuMfn9vLq5ERFETO36tG0WNRxOlfQpF8HWQ44JWY1zQapbaWvPsGqRm5DGLaqFlBvv/wxNHWVBORyAjjoDyGmVgOwaFheGroCBGHHkCx5NJd6iQzoyhV7MIOK53zG9owA3pLyDB3x8JR/wYccwf0mg3doLfWhz2q8Nhvzo74gjAsNobcHYy1ge8gxGHBqh+jn/9AioyW9lj+lwc//oFbC6uxMHhx1SfIz44Z+nc9Xb1k0Yx4fRa9nN8iH1qa0cQnuqNg8OPuW08D64crih5LCkpwdy5c3HgwAG8++67uHjxIh566CGcO6d/x3vy5MnYu3cvNm7ciMrKSvzjH/9AeHg4e37ZsmVYv349/u///g//+c9/kJSUhISEBJSVlXV431rwEMerH+5QHj2EseuAJr9Uy0XkY+zXETg03IKVeyoZaeQnb7HmTaoJoSMYWVckizIYsccCClHUIofR1ed0bapEHEUCWV1ZbWfHjK4+x8h0utcgtN1yJ4D2YJzkWLZuSr3txh6lrGYHRmNv0UZMCfdHRY0vKmp8MS5oNUspLBoexFS7KeH+7Hi0lDIilfy53feLHzXP0xnkRqxHUnISO39LjoX96CXirtxTiVFZ96hq2rZVNLDXgz9WIo3Fpp/ZY77GUISoQtNxUN9F+lsETyD53zIyaQS8ciKqjEYss0bUd2cgBtaQzRlQSI8WURG/31tMJZgeHYYWU4nm53d37SKs+Wg5C8ARt6Xzp3Yd/Hq7axex127N+FUAlM8Gb40nXEoFkjCx3KqqExW/C2XqYLyvr2FV125brr2HHsT3K8FvbYdvCOU3NLD6RhlpdBZ80FDuxUBV7WxWWSriW85i5brZ2NF3vuoHgOrxynWzmVV1enQYxgWtZsRSrI8EFKLmKvELGD8HB4cfQ27EehwcfswtBHLC6bWoyGxl1/oLp27u8JgeXDl0u5I7F9XA1157Df369cOhQ4dw//33a25TUlKC6upq+Psrd6mDg4NV67zxxhtITU3F7373OwBAcnIy9uzZgzVr1mDz5s0u71sLXt2dr5/woOuB6j06sr0HXQPfVf0//Gpogt3k1ZJjATYCmDkWY78GQrbG4PZ9Ydgz0Nac26doI3xg6+fmyMLqUxepO6F3BHHyarQfpCu2VBmx1KuLHPlYBvo8+wfsbGhAVGsehjaaENWahz0DS/GxtVwh3Y9lMFvqyf1/wzQAWzCzXf2YiVZUMUJFpHJaUz4A5bWjulLlWIDcu9YjCTYLF5E7EYqtEygd4pp9lSapImF1VCdqTjbj7zf8HYMGD0a6VWnJUdi+Tej+GpjDt9ptT+8n2VKplhAApkfnsvV49Y9+8/WxtC2gf22KdjkZAdQCkVpxDJGA6o1Fz5nC41C63b0tadS9Fm3/k/UULmtbKqt5bDGVINa8CRssM3Q/21Tz6Dc4D2jPR1NeA6DRK1FVD9l4FOr6yFrlNWB1k7XKeKLa6C7S6Ggs/rvL2paKnUHKa6WyjPqtZfOgjtQ/UkuPE73eRFK3egBKEI5IRPm+kCqF94F0rB0yX7f20dHn3QhhlKmNgC01mtp1kAKZge1sxp3fOB8ner2JgOBmoMXhrhiIVDKLKl/juM7258p1s1mrjgmZzgfq5HzQHRNOD8BmKJ/XlV+7xxJ7cPgxfNhPeU+XDKx3y5geXBlcUeVRxJkzZwCAkUIZdu3ahREjRuD5559HUFAQQkND8cwzz+DHH213kc+fPw9vb3Uj1R49eqC0tLRD+9aCq8TRo1Z2PbiiHF6rauPlDBhyN24O/R1KC7JRXVnNJtuk6qVby5H+qmJn2jK1CMPnnJJaPesqCuwml3phOPyknmx/ZEvUUrBKC7KZykXH5+40Vj1ExKXYnaOoStJrtd87EeNeWoHswGgsHRuGlPpiLB0bxuoeASUwJ7F3AlMYp22NwbStMRhdvxXZgdHIeGIQSguy8fnDFqbY8cqdJceiEMUtXohoXoiI5oWMOBaH9LRLzm0xlaCq7lYsnbsex4dopyiKWDp3Pcy9hwNbvOzeGxqbfkTEmjfhm7g4YOZYpD/+NLMhGoGj3p6kaOXm5CI3J9dOneStrnrEx9XAHEDp1Sir1eIJqKPx6RhbTCUYMtMN3mIAP978EQCwcQHFvprevcohyfHqnsmsyD51kax2jZRH/gaOLByH3hf6m2/rsbm40u4xKUt+g/NUrUC8y0LZZ4PIHu98cNW+qmWTnlhuxcRyK8orK5HevYq9FjJFUU+51QIlpvLJqdQLMuDsZNW6WmPzxJFv5yH7LB+beBz5QxpVz9HfJS/Z98080etN1eOKGl+2jO/VCNgURrKy8gi8qJ57JvitRVK3esS3nEXKq/lutYYSdvSdL01n1QMdB/12t32cruX0IGPKsgedF50mMMdqtSIuLg6NjY348MMPNdeLjo7G+++/jwcffBB/+tOf8P3332POnDkYPXo0q3ucOnUqjhw5gp07d2LgwIHYu3cv4uLi8NNPP+H8+fMu7fv8+fOqbZuamnDLLbd4AnM80CVJ1yJpvJJwNjBH63NN4Rpi6Ig4edfqrUikgZIYT+87DUBuG6RAHqqvlClXWhZFUVkS13FENrTA90nUA7024n7oHNJeae9P117vOG1rDKqPnULIgJsAQNXjsaLGF9utIzHJ6wB21y7C0/c+B0Dp+3hy/98UVS7Z1toDsLXyoOfFY5CBf22pLpMPOpoeHYakUv077bkR67Hhsw2arxFPUkUUh/Rk5w8A1cdOsTFCwkLQd3RfTeWSV/UIWoEaMojKnxEVUAuubuvM/ksLsoELADahw5/pxWcO4F9fzZH2VxwTM5MFnGRgu1TpApSejxReQxBJeGlsNiIKU9hvtjymtyo8h0JP+Bqw0pjedi1ACKz/Y796rDoZiNZhVaxlh1fGIFjTyjVfE7HVBgBVuw9HoNYcgwe9BQB2tZxiMI4zQTnxvr6Ke6s2kRFHVd/GdmKp9ZiN065Y8uuotjviZ9fzEVAnsOYPaVTtu6LGF+HB2uchkkQRGdiO3IuBrD8oAJWqmnsxUJPgkXJYkdl6SVNUaT8ApPtaOldpLeRqX1xqP0Ljrp3RiMN+dejmNQjPwfjnujOAAnOyf8hGj949pOv82PQjUn6R4klbvVyYO3cudu/ejdLSUvzqV7/SXO+hhx7Chx9+iO+++w59+vQBAOzYsQMTJ07EuXPn0KNHD5w6dQpPPPEECgsL4eXlhYEDB+LBBx/Ea6+9hpYWe4+AkX2np6cjIyPDbrmHPHrgQeeBs+RR63M9pGQIrve9XqrO8ERJizwReBLpCHxiKk8g9YijDDK1iV9OhFNLoaRej6606OBJU3FIT4z9OgI7//IPxD/7B+z8yz8AKL3TztT9VaU4Urrq6PqtjDzmNeUj+MsJGBn7PiPhfFsOCtmhpFZZII0jAsmTR6rP5FUYWUsWAKrj6Sj4diniuLIbCXTNOZOGqqcgaLXRcDf0xpedC/s8OEketT7Ti88cwAPrxuDjJZ+o+qryPRbzG+cjvuUs1ge8g6TuSbBeuCDdB9/7UUym5Vt08JCRR/GcZdvKWjWc2PUywlO97fpNLju6QdN+6qhlB1+bR+vxqaoEkVi7IxSHCBuRNXosI5H8cQC2+sj1Ae8wtVIkj45IoOxYCKQ0ikoorUv2Vf71A8BuRABKH0ctDHirv0p5lPVwlD3nDtD4RB61UpGTSmer0qudIbRL565H49FEnNj1MrIfTwD6BSK9exXONzVjVZ+RVy157Ern5Qo6BXl86qmnsHPnTnzwwQe49dZbddd99NFH8dFHH+Grr75iy7744gvccccdqKqqwu23386Wt7a24ocffoDJZMLixYtRVFSEzz//3KV9e5RHDzzo/HCX8ogZAG4Am9AbASmIMnVSRsb0SKFIHgF5PaRRAiluQ8/zaiegX9PIq5EyZVIkOllzlD6O+71tE6d4f398uUVpdRJr3sT6n1EbDu+yUDzyRSjr97hyTyV+TPoWUa15yA6MRkp9Mfo89y6+HF2JLVOLMG1rDPpFPYmT+/+GflFPMmurePwiRHKmRTLFdelamB4dhtFvrlK12XAV4usWEZeiqxhHxKVo1hPycNRD0dlWHDxcue6M9HSUju9G5XFV73fYZJ8IpIxYk0WVAnVmn3gY6Bdot54IauchO089VZEHb1PVIqXU1w+QT/z5tFQijbz6KFMiRfLDQySPgPG6xvmb/LB2RiPbxtH6djWMwnM8rLWJWB/wDmafeBheQYrzjA+kIcIn1k/q7cMo6FjSMMnuNSYQgcy9GIjGo4nwG5zHCD+gXFcD3uoPQK00AlC14aBtnbWh6oEnjnTtfDhWufbEmyOA/Jqj2kq946Hzohs0gPKaechj18YVJY9WqxVPPfUU8vPz8f7776uInxY2bNiABQsW4OTJk/Bt/+dVUFCACRMmoLm5GT162L+hbW1t+PWvf43Jkydj5cqVLu+bB9/nsc8v/s+pukcK2PEE7XjggXvhrj6PRB4BbQJJE1wx4VQkf3oQtyVLa9/RfaX1ktWV1Zp9/sQxicxqrccrkXogoshDZtXkLbxkV03NyGM90w771bEedUMbTeiRe4tKJaGgCZFg8n0dp22NwZRwf5Y6STVeIQNuYm0+6HWnvooiQdR6X/ienTyonpRIBvVXE8NpOgLZ9SIu0yNmRuGs+mcUogprJPVXC3Y9S50kjyLoM01uAos51o5AEqg3IwCYLYWq5yzmWEPf12RtJRWZfgPAoYB8rDoZqFIXjYRqTY8OU03UZURD7Cmp1W5DpjDKnuPXSW8LZYSCJ116dlU+MZXspFrgrahkBR3aaFIpkATxsQgtcshvk4ZJzJ7sCipqfFmfWR7ia0vEEYCKNNI1Zq1NZMpjwPg5jCCKNwTEzyYROVdJpIw4EvjU3yXDlPc8qyyV3czgw3hkEPtPAmDk3tqWivLKSrw1yMtDHrs4rih5nDNnDrZu3YqCggKEcbVhffr0YSRwyZIlqK2txaZNije/ubkZv/71rzFy5EhkZGTg+++/x+OPP47IyEi88sorAIBPPvkEtbW1GDp0KGpra5Geno5vvvkGFosFffv2NbxvPfDk0ZkLRCSOHgLpgQfuw6Uij3wgDQ+eoMnqD+sqClQ1bDwRIwWPIFok+QmljAjK9s8foyMyIG7L71skMmTvHPt1BIbPOeUwTfS5W9+zWx7VmofR9Vvx3K3vsQnitK0x7PngLycgMy0RKfXFiDlUy0g41WXxhJPqzvYFTsWB19MAKMmupFYuHRsGn7pIXWKnRdgIIpEkAjrrrllMddTahyOiKqIqKpglqRLoeqLrh/4+ve+0w2vBCJxd3xFkNzA6Oo452Yyfmn/CkcgjHf5MLz5zADf29kWhZQYs5lgVOeQVZUCZ3NPzojI9665ZmG1NxKr2EsPFaqEbgE25oTFo/KfvfQ4ner3pUDXmwSs+hIDxcxgBJRtr9uMJWB/wDgBFOdWrZxSVR5kqyWNQWBi8ume6TLbEekQj49B6h/3qmP2TJ456dlZ+nYoaX0aCRLibPIoIvFiK2ScexqqTCmn0G5zHVMTZJx4GAKS8mq/aRkboCGK9MNlHiQw6IpPizQdxP2Jy9ySvA8r1fVIhu/eVvcieG3FogIokarXyIcXR2pbKQpcAeMhjF8cVTVvNycnBmTNn8MADDyAwMJD9/POf/2Tr1NfX4/jx4+yxr68v3n33XZw+fRojRozAtGnTEBsbi5deeomt09raimXLluGOO+5AQkICgoKCUFpayoij0X1fChBR9BBGDzzovKCEx5CwEF0CwE++qY6Qfuh5n7pIRMSlICIuxa4hvCXHAp+6SBVR5AmoXguPFlOJark4YaeJQYuphCW3isdO6ZshYSHsGGXnSyTKy2uPQ0K0raIBh/3qEP/sHxDPpVfnfDcPseZNOOxXB++yUKTUF2PrlzUI3V+DKeH+qLl9B4Y2mnBy/98wLmg1Tv/5r4g1b0KhZQambY3B8m8exNKxYSzoY1/gVGQHRmPkYxkIGXATsgOjEWvehJABN2GS1wHsO+SFqqhgWK1jURzSkxFgHlVRwXa9Kym9VlQg6fmk5CSmcuY1qSd+PCw5FtX4Ivjlib1tbWEoXTftlXJUV1az15snjrSu+J7S+yx7v8WJnTuII10/gO3645VvV8a7lKCbDmZLISxmW69RmjRTEqzZUqirBq73yoPf4Dzsrl2kmZqeezEQs+6apdpPgt9aZoklaNWZATbieHD4MRwcfoz139tdu0hlbw1P9cb6gHfQeNRmES+0zGA/PEitF4kjgVcjKSncGeJYUaPf21GmCPIEUAyhGdpoQn7jfLYdTxr5mkN+PP5vLeJIz8vSUR1Br34yA9vZDwCsOhmIJcMymWV1ybBMBJydjAFv9WfEUSR9x79+AaW+L2B6dBhGHBqg6gu6ct1sjDg0gPWGJEIoI44TTq/F0rnrsXTuekPEkb/mfeoiVdc3EWA6loPDj+ne9Gg8msiuR5E4itekB10PnaLmsSvCVeVRhEd59MAD98GdymPIYIXE8TWBgEKORJUIsJ8sa03OW0wlqnpBRyqVnoojqo38cRDJMIXHSRNf+WRX3sLqqOZOD1VRwexvvhbx5P6/MbsqoKiQ+70TmZWVahyfu/U93PmOmdlNn7v1PSz/5kH22pAdlkA2VrK38qDekX1MzwAA9qy0BdPIbKx6VmO92kgt9bEqKliVpKo1JqB+j2Wpu/z+aYIn2phlZE2PIHaktyhBtG7zE1BnlU3Na85NtlVZ2ipZOx1NZvn3AYDKisrWEWytw4+OZMupdqw0pjfMlkIWCgWolUexxpGCcfhJOv8al8b0ZpZC2h6AnfXWkQopC9KZWG5laeFinaIzaaoiaFtSFGWkVBaYI4OefdUoRPKZge1IwyRWj03/s0TICCcRRgIpn6IdlVRHQsqr+djRdz6Wzl3Pnl91MlC1HYXOEEnkraes7yMH0ZpKrV8Ae5VQvKFhMccyC7QsHdkIaP2kbvV25BEAdn4wrUOOgisBNj84sxjofaPGSueBPqs8aaseyOEu8uiBBx64D+4ij8HLg/GroQpBFFNQAUgnyEYn40ZSOiPiUjAmZib2Fm20S0t1BJ5EELloMZVgW0UDouuuY+fCj+dMnaYIkeRQCureoo0YEzOTteEID27GuJdWYPe8Zar0VQAY99IKjIx9n9ldl3/zIAB1Su24oNUqqxhN+EmdJAJJdtKi4UHY752oqJ8zxwIb9zAC6QpkBFIrYIh/XuvmgPi68SSU1GdZIi4p3CLhJFRXVuuGLLkLWjW/riCvKV+algvAbeSR2u8QiPzxbV+MYNZds7C5uNKOPMaaNyED2+1uBpNyk1WWisX96oF+gVhVrlgYxRRV3orKEwdZXZrf4Dxmn+VJwbig1QgPbralxrYTSa2m9lrQqnPUQkcIJYG3qIr7lRFJavPhCoy8Hlrk1ohtla935NNGyVoMKCRxfcA7qMhsRcD4OTix62X2HF8DCUBFGsWaSL02GrL6RD7Qib8Z0WIqgcUci/zG+Vjz0XK2/odjV+O+PYvsaqZlZLLxaCKrjxSJI/2fHpV1Dxbde9tVTR670nm5gitqW72a4OgfmPi8q//wnN2vBx5cKVzOa9Pd+7o59Hfsb5qA85P9FlMJSguy7SbnWu0vaKKZ15SvUpt4yyRPOlpMJSi0zECLqYTZSasrqw0pgrxllib2lhwLpoT7S4kjPT6977SuzVIPYv9F77JQjAtajWlbY7Dmo+XM5kXhOWeW/xZ3vmNmd+/33bAeK/dUIqpVmQQTiSwaHoRxQatRNDyITdYo5GRf4FQcGnwAKfXFABQ73papRYg1b8KYmJnIDozGYb86fLklGGeW/1YhkB0AvW9kaxVrVPn3UFSq+L/JQsuHEMWaN9mRMf5a4sfRusb45abwOF3iyNvg6DGBt7zmNeVj2dENdtvzVmcRIqkyArIBXw60mErYDRy6Xkdl3YNY8yb2mL9pwb/XPnWRrC8kgWznRBbE/0XWtlRY21KxZFgm0oPOwqt7JnbXLkLj0URVOAkforO7dhE2F1cyayDZFwEbyWw8mgiv7u12yO5JbLwTu15mYTWzTzwMa20i8hvnY2ijSWWnFO2VIkSlyBF2NjdLe2M6A96iKiNtotq3s7kZ1rZUu/VzLwaqUldFyIij7HVIwyRU1PiqrLiH/erQOqwK3mWhhs4pqVs9I4WrTgYiqVs9krrVM/Vx9omHWa/PgPFzGNGjayBg/BwEjJ+DYxNt5VubiytRkdmKEYcGYFzQakw4vdaurQeBt7OSLbvFVIL6bhHss0qfCbrueeII2H+/0v8PGo//oeuYblrwfbDpRp+rN/A86DzwkMcOok/3v7o8cXXHhNdjefWgM8Greyb7udzXpjsJ5HdV/09VgwaoyYMIXp3kJ8/0N30p0yQ5JCwEdRUFmmOK5AQAI5H8MRHEsBKROETEpcCnLtJuwi/WxiX2TmA1mlVRwYiIS1HVYGqBV9goGbV1WBW2TC1C0fAgth7VQpKVtNAyA1GteQgZcBOWjg3Dyf1/Q/yzfwAAHCh8ACf3/w27axexnpCpGQq5JMLoNecGZAdGY+WeSoQMuInVR4oW1uzAaHw5Wq3eiLWOHYFIKMWekLSOFnjVi38/+J6W9D7ISBuvNvLj8D/8NUITPdoXr2zxxLP62Cm72k9+nzK4ol5r9dMEgODbg50eT4YDu19GaUE2LDkWrNxTibRXyjEq6x6MyrpHdY5iraNoVeU/0/wyvq0B/Q/kYW1LRXqbjXDwKiP90KRcJPaNRxMRMH4O267FVAK/wXmw1ip1ZVmWCzix62XkfNCdrccjvuUs4lvOMpI1tNGErDL7/89U/6hHKvXAK48dsZSK25LqSBbSE73eZP0XZWqnrCejHnhCLYL+l4m1kY6UR7IM514MZO8JKcSA0pdy1clArDoZiA+HLcCJXS8zNZrIJGC7TladDGQqIt10CE/1Rs4H3RGe6o3wVG9W20igeseKzFamYOY15WvamFtMJarEXgK/jP53GIG1LdXOEu2oNZIHXQPdrvQBXA0wMkkW13GltYcHHnigjz7d/+q2sahWUARvX2yB8nx1QbWdpRUATu87jdOwWVsVYhbJagv7jra3sIrqFW9l5JVDo1ZTOgdar7pS2bddSwQApnDld15TvmJx3W9Tw8bEzLTroUgoDumJkIoGvO0Viu3WkdhXPxU5381D8s0vqX7DDxg+5xQOYSxun7YH++qUWsfYqUWIBfD5rSb0i8rD8m8exPJYINZchDFQyKLPhjqMjH0fseZNyIaiQKa9Uq4QryWf4GMA29ptqwCwr51gjg73h+WJQRDbxuvdDDAC8X2qigpWKWiWHEt7j0/1+uAUR2pvwh8DI26V2ew6C7Wry5TbVOlvsf6RbK6itZqvi+VBdbk8xPW07KpGbjZojcmDzrXmyxrD4+lhyEylVQcAfNxunWOtYtrJewa2w2wqaVdIlM9m2ivlQPIM9lmn9SKgrj/cXKcoOub2tzLWvAnllZWsbpBgbUtFeoxCPHYXCb0cYQvB4RVGXpUElP8jswNsKZ6ATWFa3K9etS6/TnhwM6vBCw+erAqfScMk1pYjo7tte7aOvz/yG5TAL1I2d/r0QsIRP+QPaWTra6mPZDEVFUWytPPg1yHCxttWA85OVgimDkEl5UuEs/ZdRyDCKY4ba96ExrJQFWFsPJqIXO4xPbe+/bFWeNLm4vb3fzhwsBgAFgHDgYCjq1mdJJFDwFbvWJFp68kYnuqNOW/mY8vUIgCK2l6oc9NExLig1bbjkByreNylkL/+9Lke8j9DdPfnQeeGR3nsIM60PaP7vOwOpCPI7lh64MG1DEefIXd/Rmq+rGEqhWhJ5JUk+tHqBalnHywtyMbpfadVk3C9ZM6+o/va1cJRCA6Nx4OIglaaKx0XPaagnNKCbFZ/xqud07bG6Na3bZlahEe+CMUkrwOIOVSL3bWLFMIIYHT9ViTf/BKGNpqwL3Aqziz/Lb7cEqwQR+4u+LiXVgAAsxSm1Bdj2tYYZAdGo2WWojqMyroHhZYZGBMzkymM9HvL1CL41EViW0UDRtdvRd8/PeNyHaeRZSLEa4AULf5aia4+h+jqc+w50bIsgrc5U1qvjWCqFUc94kbXB107pEiK16dIPC05FrtkXz04U2cprsvfDHGV1Gvh4aHrNZ8jO53ZUsiux1jzJqS9Uo4MbEeseZPqvY0oarKz/ImKJNkaedseIb0tFOltoSiN6c1sqbza+OGwBVjcrx7To8NY/ZiInT69GKlc3K/ezrpIqpbf4DyW9nmi15sID262C2whTCy3Ir17lTQVPr+hAfG+viriWFHjC+vtx6VjEXgyKbOihgc366qUVHeY3zgf8b6+dumsMhhRPbVsu84oriJxFNNtmV2/dhGyH7cPWQMUIhxwdjICxs9hyaqkQhP4v3mrM2BTAnm1ErDdTKjIbGX2ZyKOhZYZWDo2TDdIiYeRoBzZOnytI2FbRQPMyWYc2XjE0L47I0YWNyGiSP4zslhRae+++27ccccdWLdu3RU+2ksDT2COizAamEOTXkeTWw9h9MADbThS3+l5d6atRkxKkSqPlE4qqnZaxEqr/52YlCoqhIC6LySgkBFnJtXUP1AM6RHDckTlSi90hX9NqB3FlHB/FYmmgB7Alnp6cv/f8PnDFpawSom1fOIlTWZI4WTKYjvElNqVeyrx8ZJPWDIioKiUo+u3uk1R1Fum1ydSK8WV1uHf14+XfMLCkfjkWx6UZLtlahFrQg9ot8TgW3qI16r4HhP6ju6rOq6QATcxNdWnLhJjYmaq9u0OyBRw1XEerXZLYM6QEkV5nHXXLNZCQBbABEB1HVLCr/g8XaOObirQWHx6qQiv7pmqGj06vsX96hlJExUsav0AQGWZBWyprTShJxsnT/ziW87CKyhPsVW2K3lHyyey5vZE1uh/q1YYDt/DUbVcUBrFQB1eSeTJnqP0VVrHEUE0so4ILVWST2AF5Emr/Lr8MVBfTyJ99D7Se0dBSimv5jMCKCac0vaiAk2WZtlyACyIh7/OeZs23TSh/9nOfq5LY3pLba6AErJTXlmJRy88yj4DFGi2raIBeTHbumyfRzF8i8fFlvM48PuXu9R5uQKP8tgJ4WiS7IEHnQ2uKOzOQJZgSPsTf7sTpCKIX6q8CkiTx9KCbKfCQnilz2hrjJV7KqX9CnkSyv8dut+moPLHWl1ZraqD43tTksWRVFP+nKhOc1tFA2LNm2C1jsXnD1sY4bDkWNj+qH9joWUGsgOjkdg7ARU1vhjaaEK/qCfZvuluvU9dJKZtjWGBOIAyeeeDTJaODVO161g6NgypGXlsMjcq6x6XiCNf/ygLwhEfi0FH/Dr0WtByrRofmsAtHRuGaVtjNC3ShND9Sk/MvUUbsa2iQXrd8ERfr8+ivV1Zea954hhdfc4uAXVv0Ua3Ekfatwh3JLiK6PHdvSzwhibbgRdL7dbjXwNzslnaK5H1i9Qhjvx1Cyj9E9O7V0mDaKxtqUqIijWR9QIEFPWwosaXHW/jUdvzlGRJ2/LqZVK3ekZWGo8moqLGphgCSs0gpX4mdatnJOuroCAMbTSx/7f8Tbt4X1+Hyh/VIdK2PBEk4sgTQP4xvDI0U11FIqhHComEu4s48s856glJJFNvLArMIdB7zQfb8P06AX3lTySOgFqNFInjx0s+UYVF+dRFYlzQalU/UqMQiSNdgy2mEqR3r1LVO3qXhSJ0fw37bvCga8NDHi8x6J+7K+t5iKIHnR08ibvcarm1LfWS7XvkOPvQCR6WHAubgPNkg488l5FJvqk6oCgrREJlITkApIElIoGk+kf6W++4AUXF6ju6r+o5CmLhSS2PFlMJ6z84JdwfGU8MQvqraxDv768ZqkKTlELLDDx973PMxpUdGA1zshljYmYyIjomZiazVfGTcrKkkpJJalCseRO2VTQgMy2RBek4q8yKrwtP9CgRlX4IK/dUstAV/m9xHN7SrHVMZB3rF/UktlU02KXq0nb8dVJXUYDE3gl2BMuRXVRmaaWbBvR+Lx0bhhWDZ2Hp2DCV2upuCykPrRsudLzuCswRIU66+RsUo7LusVtOf9NjMWFYhFZ9MCBPMpVZRVuHVdmlV8qCbig4B1DUoPzG+UzhYnV1Ae/AKygPXkF5dgSGyI5IDGX/V8VlvOpICqaWqkh/8wQsv3E+ci8GsnpKGWg8vSRWHjSmMxD7OQ5tNLEfZ+FdFspUR0Cxmi4ZlsmIIqXBZpWlIqssFfeVvYgJp9dienQYjn/9Aqt1BRQiqVVfSMvHxMxUWadFkNWft8rT8hZTCbZbR8JsKXTJnsrvc8NnG+yOlT4f260jYU42s5TxVdjpcF8edF54bKsu4lL2eeTv9vEE8lJOlj3wwFm4y2ptNBBKtp74eXCXbVVmSxHtmjLwShORncTeCSo7ImDfl0+EErQSxmyhoftr7Agj2TcpdIV+G4WM1PB2XBqP1pONT+dJtlURZDv1qYvEvkNeyExT31GftjVGZWsl8ggo6s6+wKnscc538/DIF8rd66qoYHz+sIX1gySCSq89b2/Vgsx6TOcNyEk7YLwWz5m+mcUhPREy4CaVxVhre5E0igqjjESKtY2inVWv56fs/XekDJIV1WhvUv5GhVhb3FEbGP+ZvnDbAdXYgDLxJisf9aA7cOEcdsWqVUV6T2LNm7C3aCNaWLCOfX9IsgECyrU5sdxqp8Lsrl3ELNt8Ciug/F/j1SuyQkYUNTGr4uJBwKpyYPEgYL1XnmZADJEokSxSsioADB70FgCo5h1kWxWPi7bnSZVej0dZf0ZH64n2VL3tRUurs6DXR5bQqqcyiuBt94ShjSas+Wg5U4GJPPLEMqlbvcp2PC5oNRb3q8d9ZS+y7egGAhE3Xplc3K9eFYokUyL5m4v8dcxf94DiLOADnHjw33967gOyv/LtbPjXiLY/23tfl+3z6LGtetJWLyv0Jr8EI3VdHkXSg6sJRkmn3l1w9pnoft5tx0UT4Ii4FGk9ogzKl6oFp/edxpTR/uxLltQ8SjPl69FkIOIYEZeCUEEBFEmRFknSIkdAOzmVLOfXp3H1ztmSY0EoAEhsSOZkM/YWbURszCbADOy+14RCi43sDW004fOHLUipz0N2YDRSomzbTtsag2kAss3R8C4LReuwKkzbr0ywrU8Dw1v8EetXh23vNOD2fWEYPmcGO04ijrI6Rdm5ytbTUjCNhOYQoQ51Qq2Lrj6HqgE3qYgjjXV632mm+FpyLHZEkCdpYusVHrIbFmJdqyzBl/7mrzMaq+/ovvCpi5TuUySOWsmqolpiU1tPOxW+YwT8pJf2Oyprg5K62j6x5W8aEDncVtGAKe3vSaFlBmCSK44shZk7p0LLDIzaU4mJOICvgpS2NcutI+ED27GQEkkkkv9fx98g23lvM3AWaEQ7cexXj1XlgfAbbDsGcY5A5CSrTOk1SaR08KC3VPux+1sITeVtqIf96lSkzqt7JvKhbTk1An49nkSK2yf4rYW1NlGleHakLQjQ/hr1epMRSEqA5QmyIyLJXw+s7tEPiABU9ak0/u7aSlYzmBSjrAcQ+VOTRgKRuunRiprceDRRsR+fVNc9EgHU+mzRsX685BOQWZUvFyAYIYxEFum37caJPXnkW9v0+OpeAF03NOdah0d5dBHOKo+igqi1zOg4svU9LT08uJy4nCFPMgVeNsFC03mgzyq3K49GaxIBteJkpHZLK9REBClieoqajAgRiSQFkx9r6dgwQyodje2M6kYTb7rDPfbrCOwZWIqQATch+MsJWDN+FVqHVSHdaxB2cpa1+Gf/gPRX19hN3FIz8jAy9n0WkkPKJNU48q8PKbdiwA69Nvzz9Do4OjcxDEckkiv3VDLisa2iAaH7a3S3EffHhxvxoLEIPOETW28QQZOROVkID50XTQxlCiB/vDxJFY9BBmdVRwL/uXGX8jikZAiSf5PMJuCkHPIQVUTqHzol3N9OZaRtZcojD34fpFgCyvvKK+0EUYUkqP4H1tqUp50+vRRCpTEn4O2bWuqkUecHYK8GkjqppTx2BGJ9pN46zkJUZLVsrgFnJzulQALq0Bwi7bkXA9m+rLWJWHUykCmRgH39oCwgB4CmMsivPz06DEnd6tmY4k0puiZHZd3DHA9G9sGDD9gR/+b3UWiZgfGFFtw4/gLrUdrVlUcK35Lhp+afcCTyCEJDQ3H99ddj7ty5mDt37mU+0ksPT81jJ4JW8IfYeF0vPMQDDy41tOocXbkGtbYRA3H46160dV+KmyY/3vyRofXEOrKIuBTVHVp+Ys1PkusqCtgd2OrKapjC41Q1h64EhmgpbaRayUIKxF5+enDWrimzcQFA8JcTkJmWiNZhVUjNyEO6tVw1OTuz/LcY2mhCVKsShEPtO2pu34F9gVMZcaR2HIA9sSYySI9DwkJYbaKYdir2WTT6Ooj1jbxiRQmlYr2gXhsKvkckD/59Kw7pib6j+7I6RVN4HAs/4omj2CKG1tE6H7oW014pt6t15OsuZWRQjyCKRJg/hrymfM2bMnqE1FX0+O5euwlxoWWGqr5RxNKxYaqJtSu1n3uLNqLQMkNFHAGg+tgp6fqyekhAXRNJtYteQXmaxJHWpRAeIi5ExOh/qivOD94murO5mRFHsmIaIVuyfpBaRNDRcqPqpgiZVVUMqwEU+6l3WShrv+IM/AbnqYhp7sVAO+LIg6ypfLouD/4aLo2xkS6eaIq1kIDthp4lxwKvjEEotMxAzbNrkNg7wa79hx7E2kr+M9xiKsH4QuUzQkFTseZNsKaVY7t1pKq9zdWOTz/9FP/5z3+uSuIIeMjjZYOsGF6ceMvW4SfOeqTRmS8BDzzoCLQIo7PXn5aNWySL4mdG6w474LjvqlGc+eCM6rGWXZFXC6kJu2gP5MNn6LcpPE6V4so/r5W+Sv0BtcDXB4oQJ718n8GOgk8cpdcp/3l1+MXHSz5B+qtrMPKxDADtttStMchMS8S0rTHwLgvFmo+WA1DCdO58x4yT+/+GlPpitMwyIaW+mJGrlPpibKtoQL+oJ6Xnxi8zJ5tRFRXM7McrBs9SqY3866lnSSVCLKbWinWBvHVWC7LjpTYc9L5TvSwPIsgUrEPr8zcw+GtPVLTJ3krr///2zj2uqjL7/58TqaB4AUcUrEBMoESFo472yknxEmiSUKOZ9qvUbqKNUTaJmGBNYpN2mWnUTJ15kZrVKJQ4Ql4Q05f6KgEvGaAR6lcwLRCvgMr+/XFcm2c/Z+9z4aCgrPfrdV6cs8+zn+fZm71gf/Zaz1r0Xpz7vOdDdefXunSwRiSSONUTeaJNnN12VrUJWTgSjoQC3wiizama3xN5EOUHHuQpoe/l8zM/q1CzD9k01YYkD+fwfR/o9i9C6xBJQKZfuIDkFkVWD+vEewJnEvIpVxIR4+lZr7/V1I8twUYJc4xqJdK+RmskxT5teRRjLp1HzKXzUE5OrrdwNIJEW8XByVZhrGLmUnvInk3qSxTxlPxo6VVf9Nvnj377/FFxcDL67fNHwTtVdsdIyUtUhZ8oAC/55VhlfCX7Nk81Q0k6hNalg1FxcDKeigrGr98sxlNRwWqdSfkhCyWAI8TwVPFB59qCcihJh6wyDYtzIDxOPWj3+JimC4et1hO1HlzlLCgeb9ls62iNOk6Gw9yKuHrdGq3ldSaUitqbLs9tkLBVqvMoQv886WZbrI0IwKpmo5GXgkSmuG9DQElXnE2D7kw4qryPXsbJ5OdeQ/LyRerniWtG48eRlv5FjwQly6HaX9HmVCQ/9xqwIguYEonKt0fgA98o9Wl/VXiRWsMRsNyo9NgWjKzuOzXJg8REQz4R09FhrvaBgtjGke32zgNgLSioL73v9Ej69JCanTMwOBCZfrW69TmBuvWzdB3pJWHS2yYjlmERx6A1vvI2sT/Z2+iop5DWSBL2wsHNU81oeXRgg4Wtunm6WSXLIcTw00c35OKbaMvaVdHzKIa6UnsxXJkShcheRjmBzobcp9Xwa2eYh6+cSi62oK6qDWYZJ3817EMOTbVX81HkV2ENoR75XqVqaLpeW1k8qnO5XldSri/5a9svDcNyHUWutenVa6VmXgUlng4JSFE8Ux1NkZhL5xG/PA3rO8zAsT8fBwD8Ke9DABbPY8E7VQhJdLcbOmoEeSTNuRs0CZ6Aumtbbw2jWF9SRk4YJ/4PkJNI6SE+nNmaseK2D1u9lY6rPrDn0UXseTocCeWz98+AQ1KZpoYYSg3UTziK17XeNe6o7dDL1OKdBvM89pnSR30vhv0Adf84bYXr2cpGZ5Q4xBnMU81I+vSQ6rEisSILR0e8Okb/7MUwWrmftQXlSPr0EPb1rasXRjeCtF6RPq+ekIGCEk+1zcQ1o5FsCkWPiSVwzwvC5Hax6vmqfHsEKksXAiuy0P7NzYgvy8RXykB8pQzUjE1e1qzu1nX6SDgWHztjJRwDgwOtwlQzA9vUSzjSWIRRvUcaQ0ZsK4dOivU5xVBm8cGDGKa68+sPrB5E2MrCKtfvFEOlqZYnoVfig9rpiUlxHlQKRKwjCliHvhnRunSwwyHk9qA6j8Sw0VPUG1o5xHpL33hEm1NVb7c4Xyp7QOxO2Iv5WYWqQNyQ+7TqZQQs9jXn4DK1tAv9ruWSIEBdeQijdY9JGGsY1gpArSOZhLEwtbCUhvDqtRJevVbC1LKlpdHpMuB0GRYcgkZcGv29jfH0xKFCy7XsqHAE9ENCRUSBZdRWLs0hCkZROFIfzpTnoHIZtI+YdbXz+XFqWSGgLhzXq9dK3dBVOpZ5+Er3+4IST7WPX9t+ifjldZ73Bad9NdlSV2UWIiTR3aFjILF3yS9Hra84bPQUq1qTRrYmhr3S2GLWV7Esh1gHUkzoFW1OhWleqNUYoo3IXvtLfjnsebzFYc9jPXEmYY6jN9i21pGxN5K5XbElEp0Or2ogzyMlzBGFnuglIe+PiHjzLd/Iy5lPbWVCdQQqRyGGnup5vwDnE+zozZGO7ZJfjuoxoRC70A9nqp5GEoz5XqUaz2J17w042rWr6m2Ief1Ji4cRQN99ZrzZbYvmqX5YhR/uPXkSoR/ORN+4M2rikuJjZxDo3wk9tgUjefkiPJAywCr0dG1BOdbdV4SExS0158LoPMilOepbisNWchwxVFZvDJofrSuUrzWCtjtaAkPGKCGO/LDD1rWtl6hHRO/6d4UA/wCUvFnSIDb97GO9NV6VlefSUHzsjFWGVUA/eQ5BDxrkkgdiu9mRwaqg1AtjpkQ89fFA2oOK1RO+V7UPWewlzhEForimUhaOtkp0OIrsdSSB6GiJD6M+bXkhZZFJGWlFOp8fpwo+8TP1K4eFkmgMCbigtlt61VddQ7nx5Bv4LvwVAJaam8SqzEI15JRCZgveqcL6DjPw2FmL99WWmJS9hORN10vkRF7vF3q/gFWZddleHeGpqGAsO7DMKnSfPJliEh5al05j6m2/FT107Hmsgz2PDYzskamP+LO1jqy+HhqGaQjE67u+152ebeit3XHWZm6EHYjhf/TPUk84ApYbbiOvorxNvrmuz7ov8qDJSVlonR+1cRbyOIpJfAD9kL3QD2ci/b3PVQ8KJbkR6zcCwDM1z6jCMd+rFMnLFyFrvkW07eubi56bzKgKL8KG3KeROG8lYl5/Eke7dkXy8kXY5jsBgf6d1Pn5RExH37gzmht2IndJLoKyS5CwuCUyA9vAPNVst/4lrX2UBR3tSy89ZMEoJ8cRy1w4ssaU1sgaIZfWcDaxjJ4XkYSjUZmPwOBAK7Eoji/v5xcyBoPGxKvXoIx8rYuf9eyg5EiJjSNynCeG9wBQ54XZ+fUHGB/irYo8wPI7m7hmtO76x9mRwZrfoThXEn9qciH/Tog2p6pjBfp3stofsHjRxWu7oZCFDSXMqTg4WRU1olgy+ltLAk5MigNow1hlYry91SRXosfNCFk40k/R20jY60uvT0L2NBJ6wtGRsSiBjigaxSQ3S6/64sVfR2KWj7GIJeG3ZEcLzPIpUz1/IYnumPrQFYQkuqvC0SiEldZKfhf+iipCZU8f/aSau4Qt4Sh62y/55WBVZiFe6P0Cli5ZCnyapNoG1UMVvegPpAywimgRH5DUJ/FUU6JyRyXObjur+6J8Cf3798f999+Pf/3rX4082xsDi8cbgFyKw1WvoV6WSb3vGeZmYJQwRy9LsIxeyQ29xE/OXtM3OmGUKP70QoDoRlLv5p/El3xjLIYKOhImKI9ltG1+ViF8IqbbFStGax1Fz5fodV1bUI5kU6ja79GuXVH59gjke5Vid8JehFX44QPfKAAWgRdW4Yc9/0lCUHaJmn0VqPNODnx2HpKVQ8CUSBQfO4OwCj+0Lh2Mkh7rkbx8EWJefxJ/PqSg/Zub1eQ4uxP2YmjZGtXrenbbWav5U8ZQURCSkJShLKxiyCmJRtFbpCc+5Sfw8nb5XIvfy/vMjgxWrwdbv38SZkZCTxZzeqGrRpl85SQ44jUt12sU2xsxuV2s+vBBPL9GSYfk9zeCVZmF6s2zuF5XtOnVEzI03hJKrCMn2JGJNqfCPNWMv/V6AeNDvNV1jUBdJl36HDn7IoqPncHqCRmGWVcbmiSMVTN8itlXxVBUUSTqef5iPD0R4+mpKdshZ01NLy9HixM/ArAIKqv1flL7GaleVnOlNY0kHKmNvVBYI+yFs8peSjFZDqEnJqvCi1AVXqQpKyS3i1+ehiU7WmgS2qzKLFQ9kk9FBWP2tE803khAP3uq0ef1HWZgwWlfzXpMuh5lAXnJLwfLDiwDYAlblUPI9T6TB33ZgWVYdmAZBmWcw9aMFcg1R6vJcXYn7EXyc69hd8JeRMbW/b0kUSlmX036VIiXvk3hbKuMwxh5VIw4VFioriWg9rZwxAvJMDcSW95BvaQ3RuJQzqqqty/tb4SrHlBnoPVngMVTI4sNWze9zqQlHzQmXtcrKY43P6vQajxZkFDtw/ogZ34lxod4I2t+G+QusaxzfOQff0O2u+UGKL4sEzGvP4kHUgYgrMIP2e6TEePtrQrNQWPikbskFx5L70bPTWbEl2Viz3+SAADp732OoTUvArCEEf44MteSOEdgaNka+ERMR3xZJuZnFapZW+VzNWhMvGHGUL0bf9rfVgkNW9jKnAoYe5T19hMzkBJGQlL2AIrb5bWNeiKT5kXiWxSb8jkBrK8FPfFqVFuS0EvAUxQRoDlH9h6cuMIXW44AsL45FhPfiDe1dENMN78UdqcHtRGFKF1vsvcy0L8TTMK+cp/JplDd8iGyTdgqMWKEvBYOsAjGfK9Sq+16wlFELNUhk/7e5zbnIfZFCWMoXJWEo8hHT1fY7E8PZ9Y/EiQivXqtNPQ8it5LWuNoz8M6e9onVts2nnzD4RIZT0UFWyWzIS/lD32Pqf2L60jpuhbti4QeXafm3A3qd3JGVUJM9iTWcrzkl4OUvERszViBB1IG4IGUAcjqvhPJBaHISquL1JgdGWwVQmuvNirT9OE1j/VEb81jfevNkYAMDQ52qfQBw9wo5NqKhKPXqJhR1Zksqnpj2uRcdYOuedTLRilCaw8B4xBRuaxCcWGxmqCldelguxknxX0AWHkU7XnI9BD7qk+m1WhzqmZ9IwA1JFXMrvr2L8ORuyRXvSk3qv0oPrmPqFqpitIYb29gSiT6xp3BNt8JaP+HvyBroZcqHikhTmBwIDoM7aAWXt+Q+zRyl+RahZvS8RqtOXXlvBDUt1E5Dz3oOzEk2jzVrAkpdTXJklE/YuZWvXNCc6Jz3Lp0sF2hSIjFw+XxxDnJJW80NlEDIBUNYtOR4+IAaG9eac2ikTCcuGY0io+dUYUk/SQ7jDanqmHaYt/iWkZxGxVln3NwWYOvdXQUuZRGEsZqbFCE1jWKgk/0PIqIGVQdQc6YKn8HWCfGqQ+isCOBKJfSEEnJS0RC+DsaASqveRRrXYrvU/ISNeGrFQcnY+PJN/BUVDBe/HUk4penqZlU9bKbfhf+ipUXktroldEg9JYVAHUPFh/dkAsl6ZD6nSgKCXkbfRZLzojIGYq39I3XJKLSg9ZIPnzvYixoP/CWWhtIf0sC3g7AHe76vrfaqlqX1mjfKtzZ2BO4HZDr0jlLaHDD1FtjmBuB7FEH9L2MtvbXFLiWBKQ97yLtp7ddnA8AnLtyDu2xwKF52UOvTIK8fi53SS6i7PQj3gjTTXJU8UWYYb9UgbgP3ayuLSi3CoMzmp8e5qlmzL4+dzgpkDID22Cg7wTQrCOqVgIVdUW1wyr8sHpCBpKfexIAkL88FdGfWm4ytvlOAK7ffExcMxoBRx7Dxr/MQb5XKfK9SpE4byU2/mUOst0nq58BWBLrxFmE2JGvghDo3wkf+EZpblAy/WrxY7ctWG02Lk4+OzLYcu4MRBydOwpZtfd71aMoIgBB2fVLFhMYHKi5Hs5uO4vWIZb3DSEcxX5EEWkUxkqIDz1QCJinAiiw7lMPUTiK9iSOb/GWavcTE/TUVtWiBCWOHJ5NLnfZhQ25e9TPqu1kDUBk7EXshqXO4n9DTVb77k7YaxGRgCocRW//+BBvRFvtJXgHSSRmWT7PObgMe2rq7FQUqDcaSqZDAtIog6qcDEd8n4Y60Ug1EAFYCUexD7Ed8UnnTXhp54tI61PnWbQlKI0w2kfPG5iSl4iq8CK8dKd+LUoAmvBeKrUhlw4pKPEErCNu1X0Bfe9n50fjsCrTEpKqJwSpZIeI6Hm0BdVxNEL8mymLRHmb3mdZFJKYnPd8KB69C9ezDefoClNiS994tC4FNl140e7xNBd27NiB9957D/v27UNZWRnS0tIQExPT2NOyCYetukj7Fgs1nykUVQ5JvRHc6P4ZRk/Y1Wc9ojP90z62HsjIxbIJ2R5dQU9gOOLZo3Ve9kLw6hMiSQlh6H1U8UWrl6P92EvSI8/fPNWMyy+dQLb7ZMSXZSLfq1T1EAIWr0OMtzeSTXUF5cSyBtnuk9X3P47Mxca/zEGMt7elNMFzr1k+v24RnfFlmSjpsV7tZ21BOT7wjVK9O2JoatKnh7B6QoZFyErfiedlbUG5eu70IHFu7zyK4crya3yIt8PJj+R1kMWFxXaFXENiq5SHCF0HNLfWpYPRYWgHzVpIWyGsVEqEPL6y19fWvn4hY9AlaJSzh2YX0SsYGXsRySGH8EDKAF3hSExuF4uS1xep+4nedPr5QMoAtSQHQeu/SEiuu68IsyODMbBlGzXcjx4G0bow6kvcT/yZXKAf2lofjLKliusgZWK9PkKs10fI9ypFSMAFK2Gl17csHAkSjlTOJ711W/za9ks1hFXk17Zf2gwPpe9ivT5SvYTi+k7AIu5kz6seKXmJSMlLROfz49ToCjHs11a9RzEcVFy7SMhCkD4/0vVdNZRV3EYhqra8joRe4q9oc6omI6re/nLZDurLSAjSOvYNuU9j0Jh4KEl1Id96wlR878xSjubAxYsX0adPH3z88ceNPRWH4bDVeqIWE6+cBbRrpd7AioLOEY+iXhifrUQ7hwoL1X7F93qI4bC2sNcP03yxJe5c6ccoHLU+YbAilb+/jPZ/+EODFBTf/9l+p/fXK2/hiHcRsHitxod41ytc0igDrBH21mnKnH1rIYaWrcE23wn4wDdK9RICUL2E7yTVicN9iy0ZJJOXL8LENaMxPsQbb3bbooa1UVkOoxC3ghJPTO3yD2S7T8a9J0+i1YFoBGWXIOlTbdjVaw++qe6T71VqVbrDGeQ6nkaJb+SyGyKiKNe7ibN3zvWun4aCvH3idSKX/DC6hkhA0twopFYWesQlvxzdZEbUhryQooexw9AO6vkRj/3qpWrseWKxyzY9q3IPWrXzVEOnH0gZoAq75BDjBB4UkipedyvPpWm2AXWeTDm8lbaJ/VGJDoK+F2tAAnVRBmqinetCV4aS89jzXMqiyZFSGKIwrG/pDEIOa7UV5hq730vjkRTLXwB1yXNivT7SePjkMFRb4am2IO9sSp7lf1JVeJFVCRRAe07l76hECpXFoNIdXr1WqiU69MSls+hFyQDapFAiWzNWaEJgxTWN4lINvWRg8jZHwl+pRIjIrRy2iqcBtDRodD3MPigoCG5ubpg2bZpTSXNMJhN7Hu2RkpKC/v37o23btvDx8UFMTAwKHfCmVVdXIzExEf7+/mjVqhW6d++OlSvrYsyvXLmCt956C927d4e7uzv69OmDzMxMTR87duxAdHQ0/Pz8YDKZkJ6eXu/jEIVjaHCw+nJmX3vbCLFfR8ew56Fk4cjo0VDCUW9/o0Q3jibA0fM8NuQa4f0rnBeOAFTvEYUgiuu7jLKuEuQVM8oMagsax57gsFXXUYYSv5inmpHtPhnbfCfgdPbHCKvwU8NNAetQtbUF5egbdwZHhhZiQ+7T6DGxRC3HMe/5ULz9y3CEBFyw1Hv09la9jYAlDDbm9Scxy9wS7f1mIsbbG6G9eqH42BnU3PWqJoPlJb8cdQ4RVSsxcc1ohzLMGn12JOvn2oJyAPrCUdxXb39759w81WzlkRMT08iJjIwyrhqhlzyHsgNTsgyj6664sBjFhcWq59DWsZQWfG0lHMVEPqUFX6teSEIUjmJpEGceiNhjU/6LGuEIAFlpbZCVZvEATlwzWne/NUKpELop3jZuFrZmrEDr0sFqFtbdCXs14k0uXQBYyjvIwpG+F4Xm2oJyRJtTLeGw12/8dyfsVYUjtRczWDoa8kpiiDDyGhJpFTPUl15b8kLSd7H7dWI5ryP/rZDXTWuE6nXhSN5EMfupnAlVz8PoKiQKE8LfsemtlJMQzcNX6otKo5AXkYQjAEPh+FRUsMYDaQ97whGwPFyYuGY0tmaswNaMFWrpDTkRDnkfbdm3XB6K+og2p6J16WCNcIwWlinIa5+3Z+p7QW8XONvqDSQnJwfTpk3Dnj17sHnzZly9ehUPP/wwLl60/eR43Lhx2Lp1K1asWIHCwkJ8/vnnCAmpWzQxZ84cfPLJJ/jnP/+Jw4cP46WXXkJsbCzy8vLUNg3pJqab3YYUYQ1xI+yskGUYwLaAsyX8bPXn6BpHGsNWX/b6b0wGjYnHynNp6DC0g5WYoxthenpLJSX0bthtlQQwwihbnogjopGSxpCnL9qcCo+ld6P9m5vx48hcRFStRETVSjV09e1fhqshpvOzCtWbY/p5ZHUA/rQhHkHZJeocYv/qjdi/WpLhUGZGCoPVZGqcEglMiUSgfyeU9FiPtQXliPx5EOZnFapCrucmM05nf4ziY2fU8yaX3XBUNItlO/R+L1QXkNrKWVqN6kHqQbUQ6RrRCynTS24jewGBOqFJv3/ZE0Dfi4l8ROTjIJFoNB8SeB2GdkCHoR0048hzE7dTH2LfJCapX5FBY+Jxquh/VvNwBfKA0O9xd8Je5EVVwCdiOrZmrFDr9pFAm9AjQBWKl/xykGuO1tx4ix6V5OdeU8sViGKSfj7+U5B63RKy6HsgZQCKj53RiNnZkcHqfB5IGYBA/06a/RzNXpmEsZgVWicIAX1vohweSuIwJS/RSkCKXr9Yr4803kJ7UL9hFX6I9frIynNH3kZRnJJw/LXtl2qoq14WWcJVUUl92xqD2skCk0JbaXxaD0lJdB7p+q4qLMXkOV69VmqEpZwhWNwuhu+rc/n0EB7dUPe3LtqcisntYtXPueZoTQ1Hek/hts48vCRRuDVjheH340O8rUJZL3fZ5fAYtyLnzp3TvKqrqxt7Sg1KkwpbPXPmDHx8fJCTk4OHHnpIt01mZibGjx+P4uJieHt767bx8/NDYmKiRvHHxMTA09MTq1atsmpfHzexGLaqeLxlt71eKGpD1YFkmIbElrgTQ0WdyZoqtzcKO3XVFkyX5zZItlWbYSnXoRBD8WZ+0Jh4q6e5hK11KYB1rUZ7GT8pDFIMhxTHdzQsVS+ckryOPhHTcTr74+tJcF5D8vJFmqyqPbZZbniSly+y/HzuNWR134ndCXsRX5ap1n2cuGY0JreL1RW3SZ8esk60IWRZlUOl3uy2BT03WT5T6ODagnK1Xl5U8UVNeClhFM4qH7+tkFV759SSMKfEZhsj5P5lISULMjHEVbwWxWtSrNPpyJjy2GKYqjw3Gscoy6ooCG0l1SFRSxlfZQ9p8cHiBsm22ienD9w83TQ1HGdHBtvMICmG2+llsmxdOhjDRk/R7E/iDoC6Rrdv90ex7+dvVJuQw1oJWRDKY4qhsc7y50MKjnbtqvudGD5K78VtesluCD1vpJ4gFfuQ9xHbi/UlxXZJGIvkK0FW/zOSMBZ/PmS5jf1vqMmh9YziviK0r7id+hb5b6hJTa4kjm2EOKelV301axcf6fouvHqtxEt3lmFQxjl1u5xZ9amoYFV0AtYeR7kkhxxSTQ9LRC+jOXeD4ZpGvdBTwLKmHNCGlstZlY3WNIprHm/3sFWZpKQkJCcn2x3jVglbbVLZVisrKwHAUBQCwDfffIN+/frh73//Oz777DO0adMGjz76KN5++214eHgAsIS1uru7a/bz8PDAzp07b9zkBRz1tLBoZJoa9ryCRqLPVj9yXUdxG713Feqr8tzMBsu2Ctgu3UA31vJNfe6SXBRFBKD42DLN9tl+dREAemtJSCSJ/+gdQU842soqarQ/jR3o3wk+EdPV738cmYtkkzfSy8sRVgFLmOl7n1uE44osAEDyiiykl5cj/b3PEVG1EpGmUFxJfhXuj1q8OKsnZGDn86HWg8NyM5ISV4PXvpmlrqNMLy9HzOtPItqcilxo6zb2jLAkptnmO8Fy852wFygYrRGHjgpHQsxSa3TOHDmX9RWOeuiVzTASe3ptbQk26sfomOqS9xiHxZLAlMt/2BKOYhg37SdmW5XrVzoTlusIolDcnbDXKkOqXj06uonW8+6RcEw2heLQwYP4b6jJ4nG8/r0aivqzRexRluCJ/p0QuGY04N/JKssqCctoc6oaYqja5bPz1AcyBAlTWyQ/95ph7cUYT09AeHhDglF8oGMkHCncVEYUgPb6SMJYtb3sfSTBmNyiSLMNEEWdc/4PPWFIwk8Wk3rC0Wi7LREpeiVfurMMEJLT7MQ718f9SiMYqTTHsgPL0Lp08PXtdcKRkB867k7Yqwo8Spaz2wy0ljyDS6/6YpnQl/yQThSE1MY0L9RwaYTY/oXeL1gl9xE9nc2BEydOaERxq1atGnE2DU+T8TwqioIxY8agoqIC3333nWG7qKgobN++HcOHD8fcuXPx22+/IS4uDkOHDlXXPU6YMAH79+9Heno6unfvjq1bt2LMmDG4du2aruvYEaVfXV2t2beyshL33HMPTvzyC9q1db0OEcM0JpSltPLKTN3tInIbZ/pt32IhKq/MtPrZUJw7fx53d+uGs2fPWp4Q2sHIrjEeWBfUGm8N62G1/nHgI3Gaz3s2LtZ87jOlj7pPnyl9MDLsE2zKr0tLPnerpVj5969tAwD0XzRUfZ8w3SKkUz5+BwntB2LL3NZ4vOSS7txz/3QPfjnxGx4vuaQZ0xn6TOkDwLLGs8+UPpi79Yg6l14VXTRtRwcEIKVyj7r9oNcpJLQfCADIKClR2x30OmU5lvYDkVK5BzNTPsMfSv9ldx4jwz5BwvREpHz8DnpVdEHk0vewMOH/AQDiTm3B4i7DMe7LcZgU5IUNXcZicZfh2JT/ou5xrwtorb43On96c6jvWteGwNnxA3oEAABKhDV5cn8izh4b9d8laJTVNU7o2QKN63HqQXX7qaL/oUvQKDUE1VYG1T0bF2v63ZO2GFgLl206/sRWtGpnHVast/bqcpddGLnJcr42jbQcz8gw60LvRtB1LP8E6uwCAJAyEJtGWq79sD7jkb9/rfqz/6KheK/ns2p4H/0dGRn2ieZvBrW3moMwzgKkY3XFSzbnPPGQF1aHOh5yCgATvZbqbl9d8RKKjltCSoPusRaNp9umwed8XRjlRK+lmIUY9W8LfQaAMYctt6hf318nymibHmK7BUjXfEd96vUh7mdvDHk/sS31I29bgHTN+PJnwPpa3BPVDh9c7YwvthzBkKinsSn/RczdegRvDethOJ/9K/Zj1j/3YMHLAzHrn5bff6v99wIAssrmWrW/3GWX5dq+fi0SHqcetLr2aDvtJ7YT7f2J4T3wxZYjmjHE/UaGfYLqcxfxwd3DHLbrpoDqeXwSQAuDRlcAfF7/SIlbxfMIpYkQFxen+Pv7KydOnLDZbsSIEYq7u7ty9uxZddu6desUk8mkXLp0SVEURTl9+rQyZswY5Y477lDc3NyUoKAgJS4uTvHw8NDtE4CSlpZmc9ykpCQFlkdc/OIXv5r4y97fEbZrfvHr1nqxTfOLX7ffy1G7bgpcvnxZ6dKli91jateunRIcHKzcd999yscff2y33/Pnzyt5eXlKXl6eAkB5//33lby8POXYsWM34ajqR5PwPL788stIT0/Hjh070K1bN5ttn3nmGezatQtHjx5Vt/3000+4//77UVRUhB496p7IVFVV4ffff4efnx9mzZqFjIwM/Pjjj1Z91sfzWFtbi/LycnTs2BEmk3GsO2Ph3LlzuPvuu61c+Yx9+Nw5jqIoOH/+PPz8/HDHHfbzgbFd1x++Ll2Dz59jsE3fXPi6rD987hzHWbtuKlRVVaGmpsZmm5YtW1otnbPF9u3bERERYbX9mWeewX/+8x9np3hTaNQ1j4qi4OWXX0ZaWhq2b99uVzgCwIMPPoivvvoKFy5cgKenJSyiqKgId9xxB+666y5NW3d3d3Tt2hVXrlzBunXrMG7cOL0uHaJVq1ZWMcsdOnSod3/NlXbt2vEf1XrC584xnAmBYbt2Hb4uXYPPn33Ypm8+fF3WHz53jnGrhKuKuLu7OyUMHWHIkCFoAn48p2hUuT9t2jSsWrUKa9asQdu2bXHq1CmcOnUKly9fVtskJCTg6afrFqpPmDABHTt2xKRJk3D48GHs2LEDr7/+OiZPnqwmzNm7dy/Wr1+P4uJifPfdd4iKikJtbS3++te/qv1cuHAB+fn5yM/PBwD88ssvyM/Px/Hjx2/OwTMMwzAMwzAMw9xCNKp4XLJkCSorKzFkyBD4+vqqry+++EJtU1ZWphF0np6e2Lx5M86ePYt+/fph4sSJiI6Oxj/+8Q+1TVVVFebMmYP7778fsbGx6Nq1K3bu3Kl5+vjDDz8gPDwc4eHhAIBXX30V4eHhmDvXekExwzAMwzAMwzBMc6fRw1btoRfvGxISgs2bNxvuM3jwYBw+fNhmv7eim/hWplWrVkhKSrrt0hXfDPjcMU0Rvi5dg88f0xTh67L+8LljmgtNImEOwzAMwzAMwzAM07S5dVIcMQzDMAzDMAzDMI0Gi0eGYRiGYRiGYRjGLiweGYZhGIZhGIZhGLuweGQcJiUlBSaTCa+88ophm+3bt8NkMlm9CgoK1Dbr169Hv3790KFDB7Rp0wZhYWH47LPPrMbq378/2rZtCx8fH8TExKCwsPBGHdpN4WaeP2fHZZovbNeuwXbNNDXYpl2DbZphbNOo2VaZW4fvv/8ey5YtQ+/evR1qX1hYqCmS26lTJ/W9t7c3EhMTERISgpYtWyIjIwOTJk2Cj48PIiMjAQA5OTmYNm0a+vfvj6tXryIxMREPP/wwDh8+jDZt2jTswd0Ebvb5q++4TPOC7do12K6ZpgbbtGuwTTOMAygMY4fz588rPXr0UDZv3qwMHjxYmTFjhmHb7OxsBYBSUVHh1Bjh4eHKnDlzDL8/ffq0AkDJyclxqt+mQGOdP2fGZZofbNeuwXbNNDXYpl2DbZphHIPDVhm7TJs2DY888giGDx/u8D7h4eHw9fXFsGHDkJ2dbdhOURRs3boVhYWFeOihhwzbVVZWArA8ybvVaKzzV59xmeYD27VrsF0zTQ22addgm2YYx+CwVcYma9euRW5uLr7//nuH2vv6+mLZsmXo27cvqqur8dlnn2HYsGHYvn275g9mZWUlunbtiurqari5uWHx4sUYMWKEbp+KouDVV1/FoEGDEBoa2iDHdbNorPPn7LhM84Lt2jXYrpmmBtu0a7BNM4wTNJrPk2nyHD9+XPHx8VHy8/PVbfUJqRg9erQSHR2t2Xbt2jXlyJEjSl5enrJw4UKlffv2SnZ2tu7+cXFxir+/v3LixAlnD6FRaazz11DjMrcnbNeuwXbNNDXYpl2DbZphnIPFI2NIWlqaAkBxc3NTXwAUk8mkuLm5KVevXnWon7/97W9KSEiIzTZTpkxRHn74Yavt06dPV+666y6luLi4XsfQmDTW+WuocZnbE7Zr12C7ZpoabNOuwTbNMM7BYauMIcOGDcPBgwc12yZNmoSQkBC88cYbcHNzc6ifvLw8+Pr62myjKAqqq6s1n19++WWkpaVh+/bt6Natm/MH0Mg01vlrqHGZ2xO2a9dgu2aaGmzTrsE2zTDOweKRMaRt27ZW6xbatGmDjh07qtsTEhJw8uRJpKamAgA+/PBDBAQEoGfPnqipqcGqVauwbt06rFu3Tu0jJSUF/fr1Q/fu3VFTU4P//e9/SE1NxZIlS9Q206ZNw5o1a/D111+jbdu2OHXqFACgffv28PDwuNGH3iA01vlzZFym+cJ27Rps10xTg23aNdimGcY5WDwyLlFWVobjx4+rn2tqajBz5kycPHkSHh4e6NmzJzZu3IhRo0apbS5evIi4uDj83//9Hzw8PBASEoJVq1bhiSeeUNvQH9chQ4Zoxvv3v/+NZ5999oYe083kRp0/hnEFtmvXYLtmmhps067BNs0wdZgURVEaexIMwzAMwzAMwzBM04brPDIMwzAMwzAMwzB2YfHIMAzDMAzDMAzD2IXFI8MwDMMwDMMwDGMXFo8MwzAMwzAMwzCMXVg8MgzDMAzDMAzDMHZh8cgwDMMwDMMwDMPYhcUjwzAMwzAMwzAMYxcWjwzDMAzDMAzDMIxdWDwyDHPT2LFjB6Kjo+Hn5weTyYT09HSn+1AUBQsXLkRQUBBatWqFu+++G/Pnz2/4yTIM4xBs1wxze8E2zdjizsaeAMMwzYeLFy+iT58+mDRpEh5//PF69TFjxgx8++23WLhwIXr16oXKykr89ttvDTxThmEche2aYW4v2KYZW5gURVEaexIMwzQ/TCYT0tLSEBMTo26rqanBnDlzsHr1apw9exahoaF49913MWTIEADATz/9hN69e+PQoUMIDg5unIkzDGMI2zXD3F6wTTMyHLbKNEvOnDmDLl26aEIo9u7di5YtW+Lbb79txJk1byZNmoRdu3Zh7dq1OHDgAMaOHYuoqCgcOXIEALBhwwYEBgYiIyMD3bp1Q0BAAJ577jmUl5c38syZpgDbddOE7ZqpL2zTTRO26WaOwjDNlI0bNyotWrRQvv/+e+X8+fPKvffeq8yYMaOxp9VsAKCkpaWpn48ePaqYTCbl5MmTmnbDhg1TEhISFEVRlBdffFFp1aqVMmDAAGXHjh1Kdna2EhYWpkRERNzMqTNNGLbrxoXtmmlo2KYbF7ZpRobXPDLNllGjRuH555/HxIkT0b9/f7i7u2PBggWNPa1mS25uLhRFQVBQkGZ7dXU1OnbsCACora1FdXU1UlNT1XYrVqxA3759UVhYyOExDNt1E4PtmnEVtummBds0w+KRadYsXLgQoaGh+PLLL/HDDz/A3d29safUbKmtrYWbmxv27dsHNzc3zXeenp4AAF9fX9x5552af1r33XcfAOD48eP8D4kBwHbdlGC7ZhoCtummA9s0w+KRadYUFxejtLQUtbW1OHbsGHr37t3YU2q2hIeH49q1azh9+jT+9Kc/6bZ58MEHcfXqVfz888/o3r07AKCoqAgA4O/vf9PmyjRt2K6bDmzXTEPANt10YJtmONsq02ypqanBH//4R4SFhSEkJATvv/8+Dh48iM6dOzf21G5bLly4gKNHjwKw/AN6//33ERERAW9vb9xzzz146qmnsGvXLixatAjh4eH47bffsG3bNvTq1QujRo1CbW0t+vfvD09PT3z44Yeora3FtGnT0K5dO06ewABgu24M2K6ZGwnb9M2HbZqxSaOuuGSYRmTmzJlKQECAUllZqVy7dk156KGHlEceeaSxp3Vbk52drQCwej3zzDOKoihKTU2NMnfuXCUgIEBp0aKF0qVLFyU2NlY5cOCA2sfJkyeVxx57TPH09FQ6d+6sPPvss8rvv//eSEfENDXYrm8+bNfMjYRt+ubDNs3Ygj2PTLNk+/btGDFiBLKzszFo0CAAljj83r17IyUlBVOnTm3kGTIM4yxs1wxze8E2zTBNDxaPDMMwDMMwDMMwjF3uaOwJMAzDMAzDMAzDME0fFo8MwzAMwzAMwzCMXVg8MgzDMAzDMAzDMHZh8cgwDMMwDMMwDMPYhcUjwzAMwzAMwzAMYxcWjwzDMAzDMAzDMIxdWDwyDMMwDMMwDMMwdmHxyDAMwzAMwzAMw9iFxSPDMAzDMAzDMAxjFxaPDMMwDMMwDMMwjF1YPDIMwzAMwzAMwzB2YfHIMAzDMAzDMAzD2OX/AxjifnGRhuWNAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA48AAAEiCAYAAABZdOcWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOyde1hVVfrHv6QiIqIweQFKCBXIIPVYoxRlqAWOomJZpo6Vmkk2XtJSsQmoFK0M7Vei5i0zszTRwILKC0ajTnHQIANSBEvwMgOIiCjq/v2xeRdr77P3ucBBwVmf5zkPnH3WXnvt2znru9+bgyRJEgQCgUAgEAgEAoFAIDDDbTd7AAKBQCAQCAQCgUAgaPoI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8SgQCAQCgUAgEAgEAosI8XiD2LdvHxwcHFBeXn6zhyIQCAQCgUAgEAgENiPEYyPwyCOPYObMmYplDzzwAEpKStC+ffubM6h6Ulpain/84x/w9/dHmzZt0LVrV0yfPh3nz59XtDt58iSGDh0KZ2dndOrUCa+88gquXr3KPi8pKcHYsWPh5+eH2267zeT4AEBNTQ3eeOMNdOvWDU5OTujVqxdSU1MtjnH79u147LHH8Je//AUODg44fPhwvfZBTXV1NZ599lkEBQWhZcuWGDlypEkbeiigfp0+fRoAND/jX7GxsQCA6dOno2/fvmjdujV69+6tOZ5ffvkFDz30EJycnHDnnXfi7bfftnhsVq9ejUceeQSurq6aDy/0xu/g4ICffvpJt9/ExETce++9cHV1haurK4KDg/HNN98o2rzwwgvo1q0b2rRpg44dO2LEiBHIzc21OGaBQCAQCAQCQdNEiMcbhKOjI7p06QIHB4ebPRSbKC4uRnFxMd59913k5ORgw4YNSE1NxaRJk1iba9euYejQobhy5Qr+9a9/4eOPP8aGDRvw+uuvszaXL19Gx44d8dprr6FXr16a23rttdewatUq/N///R+OHj2KqVOnIjIyEllZWWbHePHiRYSEhGDJkiX13gctrl27hjZt2mD69OkYPHiw2bZ5eXkoKSlhr06dOgGAYtmyZcvg6uqqWDZnzhzWx8SJE/HUU09p9l9RUYHHHnsM3t7eyMzMxDvvvIPY2FisXr3a7LiqqqoQHh6O6Ohozc/poQb/mjx5Mu666y7cd999uv3ecccdWLx4MTIzM/Hzzz9j4MCBGDFiBH799VfWpm/fvli/fj1+++03pKWlQZIkPPbYY7h27ZrZMQsEAoFAIBAImiiSwK4888wzEgDF68SJE9LevXslAFJZWZkkSZK0fv16qX379lJycrLk5+cntWnTRnr88celixcvShs2bJC8vb2lDh06SP/4xz+kq1evsv6rq6ul2bNnS56enpKzs7P017/+Vdq7d+8N3ccvvvhCcnR0lGpqaiRJkqSvv/5auu2226TTp0+zNomJiZKrq6t0+fJlk/UHDBggzZgxw2S5h4eH9MEHHyiWjRo1Sho3bpxV4zpx4oQEQMrKyrJ5HyzxzDPPSCNGjDBZrj6v5qBzbo6YmBipV69eJstXrFghubm5KY7n3LlzJX9/f4vbtWWcV65ckTp27Ci98cYbVvXL4+bmJq1Zs0b38yNHjkgApGPHjtnct0AgEAgEAoHg5iMsj3Zm+fLlCA4OxvPPP88sOXfeeadm26qqKrz//vvYsmULUlNTsW/fPkRGRuLrr7/G119/jU8++QSrVq3Ctm3b2DovvfQSDhw4gC1btuCXX37B6NGjER4ejt9//113TEOGDIGLi4vu65577rFpH8+fPw9XV1e0bNkSAHDgwAEEBQWhc+fOrE1YWBgqKioUlihLXL58GU5OToplbdq0QUZGhk3jswb1PjSU3r17w8PDA48++ih+/PFHu/TJc+DAATz88MNwdHRky8LCwpCXl4eysjIAdS6ohYWF9d7OV199hf/+97947rnnFMsdHBywYcMGzXWuXbuGLVu24OLFiwgODtZsc/HiRaxfvx533XWX7v0gEAgEAoFAIGja2GfmLGC0b98ejo6OcHZ2RpcuXcy2rampQWJiIrp16wYAeOKJJ/DJJ5/gzJkzcHFxQc+ePREaGoq9e/fiqaeewsmTJ7F+/XqcPHkSnp6eAIA5c+YgNTUV69evx6JFizS3s2bNGly6dEl3HK1atbJ6//7zn//gzTffxJQpU9iy06dPK4QjAPaeYv+sISwsDO+99x4efvhhdOvWDbt378b27dvt7uaotQ/1xcPDAytXrsR9992Hy5cvY82aNXjkkUdw6NAhGAwGO4xW5vTp07jrrrsUy/hj7ObmBmdnZ/j7+9t0PtWsXbsWYWFhuOOOOxTL/f39TeJ1s7OzERwcjOrqari4uCApKQk9e/ZUtFmxYgVeffVVXLx4Ef7+/vjuu+8UAlggEAgEAoFA0HwQ4vEm4uzszIQjIIsBHx8fuLi4KJadPXsWgDxZv3btGvz8/BT9XL58GX/5y190t+Pl5WWX8VZUVGDo0KHo2bMnS/RiT5YvX47nn38eAQEBcHBwQLdu3fDcc89h3bp1AIBPP/0UL7zwAmv/zTff4KGHHrJpG3r7cM8996CoqAgA8NBDD5kkf9HD398f/v7+7P0DDzyA48ePIyEhAZ988olNY2sof/3rXxuUkObPP/9EWloavvjiC5PPtPr19/fH4cOHcf78eWzbtg3PPPMM0tPTFQJy3LhxePTRR1FSUoJ3330XTz75JH788UcTC7NAIBAIBAKBoOkjxONNRG0hcnBw0Fx2/fp1AEBlZSVatGiBzMxMtGjRQtGOF5xqhgwZgh9++EH3c29vb4vupRcuXEB4eDjatWuHpKQkxTi7dOmCf//734r2Z86cYZ9ZS8eOHbFjxw5UV1fjv//9Lzw9PTFv3jz4+voCAIYPH45+/fqx9raKYnP78PXXX6OmpgaA7CrbEP7617/a3dW2S5cu7JgS9TnG5li/fj3+8pe/YPjw4Va1d3R0RPfu3QHIyXF++uknLF++HKtWrWJt2rdvj/bt26NHjx7o378/3NzckJSUhKefftouYxYIBAKBQCAQ3DiEeGwEHB0dGyWjZJ8+fXDt2jWcPXvWJotbQ91WKyoqEBYWhtatW+Orr74ysRoFBwdj4cKFOHv2LMsy+t1338HV1dXEjdEanJyc4OXlhZqaGnz55Zd48sknAQDt2rVDu3btbO7Pmn3w9vauV79aHD58GB4eHnbrD5CP8YIFC1BTU8PO13fffQd/f3+4ubk1uH9JkrB+/XpMmDCh3m6v169fx+XLl81uQ5Iks20EAoFAIBAIBE0XkTCnEfDx8cGhQ4dQWFiI//znP8xy2FD8/Pwwbtw4TJgwAdu3b8eJEyfw73//G/Hx8di1a5fuel5eXujevbvuy5xwohIRFy9exNq1a1FRUYHTp0/j9OnTTCA/9thj6NmzJ/7+97/jyJEjSEtLw2uvvYZp06ahdevWrK/Dhw/j8OHDqKysxLlz53D48GEcPXqUfX7o0CFs374dBQUF+OGHHxAeHo7r16/j1VdfNXtcSktLFX3l5eXh8OHDLN7Smn3Q4+jRozh8+DBKS0tx/vx5tg/EsmXLsHPnThw7dgw5OTmYOXMm9uzZg2nTppntV82xY8fYmC9dusS2c+XKFQDA2LFj4ejoiEmTJuHXX3/F559/juXLl+Pll19mffz73/9GQEAATp06xZadPn0ahw8fxrFjxwDIrs+0Pzx79uzBiRMnMHnyZM3xBQQEICkpib2fP38+9u/fj8LCQmRnZ2P+/PnYt28fxo0bBwAoKChAfHw8MjMzcfLkSfzrX//C6NGj0aZNG/ztb38z2++ECRPM7tOgQYPwwQcfWH9wBQKBQCAQCAT24SZne70lycvLk/r37y+1adPGYqkOHq0yDeoSEVeuXJFef/11ycfHR2rVqpXk4eEhRUZGSr/88kuj7AuNW+t14sQJ1q6wsFAaMmSI1KZNG+n222+XZs+ebVIGQ6sPb29v9vm+ffuku+++W2rdurX0l7/8Rfr73/8unTp1yuIY169fr9l3TEyMTfughbe3t+Z6xJIlS6Ru3bpJTk5Okru7u/TII49Ie/bs0R2nXqmOAQMGWBzfkSNHpJCQEKl169aSl5eXtHjxYkUftJ/8OjExMZr9rl+/XrHu008/LT3wwAO6x0G9zsSJEyVvb2/J0dFR6tixozRo0CDp22+/ZZ+fOnVKGjJkiNSpUyepVatW0h133CGNHTtWys3NNdvvM888Iw0YMMDsPnl7e7NzKxAIBAKBQCC4cThIkiQ1ki4VCAQCgUAgEAgEAsEtgnBbFQgEAoFAIBAIBAKBRYR4FAgEAoFAIBAIBAKBRYR4FAgEAoFAIBAIBAKBRYR4FAgEgnqyb98+ODg4oLy8/GYPRSAQ2AFxTwsEAoF5hHgUCAQCK3jkkUcwc+ZMxbIHHngAJSUlaN++/c0ZVD0pLS3FP/7xD/j7+6NNmzbo2rUrpk+fjvPnzyvanTx5EkOHDoWzszM6deqEV155BVevXmWfb9++HY8++ig6duwIV1dXBAcHIy0tzWR7H374IXx8fODk5IR+/frh3//+t1VjHDduHFxdXdGhQwdMmjQJlZWVijZffPEFevfuDWdnZ3h7e+Odd96xav+3bt2KgIAAODk5ISgoCF9//bXi82effRYODg6KV3h4OABgw4YNJp+pX4WFhfj111/x+OOPw8fHBw4ODli2bJnmWGw9NtXV1Xj22WcRFBSEli1bYuTIkSZttMbv4OCAe+65x6rjc/nyZfTu3RsODg6K0kR5eXkIDQ1F586d4eTkBF9fX7z22muoqamxqt+mhrinb+w9vXDhQjzwwANwdnZGhw4dTD4/cuQInn76adx5551o06YN7r77bixfvtxiv9bcaxcuXMDMmTPh7e2NNm3a4IEHHsBPP/0EACgsLLR4T2/YsMGqew+QH0AYDAa0bt0a3bt3x4YNGxp8bMx975w9e1a339jYWAQEBKBt27Zwc3PD4MGDcejQIc22eve9QKBGiEeBQCCoJ46OjujSpQscHBxu9lBsori4GMXFxXj33XeRk5ODDRs2IDU1FZMmTWJtrl27hqFDh+LKlSv417/+hY8//hgbNmzA66+/ztrs378fjz76KL7++mtkZmYiNDQUERERyMrKYm0+//xzvPzyy4iJiYHRaESvXr0QFhZmdsIDAOPGjcOvv/6K7777DikpKdi/fz+mTJnCPv/mm28wbtw4TJ06FTk5OVixYgUSEhIs1gD917/+haeffhqTJk1CVlYWRo4ciZEjRyInJ0fRLjw8HCUlJez12WefAQCeeuopxfLg4GA8//zzimV33nknqqqq4Ovri8WLF6NLly6aY6nPsbl27RratGmD6dOnY/DgwZptli9frhjPH3/8AXd3d4wePdrssSFeffVVeHp6mixv1aoVJkyYgG+//RZ5eXlYtmwZPvroI8TExFjVb3NA3NONd09fuXIFo0ePRlRUlObnmZmZ6NSpEzZt2oRff/0VCxYswPz58y3e09bca5MnT8Z3332HTz75BNnZ2XjssccwePBgnDp1Cnfeeafifpk9ezbuuecexbKnnnrKqnvvxIkTGDp0KEJDQ3H48GHMnDkTkydP1hTgthwb9fdOSUkJwsLCMGDAAHTq1Em3Xz8/P3zwwQfIzs5GRkYGfHx88Nhjj+HcuXMmbfXue4HAhJtdK0QgEAiaOs8884xmDU69+q3JycmSn5+f1KZNG+nxxx+XLl68KG3YsEHy9vaWOnToIP3jH/+Qrl69yvqvrq6WZs+eLXl6ekrOzs7SX//6V2nv3r03dB+/+OILydHRkdVn/frrr6XbbrtNOn36NGuTmJgoubq6SpcvX9btp2fPnlJcXBx7/9e//lWaNm0ae3/t2jXJ09NTio+P1+3j6NGjEgDpp59+Ysu++eYbycHBgdV+ffrpp6UnnnhCsd77778v3XHHHdL169d1+37yySeloUOHKpb169dPeuGFF9h7dX1dcwwYMECaMWOG2Tbe3t5SQkKCyfL6HBsea8eZlJQkOTg4SIWFhRbbfv3111JAQID066+/SgCkrKwss+1nzZolhYSEWDXepoS4p2Vu1D3NY67msZoXX3xRCg0NtaqtJGnfa1VVVVKLFi2klJQUxXKDwSAtWLDApA+tmttq9O69V199VbrnnnsUy5566ikpLCzMqvFbe2zOnj0rtWrVStq4caNV/RLnz5+XAEjff/+9Yrmt973gfxtheRQIBAILLF++3MTCdOedd2q2raqqwvvvv48tW7YgNTUV+/btQ2RkJL7++mt8/fXX+OSTT7Bq1Sps27aNrfPSSy/hwIED2LJlC3755ReMHj0a4eHh+P3333XHNGTIELi4uOi+rHVRJM6fPw9XV1e0bNkSAHDgwAEEBQWhc+fOrE1YWBgqKirw66+/avZx/fp1XLhwAe7u7gDkp+mZmZmKp/S33XYbBg8ejAMHDuiO5cCBA+jQoQPuu+8+tmzw4MG47bbbmMvV5cuX4eTkpFivTZs2+PPPP1FUVGS2b7XVICwszGQ8+/btQ6dOneDv74+oqCj897//1e2zPlh7bJ599lk88sgjDdrW2rVrMXjwYHh7e7Nl5AbHc+bMGTz//PP45JNP4OzsbLHfY8eOITU1FQMGDGjQ+G4G4p6WuVH3dH05f/4823Z9uXr1Kq5du6b5fZGRkdGgvtVY8/2ide/ZysaNG+Hs7IwnnniCLSP323379mmuc+XKFaxevRrt27dHr1692HJb73uBoOXNHsCtwP79+/HOO+8gMzMTJSUlSEpK0vWF10OSJCxduhSrV69GUVERbr/9drz44otYsGBB4wxaIBBYTfv27eHo6AhnZ2ddtyiipqYGiYmJ6NatGwDgiSeewCeffIIzZ87AxcUFPXv2RGhoKPbu3YunnnoKJ0+exPr163Hy5EnmMjRnzhykpqZi/fr1WLRokeZ21qxZg0uXLumOo1WrVlbv33/+8x+8+eabCrfQ06dPKyaZANj706dPa/bz7rvvorKyEk8++STr99q1a5r95Obm6o7n9OnTJq5YLVu2hLu7O9t2WFgYZs2ahWeffRahoaE4duwYli5dCgAoKSmBj4+Pbt9a4+H3KTw8HKNGjcJdd92F48ePIzo6GkOGDMGBAwfQokUL3XHbgrXHxsPDA9evX6/3doqLi/HNN99g8+bNiuXt27eHv78/ey9JEp599llMnToV9913HwoLC3X7fOCBB2A0GnH58mVMmTIFb7zxRr3Hd7MQ97TMjbqn68O//vUvfP7559i1a1eD+mnXrh2Cg4Px5ptv4u6770bnzp3x2Wef4cCBA+jevbudRiujd4wrKipw6dIltGnTxuTeqw9r167F2LFj0aZNG7asVatW8Pf3NxGAKSkpGDNmDKqqquDh4YHvvvsOt99+OwDb7nuBgBDi0Q5cvHgRvXr1wsSJEzFq1Kh69TFjxgx8++23ePfddxEUFITS0lKUlpbaeaQCgaCxcXZ2ZpNMQJ44+Pj4wMXFRbGM4oOys7Nx7do1+Pn5Kfq5fPky/vKXv+hux8vLyy7jraiowNChQ9GzZ0/ExsbWu5/NmzcjLi4OO3fuNBuDo2bq1KnYtGkTe69OiqPH888/j+PHj2PYsGGoqamBq6srZsyYgdjYWNx22204efIkevbsydpHR0cjOjraqr7HjBnD/g8KCsK9996Lbt26Yd++fRg0aJCVe2Yf4uPjG7T+xx9/jA4dOpg80IyMjERkZCR7/3//93+4cOEC5s+fb7HPzz//HBcuXMCRI0fwyiuv4N1338Wrr77aoHE2ZcQ9fWPuaZ6cnByMGDECMTExeOyxxwCgQff0J598gokTJ8LLywstWrSAwWDA008/jczMTJvH1lDU956tHDhwAL/99hs++eQTxXIvLy9NAU/xl//5z3/w0Ucf4cknn8ShQ4fQqVMnm+57gYAQ4tEODBkyBEOGDNH9/PLly1iwYAE+++wzlJeXIzAwEEuWLGGuSL/99hsSExORk5PDnkbdddddN2LoAoHAzqitAw4ODprLyJpUWVmJFi1aIDMz08SqxU9O1QwZMgQ//PCD7ufe3t66rmjEhQsXEB4ejnbt2iEpKUkxzi5duphkUDxz5gz7jGfLli2YPHkytm7dqnDZuv3229GiRQu2Ht8P9fHGG29gzpw5is+7dOliknzj6tWrKC0tZes5ODhgyZIlWLRoEU6fPo2OHTti9+7dAABfX1+4ubkpMgaS61uXLl3MjkcLX19f3H777Th27JjdxKM1x6ahSJKEdevW4e9//zscHR3Ntt2zZw8OHDiA1q1bK5bfd999GDduHD7++GO2jNw7e/bsiWvXrmHKlCmYPXu23ayyTQ1xTzf8nraFo0ePYtCgQZgyZQpee+01ttzT01PznraGbt26IT09HRcvXkRFRQU8PDzw1FNPwdfXt97j1ELv+8XV1VVhJWwIa9asQe/evdG3b1+r2rdt2xbdu3dH9+7d0b9/f/To0QNr167F/PnzbbrvBQJCiMcbwEsvvYSjR49iy5Yt8PT0RFJSEsLDw5GdnY0ePXogOTkZvr6+SElJQXh4OCRJwuDBg/H222832NdfIBDYB0dHR1y7ds3u/fbp0wfXrl3D2bNn8dBDD1m9XkNd3CoqKhAWFobWrVvjq6++MokHCg4OxsKFC3H27Flmdfjuu+/g6uqqePr/2WefYeLEidiyZQuGDh2q6MPR0RF9+/bF7t27meXr+vXr2L17N1566SUAQKdOnUysGsHBwSgvL0dmZiabIO3ZswfXr19Hv379FG1btGjBLDafffYZgoOD0bFjRwDQdEkLDg7G7t27FSUavvvuOwQHB+seqz///BP//e9/4eHhodvGVqw5Ng0lPT0dx44dU2Tc1OP999/HW2+9xd4XFxcjLCwMn3/+uckx57l+/Tpqampw/fr1ZicexT194+5pa/n1118xcOBAPPPMM1i4cKHis5YtWzbYzbRt27Zo27YtysrKkJaWhrfffrtB/akJDg42Kf1j6fvFFiorK/HFF180yCPh+vXruHz5MoD63/eC/3FuarqeWxAAUlJSEntfVFQktWjRgmUIJAYNGiTNnz9fkiRJeuGFF6TWrVtL/fr1k/bv3y/t3btX6t27t00ZxgQCQePy/PPPS/fff7904sQJ6dy5c9K1a9d0MzPyaGXuU2fqGzdunOTj4yN9+eWXUkFBgXTo0CFp0aJFJtkB7cX58+elfv36SUFBQdKxY8ekkpIS9qKMkVevXpUCAwOlxx57TDp8+LCUmpoqdezYkX1vSZIkffrpp1LLli2lDz/8UNFHeXk5a7NlyxapdevW0oYNG6SjR49KU6ZMkTp06KDI+KhFeHi41KdPH+nQoUNSRkaG1KNHD+npp59mn587d05KTEyUfvvtNykrK0uaPn265OTkJB06dMhsvz/++KPUsmVL6d1335V+++03KSYmRmrVqpWUnZ0tSZIkXbhwQZozZ4504MAB6cSJE9L3338vGQwGqUePHlJ1dbVJf3rZVi9fvixlZWVJWVlZkoeHhzRnzhwpKytL+v333206NvPmzZP+/ve/K/r+9ddfpaysLCkiIkJ65JFH2HbUjB8/XurXr5/mcdi+fbvk7++ve5xOnDhhknVx06ZN0ueffy4dPXpUOn78uPT5559Lnp6e0rhx48z26+/vL23fvl13nw4dOiT5+/tLf/75p+54GgNxT9/Ye7qoqEjKysqS4uLiJBcXF3bdXrhwQZIkScrOzpY6duwojR8/XrHts2fPmu3XmnstNTVV+uabb6SCggLp22+/lXr16iX169dPunLlikl/5rKtWrr3CgoKJGdnZ+mVV16RfvvtN+nDDz+UWrRoIaWmprI2WveIpWNDrFmzRnJycmLXJ8+ff/4p+fv7s+/AyspKaf78+dKBAwekwsJC6eeff5aee+45qXXr1lJOTo7m/mnd9+p+JUmS/v73v0vz5s0zu0/q+15w6yDEo51Ri8eUlBQJgNS2bVvFq2XLltKTTz4pSZL8AwZAysvLY+tlZmZKAKTc3NwbvQsCgUCDvLw8qX///lKbNm0spvXnsWaieeXKFen111+XfHx8pFatWkkeHh5SZGSk9MsvvzTKvtC4tV4nTpxg7QoLC6UhQ4ZIbdq0kW6//XZp9uzZLO2/JMnCSauPZ555RrG9//u//5O6du0qOTo6Sn/961+lgwcPWhzjf//7X+npp5+WXFxcJFdXV+m5555TTKTOnTsn9e/fX2rbtq3k7OwsDRo0yKp+JUkuYeDn5yc5OjpK99xzj7Rr1y72WVVVlfTYY49JHTt2lFq1aiV5e3tLzz//vO7EWE880iRM/RowYIBNx+aZZ54xWcfb21uzb57y8nKpTZs20urVqzXHvX79epN1tMbPTyK3bNkiGQwGycXFRWrbtq3Us2dPadGiRdKlS5fM9gtAWr9+ve4+0fXIX3s3AnFP39h7Wqs8CgBWwiQmJkbzc29vb7P9WnOvff7555Kvr6/k6OgodenSRZo2bZpCEPOYE4/W3HtkAHB0dJR8fX0V174kad8jlo4NERwcLI0dO9bscaB1Ll26JEVGRkqenp6So6Oj5OHhIQ0fPlz697//rbk+3wd/36v7lST5OuGvCWvue8Gtg4MkSZLN5kqBLg4ODopsq59//jkrdq0V+9ClSxfExMRg0aJFqKmpYZ9dunQJzs7O+Pbbb/Hoo4/eyF0QCAQCgUAgEAgEAhNEzGMjY03sw4MPPoirV6/i+PHjLKNbfn4+ACjqcgkEAoFAIBAIBALBzUJYHu1AZWUljh07BkAWi++99x5CQ0Ph7u6Orl27Yvz48fjxxx+xdOlS9OnTB+fOncPu3btx7733YujQobh+/Truv/9+uLi4YNmyZbh+/TqmTZsGV1dXfPvttzd57wQCgUAgEAgEAoFAiEe7sG/fPoSGhposf+aZZ7BhwwbU1NTgrbfewsaNG3Hq1Cncfvvt6N+/P+Li4hAUFARAznD1j3/8A99++y3atm2LIUOGYOnSpSLbqkAgEAgEAoFAIGgSCPEoEAgEAoFAIBAIBAKL3HazByAQCAQCgUAgEAgEgqaPEI8CgUAgEAgEAoFAILCIEI8CgUAgEAgEAoFAILCIKNVRT65fv47i4mK0a9cODg4ON3s4AoEAgCRJuHDhAjw9PXHbbbY/GxP3tUDQtBD3tEBw69HQ+/pmUV1djStXrpht4+joCCcnpxs0opuDEI/1pLi4GHfeeefNHoZAINDgjz/+wB133GHzeuK+FgiaJuKeFghuPep7X98Mqqur0aZNG4vtXF1d4eHhgdtuuw3Tpk3DtGnTbsDobixCPNaTdu3aAQD+OHECrrX/CwSCm0v7SwuBOxPY/WkrtF78iXjs/PcfVq1zqcuPOLL2iMV2xoe6wvDDSQDAlz7OAIDHC6sAAL0m9cKRtUfQa1IvAMD6/DLW1vhQV7zoOoxtCwBrq95u/6Evsv8P7lqB/kNfxMFdKxRtfXr4oPD3QgBAQkKCYv3Pv//dZNxPDe6h+xlxOv9rdPH7m+Zy2pZ6nAd3rdDsy/hQV3R7/iS+f90ZbwzqYdWxVfOljzM7tg2h16ReeH337/Ueh73gz+vp/K8BQHFcfXr4KI7/U4N7mD1f5tA6Z/z2eWzdjl77S11+xPn95wHA5Dq6WnUFPz+3psH3tGfsH7jNyVXxWUR5IvxeaY2JZx8FALx3rgs63PMJAGBWyzM4XzMHANC+1btsnf6pFTgYXtfPPIzEiKNy0vrvg4Mx+MABFD39NA4f2QIA+ObwCyZjGtJ7FfalbrRpPy51+RFtTj8IAOiT1RXJHaJsWt9aIsoTAQDJHaLY8QGA8l//ztrE9XpXsc48jETrI93R4Z5PMKvlGZM+52FkvcdDx5bY2VPbejziqKT5Ga2vt159WYwdSLja2WT5rJZn2PIzLYMBAEFlXUza5Z90AQCc/XoNOv1tMvufP6+zn1+nWGfpRxMB1F23+e9cBgD4vdLa7H341OAeyH/nsu41w/eX3CGKbdeWe5t+m+gaPRjuil6HvwEAHOk9BDFH5iCt5HXWvrLdfuT8Lafe9/XNwJLFkaioqMAff/wBV1dXy42bKaJURz2pqKhA+/btcf4//7mlLxCBoLng0GohUHEZaL8Y58+fr9d9Sfd1/89fREvn1rrt1lUkYaJrJDJ2Jmh+7uvvi4K8AsWy/FAfFBSdUywLL7gIADBEGWBMNJr8T6T6tmXtDVEGbMktxUTXSADQHYO6HxoTLQ8ZMQvjw/0V62xKzVO8Hx/uz5bxbdXt+DGEjJiF4tydAMCOAW3b198XngEjFOtWeaYrxilJYQCAtG4ZiA7zNzkW1uwrHWut46tHfqgPxgS4Y1FanmK7higDAFg1DnvAHysAJseNjq1nwAiT424Nxbk7FedA/V6rrbk29oL2xRBlgHPxALb8atVlHHxqRYPv6TsWnzcRjwAwqnw5EiZHYvFZDwDA/D4LAQBSzQL5O8UMBmMyFqXlITv6omJ5eHY2UoOC4O/ry5bdtXMntgXKAsYpy49tKySlAkO9lmBepxJ4b+uKUeXLsb3DDLbeyV7AypBV2JSah/Hh/shdWK34vCGot0XLeAIWOCnu90HDJiEOWwEAK696oCxbFjQBPpXILXRhf+k4AkAMRqN3mScA4LBbcb3G+kSOPFWlY2hte8La9ayFPwZ6lLQMYfutxciqC5i1JgkBC5xQlj0RiftbAQCKnjjJ2qzq/A0790TuwmoA8rmh99s7zED0tFUAlN/P92V6W329RE9bhamtpiIk2brvEp4qz3TFfQvIvxlTo6YCqPseJa5VXsORAUfqfV/fDOi7xBqa037VB2F5FAgEtwRSzQJU1FSgPRY3+rZIuGmJEpr0a61TFZZu0l7dhzHRiFTftogOkycLi9KUQs2YaIQ89UxAyIhZyA/1YeMB6ib863KTgFAftm0SguPv9QcSTcenFon8+02peSYTGF5Y0sSgfE85+9wzYARSPZPY2DwDlNujcToXD4AhCtjjMRYDSzbj99w8FBSdY/uvdazUE5FFaXkI58YxBoBxb6HimFnCb28hDAHuFtvdCEhAyoKwTritq0iCX14hAPl48oIxY2eCRQFZJzZ3Kpbz4pD//9WZrwIANmGEyXVhb+ihg/xgY4DlFezE9g4zkICTFtutvOqBqS1LFMuciwcgOgz4OOJjpAYFseWnkvsjPDubCZa+3YbjxIgRwPGvEOcQCOytFTb7YpHhApzcDyTCVDgCQNcjwKIjsvVy0YcAOtR/XwGlYKS/JBj5bbP/P5T/RD1cg12n5qJ3mSeSMAMjqy5g8VkPBPhUsnXcgtYht1ZMquFFo1OWH6r75LP3cdiKGIxWfA5A0cZW8bct0MFEQNqTGIxmAlIPtXCkY0D7573fDaOA2u/WdcD+FzCqfDm8t/HXgHzucxcuZ2KRWPRhrVW7Q937UeXLgb7y+/Hh/sjNrLZ6n3IXVjPhWJ/7nQRklWc6AGD1L+lWPbgTND+EeBQIBIJ6oGfxA2BidSTkJ7PKH1ItK6PC4ubbllnQCF4kTHSNVEz46S8vKAH9SQAvCtWWSELL6rgpNQ/FuTvRYWAHOBcPkK2xAXXWWM8A07HpsSW3FAmGcCzaEINP5x8CACyK74cD8w8h4iMg2TgBezzGor3nHCT7+iJC6sjW/X1gHvxqj09TnaTYMoEi0egZUGdlBORzMDE1EoD2dcdbkvlznbEzweQBA12fdB1l7ExQiHutBwjq9w0VkVpi1zNghGIcxbk7cb36eoO2o0f0tFXMgrOqsxPcOgNTW5YwiyNvdVx51QOrf1kNGCJgMCbDaIhgnzkXD0Drigj4+/oir6AA4dnZAJRih6yOvcs8gb0Suup4QJNgI8uTliXSFvh16f/tHWZoikVqo7f8zFfAffDGyD6yaESnCwCA3EIXuAWtQ1n2RFT3CUFvn0pEutVZL3lRCMjCKcCnErlZfpjfZyGSymYgCar9qxWkh+u113WQgGyI1dGcxTM+awEQtM5kOXvI4LYcSWV1+0ZiMrf2PZ2T6PBVivW1zvn2DjMwauFyxXsttneYARyX/7f2YQN/bajHYklEklAk0ZixM8Hk4R7/ueDWoPmkOBIIBIImQn2EIwmB/FprIMH/0BqiDAgvuIhFaXkKV1UiZMQsTctmQV4BMnYmmP1xLs7dqSkO1cKQXnp90X7wlkMACC++DcW5O9n4ePdKNRk7E9iYAWBMgDving8EAATH90NwfD9meUw2TgAAtPeU488iQnso913lCmxvFqXl1VuUGqIMSPVta2I9Noevvy+Kc3ey40vHTz1544UlQeeOJ2TELPjtLWTHOmTELKxMXImViSsVbYhXZ75q0o/W+/pC47bGzdYzYATaP2ydm5glKJZvVPlyRE9bVeduWesyOLXVVEg1CwCA/SWmtixhgjEz6KDis/Hh/pjoGomAN6+jUsrBtkAHE6Hh/+V6xO27ByOrLugKR4J3WQSU1kG1S6keWu20rIp8O7U1ku+LlgUscMKsNUmY16nOAjuvUwk7loRaMPKQNbG6Tz5rN/T9t0za8ZbKJ3Ikm62ItE5D3VXNre+mIxxjMJq91PD71Xn4i+ja7WWUZU/EC2eGYFT5cnQe/iJ+7lukeb71zpG1mLuG6LNFH77AHqoA2t8pBP8bQf+HjJgF5+IB7KXVVu3e2tw4nHgYxzcc13wdTjwMALj//vvRs2dPfPjhhzd3sI2EEI8CgUBgA1qTdnOoBd9E10iFYOR/SEmkhBdcNBGNNNk2Z8VT/yivq0hi/+uJWkItLPm+eFFJ/ajHoX5fkFdgcqx4AcOjFmcHaq2P4zYPQ4RhIzJXdEROdjZ2lJYCa9PkF+S4yMbAFrFnbT9aT+PVUGxjQV6B7vmiY8eLb3OQhY+/hrQmhHoPF+yNrbGTlIDDHkRPW4Wf+xahLHsizny1Ats7zGAT5XijMhmGVLOAvYikshnYUVmJ+KwFWHnVA0O9lqAseyLuy/RGjwHpiNt3j+are4el6HpEtiSaQz2x598nTI5EwmTZeqwWmHx7tVuqLaJTS5Twy+hYzVqTxGJESUwG+FTCKcuPiSM98dS7zJO1IUvcrumvmR2XliA3By80bRGdcdiK3SlrmTsq/eW37ZTlB4+rGfC4avrdU9IyRFc48/sc4FOJM1+twJmvVmB8uD8S97eC97au2N5hBs58tQI/9JmpcFHlz1/AAierzyfPqHLZ7TVggRO6dnuZxUfyywMWOCF62ioW52ruIRG5qKqFovqho3PxAIWgbKreIfbmp59+wtGjR2/JTKuAEI8CgUCgi5ZQ7DCwg019VHmmKyxIgKnI4yf3JDTpr56FhheGtO74cH+FABgT4I6MnQlWxcNZa01SJ9rhBQztIy+W+WPIJ9Ph11ePLTi+HyIMG/Hp2BSTuKEdpaXYUVqK2DVL4evdEfZELfbI+ltftOI2zaElCPUeVuSH+lg8p8W5O3XbqPv1DBhhccJI1FdkWnrwQp/TBDRjZwLLLmtPdp2ai4AFTih64iQCFjhhfp+FmBdo3bpLf3wTAJi1zS1oHQIWOGHxWQ90PQL2mpm+nP1vLds7zMCsNUnspXZjJcyJUF7sqd1W+eV8W6029D7q4RpEPVwDQBYu5N5IgpEE7Zl2X1i9n73LPM0mkjnT7guL8YR68G6mtorOGIzGoGGTmABUxzXGYSvm91moiH2l60AdD8uTW+hisr/8eYqetoqJue0dZsB7W1cm1HmRx7exBjqfJBDp3r4v05v1Tct567E13wFqq6I6YQ4tU78MUQZk7Ey4qdmrBQ1HxDwKBAKBBhTPV4V0RZKWLbmlGGNDDJvczmgyiaesqeAyt1KilPxQH4QXa8ex0Y80rUPj4n+411UkYUyAO4yJRt0EPjzkpmqNO5FaOISMmKXImErWM4pdU8fTEXxGWrYfteItOswfEVzbHe98hu6nTqH7qVMAgGNeXphVkoqDtS6rqRpxoQ1FLSRv5BNzdVZarbhRdUyrFgV5BfAMUMYtsfMX/qpuTKMl6uu2as7qWOWZDk+MYNeSIUo+7o7H+qMQ2mVdbIFKTmQMkzMgZqAEU73WQapZgBdqLK+/8qoHcgtdMPvBf2Lpj3ORMcyVZdrkE54Q9XUt1HIbnbUGTKRZWtds8hsLJEyOxPZtde9l69e6ugyvHyrH1Hn4i1gMueSEW2c54yoamFWVMBiTAYO++ysA7E5Zi0HDJimW2TurKm9J5P/flLoW48P9WbxnDJfcRy0U+aRCABB5xA168p+EultQneWRt0Lacu/x531Tah7uy/TGouMvyHGQH8rikZbDy/b+CYpnVCfM4YkwbESycQKGJxuBKIOcbXWjEJDNFVGqo56IUh0CQdOjoqIC7W+/vcFp/TEBMMwwdTMkEbkltxRjVJk5eXGhzoIJyBPh8j3lrPRCh4EdTASJllg0V06DT1YwPtwfq39ZrRC6vBjUshZRX3qWSXU8pLlyHXro9a22sJEIBWSB/unYFATH98Olqcp6mzQpHbd5mCLe0R7i0Zyl0db+tfpSlx6hNurl1mZN1TrPBB9zau7cA9oJcOyRFMcW1DGyJJjtVaoD5+dBavOGbjuHVgux8qoHXpBMs4WucpBj2zal5mGo1xK4Ba2T250tYaUWAC77pQ0UPXES3tu6Kv4SZGE8OSMWISkVyBjmCunURF3Lo9py2Hn4i4ryD/x6WvGOtNxWy1bn4XV1QNVCiReRvcs8EalKIsO3o88BWTxGGCzXwtQSkLbAWyp5F1drRKg6S6y632NeXpqfRR5xYxZp9XlQn3/+GO86NRdAneUQkIWl+rrjzyFZK/kSL5QsKmCBE3IXVuPnvkV2u9/VsY30flFaHg7MP4TdKbLoTvxXYrMt1XE48TDatdGuT3nh0gX0jurdrParPgjLo0AgEOhgztqkJSAJrVg0KmNBwqAK6ex/VkbDjDsg/8NOdSYV71MjgdoH3s7FA2rHYNSsrajOxmmIMqAK6UzckohVTyasmVyorWS0j8W5O1nflmIf/QCkFvWrjX0sxoK4ddg1/TWMdHfHYSkHAOwuHKkfdTyqNXGF1qJ3PW3JLa0tv2IZckXN2JnALMvOGmVQgDrLo6Xzxn9O508vY6s1LtCWxs9fH+rj22FgnRW7IC8B/R99EfbgfM0coI35NlNblmhaIae2LGExjkCtq2JtXUZwFrn6UCcQIhXLAFnwLT7rgfmofZCTkodZmUnyNlXwIsMtaB06X3gSQCWW+8ifLy70YH0CwOKzcrsXzgxBAk5iVedvamNBTUWoOYtm124vYzyfOObCk4p1+RjHw27FiMFohYAc+v5bJjGP1gpH0HG5moGSliFWtVePiReN/P/W1JUk4aiVmEfOrqtsn1soW2lnpsvHUhZvYCIOUArGkwNmICBEfjCxKXVu3f6Gg4k/wDQmMndhnWgkYRk1vAajvpLblWW/iJ/7zkUA/PFz3yIAqD1+3D0/zBUhKRWK8Wt5p+glwiGPGyI6ygAYJ8C404gqT0NtLLOwPDZXhOWxngjLo0DQ9HC49DrQfrFdLI9wVH6mcFvVEY3mxKa60LuWC5+W+6CWiOPdVfnxOBcPYCKNh8+sqWW5XJSWpxBOWrUoaTnvwqknIkhg6AkFfj1qo7amAbKrU+zk2SxBDgDESjmIdQhE2iJTy569XVcbAu0H7/6qHp9WRl3AukykgFJ48WU3eJdgW4QenTd+kqgnnvmHAp4BI6wqyWLNPtS5rcrHz/FYf7tYHq39rXZotdAk2yrOyvFslhLe2IqWlU9tgSRRR1ank8ffM+kDUIq65RPKEOm2XGEVi8NWrLzqgU2pecx1l6Dl48P9WezbrlNzmZUVALNQZbi8h65HTMVqWfZEJlrPtPuCZR3VQu3WOdLdHbFSDpxqy3fYIh4pcU1JyxCzlkD1tkk8mkuooyUc+W3orUvracV1jqy6YHJOAbBjzVsRu3Z7mf1P9ySdozNfrWDCj3/4yHuskMCkPouekB8SAKYxmrRPu1PWKjxaaNuEudAGGiP9PvH3MZ3POGyFwZjc4Pv6ZkDfJVHzFqO1k5Nmm8vV1UhcPA9+fn5o0aIFpk2bdksmzREJc/6H4etYCQS3Audr5tilny99nGGIMrAXX25BK9aMPrMmo6a5SbY6YQk/GVhXkaRIkgPIYo5iG9VWMhpLyIhZitqMPFtyS9n/qb5tYUw0MmGote+8cDREGXQToGhlhl1XkWRSxoMv2aElcmaVpAIAcmpr5+0oLUXs5Nn4/VMfze02NtbEjxKLuPhNevGQcOST/vAZUbWg5Efq9mSJpFIpljLr6qHnbq1FlWe6yfUIQHOZOXz9fRXCl64v/lq8EVBtRxPhyFH0xEn2qi98EhNe8PF91lkHZVG3VeoPAPihz0zNPnnLICHVLFCUuIjBaJS0DGEJYfgXLSfrHQnGXafmoix7IsqyJ6Lz8Bcx1GsJQipfxqjy5fi5bxETLyQ4y7InssQ5lGxGnfhGKxFOTezL6F3mieo++XKso5XsTlkLAGzcauFoLjFPfcp/2Io67nNk1QWWDMctaB3uy/RmrzNfrcCiD19QnEf+fDsXD8BQryV44cwQnPlqBbM6qmv0qr1XSDhSv/QbIJ2aqMgoHFsj+z6sq0hChGGjiXC0RsyTm6ohysCyrALyvUwll2IwGs7FA3Cpy48W+2vOiGyrglsOEo3mfiQFgv9l3hhUV0vQmGhUWIbWVSSxtOMkvrTKatCkWGtCroU6U6qaia6RmOgayX7M1VZAetrbYWAHlhqd37aW66JaCPNxesZEo8JqRvUOeUG5ouYMEzT0Ks7dabKMtqUu88GLMf7Y7PEYiwjDRux1kielgcvmAJPCMPKVpxXjJUHm690Rvt4dzcYsWiPsLWFOlKX6tmUvfltaAijmoxxWjsRvbyFbTseArgX+ehgf7g9ff192zNTXUn6oDyvxoZft1lp4i4G5NmMC3BXntDh3J/z2FtpUDJyuBUvC+YZxVmmRWZxj3+7V8YVRD9cgetoq7HBuh67dXsYO53Zw8FqHWK8LTDROuXcKAFPLZ9ETJ02ydkY9XMPcI23liRwJ1X3ymZgc6rUE1X3ysevUXDz+mywuhnotwc99izDUawlz4w3wqUSATyXmdSrBC2eGoPOFJxWijReMWvGO5LZqS4bVOGxFxjBXhbuqWiweditG91OnFMv1Evnw2VnNZWm1ZNk0h8PvyvPHZ7slF+Cf+xYhetqq2qRESTh5/D3FsX4oa5mixAz/wHFTap6iRiMf40hC/+Tx9/DCmSHKcXGGhE/HpgBQxtNHGDYiOL6fYrm1OBcPgCHKYCI+7VmCR3DjEeLxf5AbKRrV1k1h7RQ0V0gg8rF2E10j4Vw8APmhPgoxCciTYrIW8uU3rHHtowm/Ou5MS3zyFlK+3pa1ooEfM1AnINXigYSaMdFotgQFL7B4EVPlmW4iEDwDRmiKhgSPcPQu8zQRiwBQc+c9GBPgzs5HdJg/xgS4o1PoS2b3kyYxNwJ1pla9upF6x5GvqwkorQkk0gAoBDovQukcWHO96V0nZEUg8cuLY0ItjOl8GhONNk8yAe2J6Y22UDh4rWNWSJwtwbxOJaymIU9DrI9UIuHnvkVwC1qH1b+sxpl2X6DKMx1vnhjMBIrREMHcFId6LVFYpWj7o8qXM9GxKTUPu07Nxa5TcxHbKh8nRoxAalCQpoVNy/LGC6Zk4wT0SXXDrJJUlpDm8d/88PhvfhjqtQSP/+bH3C5HVl1g6+1wrkskQtloYzDaYnkOwmiIgNEQofs5WTNXXvVAfJY8l7G2b2qn9b1iLyukWnTyYpWS5GzvMEMzyc19md44efw95m5KNR0T97dC4v5WOPPVCua2vL3DDMUDJnJb5TOzEvzvCG/V5oltla94z1sek40TzH7n86U4aF36X31PB8f3Q5Vn+i1vebzVETGP9eR/LebRkjuP3jqAsHAKbhz2yrbaK70XWri0YMu1sqJaC59F0lyso7mkJmp3VH48WlYurfHx21Zntnwte7XmdsMLLppkBOW3b22JDHWMIy8weZdF6jPseAh2vPMZRrrXxZbGSjks0UVwfD+23ZiPcthTcV/vjsyNl4j5KAfJxgksNrSxXCHNiURAmVE11bctDsw/hLjnAzXdTNWJlAhy7zVnwSbBSLGPtsYh8pZtNXolS/TOr62WRHUMbqpvW4TnXgQ24obEPNJvFrlO0iR4yr1TFOdhqNcSzKOEOTaizlBKLqJ8DBpZ53ILXZi4NPY1ousyebpGAoC2rxUbt64iCbn/vA15BQUIr3X75oWNVpIXAOjbbTgyj3/F3jtl1aVyqu6Tz96TJZK8F/gHHGQN1LM4Dn3/LQDAwpiJJpZCWkfLwueU5ceOFyC7yVb3yVf0QeV81PumFpeH3YoVx0DveOihlZmVT8TD/0/H7MxXK+pVwkUd10olNgh1wjVWfqOWzsNfRIBPZZ3I7+ShO6cjEUlupvxDJHMP38wl0iHLZVjkRcQGyKb8yxWVWNy+/y0b82jtfiUmJiIxMRGFhYUAgHvuuQevv/46hgyRrcPV1dWYPXs2tmzZgsuXLyMsLAwrVqxA586d7bZf9UFYHm8wOXk3LvW5vbHVaki+9AJBc+PI2iPMircoLY/9aJKFzxbkmocj2P9qrEmRrt6mWjDycYjmxEVx7k4TMQvIoktLBBqiDAgvuKgQjurtWzoevJulVjIftUW1/7NxdR9OCpNftYRWr0NwfD9Eh/nLpU/eeBfJxglsHbU49PX3xbjNw9h7tZXVnpBFNrzgIjtm9LSef2pviDIgOswfcc/LVemprid9xrMpNU9xbGyJuQwZMUuRiMiW/aBjSOPiP9OC30aHgR1s2h7fh9pVujESIDGrohmm3DuFuYoCpgms5nVSuraai4Ok4u7qAu/zOpUwN08AzJIWklKBSLfliHRbjvl95HGOdjgI6c8i1qf3tq5MOFJdQAAKa8+YAHdEFMj3WmpQEFKDgtC323CLWUTzCgrg4hDI3lf3yUd1n3w8/psfko0TUM3VM5zoGqmIcS3LnshcVs25oO6a/hp2TX8NC+LqhCAJrfisBQqhScLL42oGAnwq0fnCk7WZZGV3WRKFI195WlEHVs1ht2LFS30MtI6HlnWWX6Z2b+WtjPR/HLYyl96ABU7sWhhVvtwkTlUPcmslFn34Au7L9NYMdaBrlSyXAQuc4Ba0DiNdXLD4rAezDKvnZnRPOGX5IQ5bMeXeKRjtcBCAfD+sTFwJoyGC/S7yXi4AFJZHXjiqH6jRgz6BzB133IHFixcjMzMTP//8MwYOHIgRI0bg119/BQDMmjULycnJ2Lp1K9LT01FcXIxRo0bd5FHf5FId8fHx2L59O3Jzc9GmTRs88MADWLJkCfz99c3jAFBeXo4FCxZg+/btKC0thbe3N5YtW4a//e1vAIALFy7gn//8J5KSknD27Fn06dMHy5cvx/3336/o57fffsPcuXORnp6Oq1evomfPnvjyyy/Rtat9M6rxBFrYt6aEnuWwPlZIgaA50X9oXXmAt4KmAFD+GL4VpJ9xzlrMxTdqkR/qYyKO1GKDfszVIqM4d6eirqQhyoDiPXXuirL1QF9kLErLA3zbIhpKAWHOlYmQ4/AS2P/WsOOdzxR/R+JpBMf3w0EoLXgdoPwLlbgpyCuAXx6AvYVWl8JoCNZaNdXt6PjLcarKa4u33vHHUgstSx9lvaUyKbbAu8LykIs0YJoAivaBHhbQZ7wLrLocCj/ZVNe8tBftW70LtGptsR25Wq7+ZTXgKU+cV2M1GysgZ0DdlJqHqIett0DmLqyWi7NDntivwjeK2LOpLUsQ0ycfGX3qrBVU03FU+XKsWuAEQOnqWPTESTyUtUzTXdC5eAD6Zsr3bnb0RYRnZyMwKAixZqxrwfH9kM397+vdsc5N37sjFqXlwTe37mHMuookfDo2BYMAlADQtsXoQ7GOvOia32ch4rMWoHdt3aHDffLhcTVDLpfS7guW1RWQLbMkZg+vWcr1rIxr7F3myYQlYcnKyItGW62Sas60+wLeG19A1MMTWbIbSnJkS11Nnu21JWLICqmVaZXiHDOGuWIqFiLJZwZyC10Q2ycfcdhqMo/bUVmJXafexMog6msuqjzTMbWlXLaDokvVrqgRho3MUqm2OB6ovdW9Ig4i5ypwYL58HEcclbDY5r1uGix+Zhhc22nXeay4cAGJi+fh/vvvtyrbakSE0kV74cKFSExMxMGDB3HHHXdg7dq12Lx5MwYOHAgAWL9+Pe6++24cPHgQ/fv3t99O2chNFY/p6emYNm0a7r//fly9ehXR0dF47LHHcPToUbRtq5344MqVK3j00UfRqVMnbNu2DV5eXigqKkKHDh1Ym8mTJyMnJweffPIJPD09sWnTJgwePBhHjx6FV+0TqePHjyMkJASTJk1CXFwcXF1d8euvv8JJxxRtD8jqaElA5uTlIdDf3+r2jQV9sfAisr7CkX/S25B+BIKbBbnsRUcZAJjWu7IVWwsyT3SNhDExwcR10JhoVIiCKs90eEJZEoSsQepSHGox4evdEX57C5nFaVFaHsK5z7Um9Q2Z6KtdNg1RBjivLgam17WhNP7jNg/DmAB3LErLQ7SO+6Re/1QCoqHjbQh6lltjopFZ7tSupvYq3C1bv+seIuhdu5Qp0dIxsnTtq/dDbf1U9m80+YzOmyHKAOPyxjlfer9Bq3+pc+F2Lh6ATcV5cMYAZlnZlFr34GfXqblwC/JH0RNDsPisB+Z1KsGsNXWWuIAFTtiUWoQAyLFoXVNfRkZEAjZ1k++7qcNKEJJSwUpnkLWOYvlWBa1D1255+BlAwpmZWFTb76jy5UiYHImHspbVxiPKMYnJmMC2XeWZjgjDRoQbtkKKjgPl/QmO74fs6IuolHLwRI6EU8n9WfKmA/MPAfPldtG1YmBRrXgs4P76endEp9CXcHbvB4pjV90nH6h111SXCdFCnbyGYhk7+1TiTK1QhBvQ+cKToKP6QqcSrAKYiCyBMmGOXkIcNeYEoV78o5YV0pKojM9agDLIrsVnvpJdSXMXViN6wSpW45HqhOpZr/UeTowqX45FH8oiNDezGuMX1M0VAxY44edUrrFDHHKNCzC/j3zdx8L02qdMufTghDAYk1HlaZpIi9xRDxiU2VjJukjCMTi+H4Lmy5nQG5JwqDnx008/2eyOe+3aNWzduhUXL15EcHAwMjMzUVNTg8GDB7M2AQEB6Nq1Kw4cOHBTxeNNdVtNTU3Fs88+i3vuuQe9evXChg0bcPLkSWRmZuqus27dOpSWlmLHjh148MEH4ePjgwEDBqBXr14AgEuXLuHLL7/E22+/jYcffhjdu3dHbGwsunfvjsTERNbPggUL8Le//Q1vv/02+vTpg27dumH48OHo1KlTo++3JUgsBvr733RLJS/69JLfmHMD4j/jxajWj7ZIpiNoipBbFl9CoLHRSmJC8W7OxQNY1s3yPeXw9fdlrp+8dafKMx2eASMUT4LV5Q94N1ZAFqhk4ST4BCnmspnaAk1AtCyRVVM8EVq9TrGMdz21BRIgdAwa022Vh+If6ViT65ZeHCEPf0xsFY6WkiR5BozAltxSzeRLlEVYa1zqMfLb0bMmUwkWc26zei7P1Gdj3mt6Dy+n3DvFxCVvfLi/Yhl/Xjal5uGhrGXYdWouHspahp/7FjF3QT4ObWqrqQCAkOS6eFbplJwIJz5rAVZe9ZCtOykVLOnN6l9WK+5fEhcJkyOxw7kdS2TTt9twxT7QOHenrEVISgX6ZhrQ+pcIRW3UJ3IkpAYFITtadg0Oju+HZOMEJBsnKFwLFcKyloKiczi4IQYFRedM7k2+fiJfJsRSBlheYJKIcQtax9xSz7T7AmfafcESvZD1UUuY9i7zVAg9vThIW5LkmGur5d4ah60sRpNPdEPXB/1P1DcBU/S0VcyttSx7osl3xg99ZsplOf4swvw+C5FUNgMOrRYitlU+cvLykJOXh9hW+YjBaHa9ORcP0M0STdB32oH5hzS/n/nr5eCVi4jBaBZLHBzfDzt71t+S2xyoqKhQvC5fvqzbNjs7Gy4uLmjdujWmTp2KpKQk9OzZE6dPn4ajo6PCOAYAnTt3xunTpxt5D8zTpBLmHDt2DD169EB2djYCAwM12/ztb3+Du7s7nJ2dsXPnTnTs2BFjx47F3Llz0aJFC1y4cAGurq74/vvvMWjQILZeSEgIWrZsiX379uH69eto3749Xn31VWRkZCArKwt33XUX5s+fj5EjR2pu9/Lly4qTX1FRgTvvvNOmhDnqeEd7CsMbkZzG3DYsWRK1hKHaAimskYKGYmvCHL372vhRV0zv8jgAOZmMOvYqP9RHs96jvVBPzrXcDc3V4VM/ITY3CddKqsInLlFjLg7NUjIX9XYBmFgeAfkpNk3Gjnl54bBbMZKNExS1E60VFuqEPPag/I13MbBkMwDlsdU65rSMksDwkIU3vPg2q5LM8O6nZJVUJz+yBa36mlWe6bJ7ondHTHSN1DxultxfLR3r/FAfXZdYE67ApoQ55n6rP2u/DVNblsBgTEZm0EGTdVc5yILEkmjXchMltKyyQ72WsMykzAJuiGAusupt3pfpjYTJkaygu7q0wuKzHqjuk68QjXySm7jnAxWuxcS6iiSMCXBH7Ohy5BXU3XeVkiwKguP74cD8Q8wFkTCXCIrgxYI6mQxZBMl99JiXF0a6uGBHZaXCUsgLwZVXPdD5wpM40+4LdL7wJHILXVgM6MqrHszySElztLZtDXqxjlqf2bLcKcsPAbUWVD6z6qjy5eg8/EUk7m/F4mDVmVcB06RIWqhjJsn9NerhGuw6NZdl6gXkGNsdzu1wpt0XmNqyBNk5TyiOgUNcIL6K0I9fX5SWpzjHQN31wiyNqs/JMktx6nw/98b8FY+/UdUsE+ac/y3HrNtq+7tN9UtMTAxiY2M117ly5QpOnjyJ8+fPY9u2bVizZg3S09Nx+PBhPPfccybC869//StCQ0OxZMmSBu9TfWkyCXOuX7+OmTNn4sEHH9QVjgBQUFCAbdu24dq1a/j666/xz3/+E0uXLsVbb8nZu9q1a4fg4GC8+eabKC4uxrVr17Bp0yYcOHAAJSVykPvZs2dRWVmJxYsXIzw8HN9++y0iIyMxatQopKdrpxePj49H+/bt2evOO++0/0HgsDWxzo1MTsNbHPntawlEPWuicF0VNAX07uvn/NwA1E301FaYxhSOgCwEqGYfUGf95FOih4yYxUqEqOEFiyXIQgTUiVYqO8IXsLcGqjVpDXwiISLCsBERho3oXeaJZ648g2NeXnjzxGAEx/dTCEe9/TKX2Ej9mdqKaksypIElm7EoLQ97PMZqJi/Siu3TGovf3kKEF8s/w1QbFFDWeeSTYngGjGBtSGy8OvNVAHVWZC3rI9XeVEMikF+HzjvVFKUkTPy+UPv61JCk/VaPwV6Y+602Jxx5zMUjk2WG/gegsEqqyxYAYBN5asuXouBLsgz1WoKTx99jIuCFM0PwwpkhLNEJvUgsZR7/ir14ayG5HqsTmEx0jcSW3FJE7FJai/nJf3B8P4UL4qK0PKtim7XgxRQJSEpms6OyEpFuSvETn7WAvXjhSKhdHqe2LGGCUmub1qC2GvJZWWMnz2afkxDaFuiA2MmzTbbJZ1ztXeaJAJ9KAPI55EXe9g4zkLi/FQBZNGoJR0CZFEkPdSIdSsSTuL8Vfugzk5VuCfCpxOKzHrjnGwNW/7IaBmMynrnyDJ658gwb9/d9zd+H0WH+JslueKu0WjiO2zwMp5Lr3Crpu53a8bWUb0X++OMPnD9/nr3mz5+v29bR0RHdu3dH3759ER8fj169emH58uXo0qULrly5gvLyckX7M2fOoEuXLo28B+ZpMpbHqKgofPPNN8jIyMAdd9yh287Pzw/V1dU4ceIEWrSQU+m/9957eOedd5g4PH78OCZOnIj9+/ejRYsWMBgM8PPzQ2ZmJn777TcUFxfDy8sLTz/9NDZv3sz6Hj58ONq2bYvPPvvMZLs32vLIt72ZrqtaLqdEQxLpaLUVYlLQUOxleez/+Yto6Swn16BJN5V8aGisoy3YUm5BbQGhSZ+WxUsP9bbICmVrP+b6V5fp4EVNfqgPeuzxR2xt8gt1iQ0qDWKpRAgJnS25pUyo8IKar1mpXkdt0dRbHvORHIdJMaJayYzUE29LJV+0LIFaaMVC8mn6zZWH0SoXY41Vlo65ltWdHhqU7ykHUGdN1joPliDhw2Iv7WR5xPl5gKt8T2v9zpDVUQ1/nPl7TG11VAtK9XKCrJAZw+QkJLQMkEs58GzvMINZoHY4t0Ok23KFgCLLj957yuhL1xSNLcKwEbG5gXj3biA8OxunkvsjPPoiYqQ6t0R1f2rhQN8Jvt4dWWF5wNQKF4etuBJ3gSXHiXRbjvisBQjwqVQkvKG2FO/pFrROIRzVkPBUC0pLlke+NIfWZ1rJdfj1zNG7zJOVV+l84UmMrLqAVZ3lxEi8EKxvkhxz8AI1YIETszg+/puf4vyoSTZOwGiHg9gqmY+f25Jbqugn2ThB8ZBBq18tayWxY/84HBlw5Ja1PDZkvwYOHIiuXbti+fLl6NixIz777DM8/rjsCZWXl4eAgID/7ZhH4qWXXkJKSgr27t1rVjgCgIeHB/z8/JhwBIC7774bp0+fxpUrVwAA3bp1Q3p6OiorK/HHH3/g3//+N2pqauDrKz+xvf3229GyZUv07NlT0ffdd9+Nkye1/c5bt24NV1dXxctWKIbRUiwjJcxpCmj9yGoJSb22tvYr4h4FNxJL9/Vr2auR6tsWMR/lIO75wBuebIXKLVjLorQ8FmsXXnDRZquBOn5tS24pcxG1R9kErTIdWvQu80Ts5NnY4zFWszaj3lhCRsxCyIhZKN9TjvI95cyqR9B+qPtL9W1rYs1UW29jPspB+RvvMgvl7pS1+PLufMR8lINOoS8hwrARMR/lINW3LVs3OsyfPXGnPszFD1qLOeE4Ptwfr858VbdMh9b1pC7JoYYX7bxwrPJMZw84nIsHmPRNx44XjpbiZhsaW6x3TydcleuiUdyVNaiPszoWUg1viVQvI3admouhXksgnZIn93TuKIaPMnGSuCBrY26hCxNKwfH90LfbcN2JOSBP3ilGjeKhafyxDoGIDcjBnN+AwJZB8Io4iNTaeMjg+H6IzQ1EbG6dB5hWeQU6t5t/L2SfqzOUArK4I+EI1NV7jHRbzoRjHLYy4egWtI65o1KcJKtPWMuZdl8wC6W5kiDmCFw2R/GehCPPMS8v9lJ/xkOfHXYrRoBPJcqyJyriM3c4t1OU5ghY4GR1mQ5zqC2afKwtAPRJdTMrHAH5QQIJR/6eo2uFllEcfN9uwxE7eTYWpeVpXhfB8f1MrNf88uD4fngiR8Lru3+vxx43ETp2ATp5aL86yhbB+++/Hz179sSHH35otqv58+dj//79KCwsRHZ2NubPn499+/Zh3LhxaN++PSZNmoSXX34Ze/fuRWZmJp577jkEBwffVOEI3ORsq5Ik4R//+AeSkpKwb98+3HXXXRbXefDBB7F582Zcv34dt90mTwzy8/Ph4eEBR0dHRdu2bduibdu2KCsrQ1paGt5++20Ason4/vvvR57KEpifnw9vb2/cbPhMq+a4USLTnKhrqLVQvb6wPAqaCusqkjCGhFftRCzZOEGdBf6GYckqtSW3FFqpS9QZU7XgM2zy25Hd3JJMylxYk5GzPowJcEfE2KUAipE7LRnVHvkwvl43yYsO8wd4q1QtZNG0ZEHjLZ1646fzHGHYiC2hsmWR5N6wzFPYUlGKgqJzuDT1e4RWvw+UAO095wCSfJT7PxuHCI9wjNs8DAVF5xC2QnZxi0VH9H1xgsn2CvIK4BlQ917LMqiFnmslCUj5tZJZIrX6JGFTkH1OV9RRzUoDgGgAzsV16/JlOQry6qzkngHy528VD4AxMcGkv5vBrJZnYDB+K7uM1ig/c2i10CT+0FIpHS2hqPc/tadllKU1Y5grkCKXRMApYPwC2aLctdvLAGSL5GG3YsTW+CGWs9BdWaNdIJziFfmJO5/kZHfxWlR5puOh5Fn4wSFQrqE6J42tCwBhkcrzoxYIivIdAMb28MGnY1M0LXnk6knxjvS3uk++icUwqWwG4FOJyJYl7FyQ6yfVJgTAXFk7134mxz/6MSF6zMvLxHIYuGwOcma+y8YEgL0ntMShum6kNQKSjfvCkygDxatewJkFTshdWC1nRrXyGbklCyWV+6hDFo5Vnumo7pOPA32UcaiB/v6IbZVv2lEtfJys+qEHIF8LYQUXcT7jRRzwWGryOVDn+qy+brwiZFfxU8n9Fe6styrWZls9e/YsJkyYgJKSErRv3x733nsv0tLS8OijjwIAEhIScNttt+Hxxx/H5cuXERYWhhUrVljotfG5qZbHadOmYdOmTdi8eTPatWuH06dP4/Tp07h06RJrM2HCBIWvcFRUFEpLSzFjxgzk5+dj165dWLRokaKOSlpaGlJTU3HixAl89913CA0NRUBAAJ577jnW5pVXXsHnn3+Ojz76CMeOHcMHH3yA5ORkvPhiXX23mwlvnaSMWDw32zqpV2BWD3OfW1O0WSC40ZDFi143w/LIx7DFfJRjNntlQdE5xcSct3BpxffxqBPs8Ex0jTSJ+WyM45Af6oMtuaWInTybTTD5LH78dmm8fNZWsvrlh/ogP9QHMR/lIP7FK2x9cqnkt0fr+Hp3xIH5h7DHY6zm03QaV5VnOia6RuLS1D8Q+ao7hmWekoUjIFtzJs9Ge885CI7vh4Kic+j/bBzOv/koYtcsReyapWxSb4gysCy59UGrMLg6Ayi/7NWZr5qsQy7JWvGjvLWajjt/zkkIkeUxP9RHIeAzdiagfE+5Yv+sjSdtLHod/gYRho1mvWm04GMY1W6qWglz1Ovyf/n+NqXmAQ5x+CFsCTKGuWq6IpNFKCcvDy4OgXBxCMQTORLyCgoQUVCAcZuHYVZJKvp2G64Qb+qEN7SMH0/fTIN8XQbkKFwy05LaIi1J/r4gIanOtOrr3ZG9eCHJQ3GAC+Lq3IF5gRWHrehd5olk4wQmFs+0+4IlyiFLrBq1K2vnC08iwKeSxRoCdWKPUAtFInDZHAQum2PSXt2mvrgFrcPisx6YtSaJ1V3sPPxFRZZVexCwwAk/9y3CptQ8DM5MMLH69S7zRFBQEAAgtsbPROjTdwBdz3x2at4D48D8Q1hsvIKE2odjanjRGBZ5UeHyTKKRXy4A1q5di8LCQly+fBlnz57F999/z4QjADg5OeHDDz9EaWkpLl68iO3bt9/0eEfgJlseqXTGI488oli+fv16PPvsswCAkydPMgsjANx5551IS0vDrFmzcO+998LLywszZszA3LlzWRsKTv3zzz/h7u6Oxx9/HAsXLkSrVq1Ym8jISKxcuRLx8fGYPn06/P398eWXXyIkpK5mUFNBLRJ5IWmriGyIpVAvK6o6gY6tP872GJtAYE8udfkRRxKPsPckMABgopV98JaG+sJbi3anrIUhyoAtuaUmY1hXkcSsjmSdo5qUFJcUEjQF6yqS4Le30GK9RrI+Vnmmy+UtKoAxGiLCXhiiDPi0ttD0P4d8hpGvPI023TJky2+ty+Noh4NAVH+TGpdEsnECxtXWqQSAfAxDp9CXqGxdbQKiOjHjt7cQ2BsoW2ZqJzwHN8TIIrIkFQkAPh2bgnzIk6Tzbz6KPQASDOF40yjX3VpXkYTzxe/KAnJDNNKKlyMMQFj0RcRKOehfkoq9ThPRuwwY+v5bqJriCbXTJCXA4aEHBuTmqxX3aksZD624Pb2kQ77eHZkVO7zgImByvOl93XJ1PKPWPmnV52ysBxFaHOk9BIdr1DZ0YHEOMK/WQ5Mvsl5nfawTdTSxnnLvFOBeuR4eTbh5iw39r7ZEqr8T4o1XENsqH/FZC7DpVN0chj9H2X0DcarWpXQOACybgxO+vkBoDwB5OLv3A2QeTwEVOOOFA2+F5B8QsTILnJ6Pw1bkb/4Y8O6IHoZCALKQ5Cf6ZFXiBaMlIbAwxvQbk3c1NRoigKt1n5E45EXimXZfoKRlCOKwlbm9NpTAZXOw4x3T/BZy9lcvjHzl6QZvgzLCnqlNhDvUawncgtZhfJA/cjNlK2RArUWSrIhkaVT/z0PrAEDn4S9iU6rsCl3dJx+P+0wEVPUnD7sVIyR5FnZUytbaw6r4zegwf8WDELpmxqAuw3V49EXEh/th16m5GNRnkub+0vURFnlRfgAx3/Qz9XJB86TJJMxpbrDAWRsS5txMbBVmeoly+Cyp5pLn8NvUaqe3rhCQgoZga8IczfXbtwcmAKj1guetdmSRacykObaKThKEPCQyAdlyuK4iicWq8bUgbwZqwWCIMmCPx1j2NPvXIUYcditmyWgIcr/75N3hurUF+T4JY6LRbAkRQ5RBMeGeVZIK59XFiknvuM3D8OnYFOxOWcuOJT/Ros9nlchVudv/8zvErlmqiIXi/6fES2p3UhqjVhmThmQlLc7diQ4DO7D3lMAm5qMczUQoDb0+QkbMYvumtj7SZJSsVhbdWG1MmKPG0m+1Q6uFiI2LY9km7fHQR21FpHqMu1PWsm0QWm6CVHydajDypTRYCZWIBBgy667z0Q4HmeumXjITskiy4u61E3re3ZXabMktRQ9DoUJAalnlD8w/ZFKag9C6/inpTxy2IgajWS1EwNSqCICVliBoXUsiUivpjRotiyM/1oZA8ZrzOpXoJsuJnrZK4SJNghBQCkR6r2ZTah67tojdKWuR6DPRJMGPuQQ2fCkNujbUvBU0hf2/riIJBUXnFNcPIMdDRhQUKOqJqgmLvIjYgJzmXarDzLy/oXOQ5kKTSJgjaHwsCTK166hee60kOdaIPUs1IG9EnUqBwFa04sAaWzgaE402uTNOdI00Gacx0cisA3yZj4ydCbVxarPsXiLBWtQusns8xiLx9HT2nuq+UYIGQ5SBxSHGPR+oKxypnbq+nSHKoCg5Qa+ViSuxMnElm2STG9bBDTEK4TirJJUlnRg0bBLGBLijyjMdEYaNWJSWh2TjBDZWAEjwCMfvA2tLL7wvl5Ai1z1LhdL5ch2WBLItkEBVlxHRcj0jcddQN1PaJm+FpIRF0WH+VglHS8l17EVsTIyilAYPWRvHh/ubuK6q4cuqqCG3UfX66nIfzsUDTNxOyR3wwPxDKCg6J5fqSZ6FCMNGRRzl7pS12J2ylolAh7hAtj4Ads0Csujr2204E6i8cARk99TfjT4m2ye0yjPwmBNgZHnsXeaJ+X0WYmrLEoVA5NEr1XGm3Re6/TcEewhHYtepuSxpDsHHMC768AWMD/c3EYmU9ObnvkX4uW8Re8+7opdlT0SVZzo7Z/R30LBJOOblhSdyJEVJEb5MBol9ui58vTtiUVqe4hqIDvNn55iEJWUFnugayTxx1NdArJSDA/MPmcTOUjtyiRY0b4TlsZ40N8tjfdCzNlqyOvLWQ61YRnWNx5tpbSS3X3MJippK5luBZexteaTJa3SYv+wu2sj1HQHbynMAdeIQgCIzKV/ygLKu2mJRInHJWzbJomQvYaO2+o3bPIwJMVrulCUnw6CyAwRZIsmaQwWxyYoxNUO7fhrRtdYr+WQvYGXIKsVnY85VYljmKU2LET9e3mqT2dcITApD3xfPsUnYP+/6HqHV65DgEY7YybOx453PmOURqHO7VQtGek+lNugzawQ/nS9eRKsfRpC1F5BrVgJKN1YtUae25ppDqwQJAIslVjRpRMujVqIcQCno+JIa6s+spcozHcOTjZpF2CMMG7E7Za2iX95t9cqazsgrkK+LoEVKN1Ka/KszKqtdV/ntALIImGdwRGytRTPWIRC/f+qjeAhC2wdMk+QQvBjRqulIQoxKcqiFGZXtoFqNetbE3EIXljyHrXvETbNtUq8yjHSX9yMnO5st13NTVcNbLM3FQlqDnvVRDbmvErw1kq7JdRVJ7CHW7pS1JhZHgo49YHpetNAq9wLUXVN0DbwVNEVxjfLjic0N1BWFB+YfYp4ZgGydBIB/ZW3G4vb9m5WFjr5LPi0shLPOmKsqKjDOx4dVhZg2bZoiJ8utghCP9eR/QTwC+nGMWhZILdFoqfzGjXZZVYtErcxsaoR4bD7YUzwaZtTVqANwQ4QjUGd9tEYo0I+5tXFklmLM9D7nax2acwGtDzEf5Zi4iiYbJyBzRUf0ffEcE8A0+eUtO3oCsesRWRSqlwHycvpfj5O9gJDKl/HDf9vAwbvu+4tEJrmL8ZaaCMNGzCpJZWJsS24pfh1ixEh3d6TVTvoXxK1D1RRPDMs8xUQeLxwp6Qyde96tVe3iqnaN1DonejUqbYG/Jmzpj2JmnYsH2HS9qGuBNpZ4XJwjJzSh7JRaYlCvZiOfMMhaEam+XtR9qrdLLobkTuriEAh/X19kHpcD6HjXVLU7LF+TTy0O1Ncs77IIaCfPItdsoDYjspn6foCp9Y63uAf4VGLpj2/KmWY5WAmPWlGodQ8Dsjgk1AKSPiPxyLOjtNTsmLXmAbx4HPnK01aJT57cQhfM6yRbVM2JRyJ6Wt33C1B3j9P1kBVehnmBwENpczFo2CTE1sbw5uTlmRWJWgKRxSVCzoQa2DIIsQE5rC1Zrfs7ym3oWlSTuaIjYtcs1XVpBuSHghNdIxWCtzm7rVojHpvTftUHIR7ryf+SeLQlnlGrvVYb+v9GY00JFDXmLJPHvLww0sXUFU1t0RQC9MbQGDGPajfIxkA9CbW2WDy15eGtluYm7da2ayzUcZmDhk1STFABKAQjCUVLwo+Hn3zaKh5XhqzCog+1xSn1uzJkFVb/slox4aaJNVlKpTVy21gph02iADALLi+W+HOuFov0XisrJ2B6Dknkm3sgoF7OiwaWKIOzFFprOcwPla1YvMCyxmLNP5hgx8VO4hHn50Fq8wZbHtsqn8WeAsp7UMs1VZ1ZVU/08csHZyZoWhv1vk/UCUv4OERah7f4EDSp59tQTJq6zfBkI2L/rD3/hgiUl7RDgodcZoYXAFrWKF/vjibb1rI6quFLdQB1bqtJZTMQecRN93482UspFgHzFkeCF487Sksx0t1dIR7V73lGvvI0cma+i2NeXibxjzR+a11bSTSf+WqFSUIcLcgCyd/fQ72WIKrL+ywmfM+T81CWPZHFtzYE/nx7RRzEqeT+LI4RkK2N6yqSMCbAnT2Q4K9FACypGpVr2RbooBCraqs6ecpMaPk3HHxqRbMSWUI81iHEYz35XxGPepizSJoTmzcSdSba+ghHc6itllpikd+mEJCNj73Eo/GjrjAcOgmgroB6Y1oe1a5wNIHWE5Dq9lqujZQkRc9KROKxsYWjluBI9W2L6DB/7PEYi4ElmxWWDJpsTLl3Sr0EoxprxGJD+l4ZsgolLUMU7oG8mxYlqgDqXMF4d1XesghA111ZSzTy14mWONNyPebh3bJpXLy7M1mmtM5feMFFhSVSLUbNPfywdM3xcZIF2QV2EY+90nvhcPBPAOTv5aDAbcwdle6nKfdOwepfVgPQFou8xZFfroafUNMDA0vrAHWJdXgxqBdjqbb+0aRe7VqtbqPVB7kd8olx1Jkz1cIxdvJsxK5R1vozJ6oi3eSMoSuvemBqxgtW3ZP8wx9LIpL/fOj7b8Ex9j0AwJVYuWZmq9j3NAUkLyRJdPLt7JFAZ2TVBQDArDVJmuKRsqmqk+KQ++rUliWIwWg5idjYZxCftYC58ZKgBUwtjAR/rniBR4RFXkTOVdnFd1ugA2vDf6cBymtMfW3Sg8CConMKS7befXSt8hqODDjSrESWEI91CPFYT2418dhQa6CWm+qNFos7Kisx0sUFOXl5uhZBwDoRaY07qx7mBKsQkI2LvcUjlehobJdVtauqJfFIbdSugXx7et9QcWiPcgr5oT4mGUp7l3li5CtPI3bNUhbXCEBhaWws0WdvSESS8ACgGxupFzvLiz9rY17VgjE/1EcRnwroCzU+8ymgHedoDnoAwAtHtcupIcqgqK+pt09mr1E7WR57pffCyIc/Za5+fbPrCpU7Fw9QiHOtya7W/3rQPUnWdD6WkI6X1vpkKVYnr6Ht8u7DWgLRIS4QUowcxzhu8zB8eXe+wkLFWx+lmBwTcRDnEIgrsS+jsMd2+Pw+Co6x72FlzUoAcoIWACaxh7ZgzsqohoRjUq8yRB5xQ3z7Gsw3OAJ75Skr70mgFo67pr+m3K67O67EvmwiINWYs0jWh9xCF5z5agU6D5frh7sFrVOU5VBDVkd1vOPsB//JstTyljygrv6innDkIVFIDwu8Ig6yz3iLISXUOZXcnwnBLbmlJjGx5uoDW+Kx7itu6ZjH5rRf9UGIx3pyK4vH5lYug2oX8Yx0cWHLSUTaYnm0h3gkEcvT/dQpISAbEXuLR1ZXsZHEIz8JIPHITxLNiQh+ws2LRrXrHAmMxqipR+OzZDWjcag/z9iZgJiPclgyGQByPJTLe81GOBI02Q2pfJlZf3qXeaLNyjtxYP4hxDoEom+m+euJP45ax4uojzuqVlt1GRotV1V1e1vcWH39fdFhYAeU7yk32RcqeWLx4YadxSO5TPJJcADTOEYtwUhYEo7E8GQjxvbwMRGP/EMfHj4ukn+YpOdSS7GQVMqDd3Odcu8UE/fHXbW1JOl/PiGUOuvnsgGyhYzuQxI7A6abxr1ZAx/LaAl1rKM1cY5aolELyoC8a/pruuvYKiK1EvrQWNXH7+e+RSYZedXnCaiLDSVmP/hPjHRxQWwrbXdVtfUYkB9akTuqV8RBZlUEwJbR/3rCk65HPnEOUPf7o3bX5x9IaMVIkti9XFHZbMXjvPMH0dpV2zhB+yUS5gg0udXEI6GX9OZmoxc7yAtCLaF2MyD3VX48WmMRItL+2Es89v/8RbR0bm2xPQm9+sRFqmO7SIjx4tGc5dHadkCdKAFgYhmqj6DU2p5eLB4vgswJhfI33gUADMs81SzFI0FWyKlRU2GIMrDEP5Tx1tx1oifCebdkwty5MyfqeItjeMFFzXIY5tYFrE/Aw98X5ix2N8Ly2P/zFxH25IuK5DJaIpHiskjw6QlKNXyGVKDuGJJQVE+u9a6DoV5LML/PQhiMyZrt1GMhixB9D1G9xzhsRUhKBcaH+2P1L6tN+qH7lcQKIGcFnbUmCVoELHBi2Yy16jFaoj5WRx4SiebcVdm2at1Pk2wQgLwbKwBNF1drYh7JzZWsjj/3LcJ9md5ImBwJ721dMap8OX7uW6RYZ6jXEjz+mx9zC3bK8kOAT6XCJTXZOAEfO35sElPIE5srx1lT4hsATDTS5+SeCkAhKvX6VLvjq62PapdWQDtmWG0pv9XFY3Par/ogxGM9uRXFY1OKV9RCS0CSSOt+6pRmWu2bJSDNpfgW1sfGo7HEo7msijTxJddMS1DmPECeYKozbPJPdK0RpGSF4uMl9SyWWq6RWhlb1fBCxRqXyvq4yia9XYp7vjFgz5PzmpXLqhaUrZWO7R6PsUjwCGdJdMidmH9woJVtFTB1TSVsEXL1LddiCV6kWpuV1eYHFna0PB55eCQMxmQTN1UtfohIwO+f1t3TljKr8vc1f5xJPALQzY5KOBcPYFZBPaFqrs4k3486fpLg4zqNhgisvOrBXFIp+ywvKN2C1qEseyKzWlJJHCqvAeiX2CDOtPvC5J4mgWhN8ipA3/qoJR6BOldVHrIyalkW7e2yytehJNFNf9XX3eDMBPR3bGvR7VQLrSRH6synardWsj5aKuPB98Un0lFnXqXvFi304m+bo8gS4rEOIR7rya0oHgHrhKI606pee71yHfUVopbcTpuSeOQx5wIrRKR9sZd47JXeC+0qBlq9ni3lNaj9orQ8NvHm6/oBSqukNbFvvOCk2DO+P3U7daykJSHSGC6vfHweIIvHw27F8LiaoZvltLnAWx8BeV87hb6EDq/PUcQFqhPm2JLAiE9sQ1jrrqqGtz5ain3kk+XoicMtuaWKc2uLK60JdhKPNOHzuJoBAFj9y2oT106CT3hDpSz0LID8e36iTA8K6MGOnvXRUtkP3sJIccNaSUgGDZukKLMwtocPNv9eCACKjK/8GGNr/JD2rhsTFWqhycfEUps4bEUMRiva8dlT1QlmIo+4IalXGWZsVFoMLYlHLdGYW+iC+edbsfdawrEhIlDL6qiFtUl00t+XjzW5qvIinM4Xjy3iUW0pJEEI1CW9OZVcF9dLLqpUkoOIzQ1UvLe0TVvHqUdzFFlCPNYhxGM9uVXFo7XoleS40XUa7UFD4hsb2rcQj/bFnqU6Qkbrl01Qw2eztNYCSSnLKe5LHbdorUsqj57w4DOw8sJFnWyFXJLsLRT1xEOEYSObZMd8lMNir5q7eATqrI8ZOxOQ6ttWkbqev16ssTLWB2vLalBbW6ySJDapf1qfFxv85+bWV/dlgh1LdcQff0Nh1SPMZT/VE49qSBwQW6X+JnGLfBkXvbhHc/AWTD3rJQ/Fl1EiHYe4QCYkKWkOoJ+lsz7oiSq1eLSEVpkOQOW2GuoAfgJrLpuquvajnuXRWvFpTkCS1ZGuh12n5mKo1xJmdSS3aDo/PLGTZyOtW4ZuEhxe7PGCUQ2fNZV4IkdCYMsg9p6PkdSyRqrXt3SdaI1Hbd2kPpujyBLisQ4hHutJUxSPTcW9tDHH0RjlNrS4kRZLISDthz3Fo2+Q5WQ1ZDlSl0KwRfDx/fETTbIgWpOERi+mkcek+HotJBqNiUbF//bCWmES81EOZpWkYktHl2bvtkpET5Otj1JINGKfGauIGTL3cIB3aSX0rMONYRVWo2WZJFdYXkDS59aMifaH70OLLz2dG1RMnBePcG3NYgn14MXca9mrFa6AbwVNsUnw8Q+F1OJRKx5UPQZzVkl1mYSConMAlO6F5tBqp86+SahdHrcFOijqNqrRElXWxjzyFkfNzKm14jG+fQ0CfCp1xSFPjcp9tVVtGQ+CL9VhL9fVM+2+wKbUPNyX6c3iRYE6IVndJ58lOCK0XES13vPniU98w7/ny3GERcr3F4lFPquqlsg0B1/2oyEPHZqjyBLisQ4hHutJcxSPN1JcNva2qIZjfcSkuRhJnsYWkFRORF2PUlB/GjNhjqWMovWxPqr7p771LI9qCyW/jiUBqSce1ahTrzdEmJDFjayL5ih/4120/+d36PviOUy5d8otY33Epw4wRBlY3CMgl1Hw21uoKRy1rI8NLathC3ztRzr36qys5hL1WDM+WwSvPcVjyP7LmllVzcVA/hCRgGRfX2Qe/4pZ+6xBy71U7bbKL+cTk/DiUss9Vs+9VW351RMh6oyc/OdqLFm31Jhz57TG+qjlrgrUuZQ6wDQRDi8cd5SWMtGpJT7V2Vb58h3q9rmFskCob3kSclvd3mEGoh6uMfmcL6Oihj9PvAhMS6q7F3nRqIeW66pacAJQiE1eWBJUr1brGqmPiGyOIou+SyZNmgRHR0fNNleuXMHatWtv+Wyrt93sAQhuDHzMoXq53mcNQcul1Z6Q2Kqv6LJkcWwM4ai1zcZwwxU0nNP5X5ss8wwYYVZ8TXSNhCHKAEOUQbMguyV4UconpwHkiWGVZzoTdjQhLcgrYJ8V5BWwl5qQEbPgGTBCUXxdDY3dmGhUvBpCdJi/VcLREGVgwirCsBGbUvM0My42R0JGzEKEYSMSPMIxbvMw7E5Za9P1QefE3oJRK8sqIAs/ckFN9W2rEIThBRetjqGka5X6oJctwjE/1AeD36iyco/MMw8j2X3DC7op907RrfEIAL9/6oPM418BqHM1twQv8JyLByisS7xwjDBs1CxpwN/nxkQjMnYmsPscAHvP41w8AG8FTcGB+YdwYP4h+Hp3BACEHQ8xESHB8f3YS416mTmLlDlhqSbSbbnN9/TQ99/CSHd3ZhHcUVqqEI70GSCLxprYl5k4BKBZhoOW8e202ke6uyPAp7LewvFMuy/QefiLCFjghFHlyzGvUwkAWYi6Ba1jlketchaAMvkNndPYgBx4RRxkL4LO0bZAB+aWui3QQSESD8w/hFPJ/Vlb+p9eT+RI8Io4yLarPu8Rho26AtFW4RiHrQgq62LTOs2Nn376CUePHr0lhSMgxOMtjVoYalkCpZoFTcLV9UZwzMvLYhZUS9ZIe4yB356gadLF72+ayy25ozoXD8CitDyb3VYJmhDy1j8+G6ox0aiYAPPteGHo6+/LPvP190XGzgRk7EywaHm0p/ujLSKBJtfkDmVNRsnmgJabHm8htvQZJZ8hrBGQhigDE2m8gKPl1MYcdN6iw/yZaFRvQ41ajPIZhflMjGrrmFY/NN4xAe74/nVns+2tZV+qMusjWfU2peZhU2qeQpzx/090jUTvMk84Zflhz5PzTGr0aaG2DFIZA14oGA0Rdf/XHm8SknQ/TLl3CkJGzDI53iEjZim2wWdHdcryAwBW9sFhTX/MKkllYlIP3kppjdurHofdinXdWZN6leFkL+1SHDzx7WUr3a7prylcSke6uytEHwlK3troGPseHAcsReQRN5OyHiQ0SSTy/WsRyVk0zbnFqsktdEFZ9kSc+WoFyrIn4ue+RVjV+Ru4Ba2TM8+2LIFTlh97eGAOEmaxDoEIju+nEHwkAGk5IJfp4IUfb3mkvkiM3gwouZKgedPyZg9AYD/0xGF9XUjt6XraFGIg1WJNy321MQWdEIu3FnxBb0CeFPt6dwS8O9qcCAOQrRpjPN1lAZHLZeIsVibC4TNs0qQzP9QHYwa6A7W3Q0FeAZDHTfKtvE18/X2R6nkdE10jrU7eouUOywtHc66MfCIZQI6nqbnzHiBmI6ZcXYVFR5q/6+r4cH+srhUEZHFUl2Hh3Y/5Y7koLQ/qM2BJQBoTjQgHYKhdH7UxpwTvApvKfcYLfUOUAdHc/3zfrOwHF7NoCXUbPpmPlgWUhM6itDzY20GXRCP/gEIWhLL1MWNYnQtdjGE0guP7wbciCUd+L8SmU9oPhczd7xTrmIwJijYhxRVI9pSvCzrGJBwd4gKBCAMTtUZDBGIwGnHYCoMxGRnDXBUZT7ca+yNiWF0SHRKQAIA+wJaOLsCT89iigV8sBgAWJxkd5g8YJyAYtlmR+Hg5czGQQF05D1avEdbFQKpjGlvFvgfUupzyMKvhXqU1NLfQBbO/mseEojqjKu/GynMl9mVNy6W1zOtUglmQS50MxRIA6zC1pWx9jMFosy6rWsRKcpKcvt2G466dO7Et0EEhBhVta+MStdyT9RLxWBvzOG7zMPZgwlb4rLwDL+lfK4KmjxCPTYCGiDR1uQy+r4YIR77PW5XGdFFVo866qn4v4h6bLoOGTcKsklQMy1ReJ7tT1sIZypimgqJzbDJuq4AsKDoHBLizen982Q513CNBImQiAOdiwBBVN8EnS6UlKxNBbSfWjtkzYAQ8A6DIDKglXLSSupBoIfj1+DZq4UgkGycgMzscU3tZrgPX1Jma8QJCKvNkNcfBn9eCvAJ4BpiuS8lnwIk2Ws7DH1NeDIZTg1phGF77fzi/soZ12GxMY+0YtGoa6mFO8PIZV6mvfO+OVolSW7jU5Ue0QAsm5uKwFfFZC7ALc5nL6vhwf4y/CrwgyclNcvLysG3+IRyo7aOKK7HBo5XghuAtS3TO+dI+u4vXAp7Kh0JSTA6cU9ay/mIMslCUahYg1jAaEVDCLJbDNspCkhLzYCtWXvUAAEU85yaKxw6SrZbOp+Zi0LBJOGDdVwWD3Fblv6cAeFldxkINb42cf74VyEFYbRlUvyeBR/GJagJ8KrFr+msmyXDUopF/r64ROfT9t7CjtJRZMvVqS/LbRK23de7CanQeXveZusyJOUjk8UlqMo9/hUyujbpEB1DnwQHIFksSnnpi0xY+HZsCpyw/m8UvIZ2aCO9tbrhe3aLeYxDcfITbahOgISLtf8nttLlBFk0t4cj/BUTG1abGI+ETMGjYJKyrSEJwfD+c3fuBblv1RDLCsBGL0vJ0J7+W6vhRfCIPPxn19fdlk3VjolERh+VcPIBNQG0pIk+QiyQfU1VQdE6zCLRalPKClVwVSTTEfFRXR4y24evdEcHx/bAgbh3GbR6G2DVLEbtmKRbGTMSW3FLUFFZbPe6mjtrVka6Z4tydKM7dqRCRavhzrScaeTdT/r09USfNofOrlf1V639z0H5RnCU9hIkO88fjhfaJeRzSe5WJmyDV3CNIYK1yWAeHVgsR6O+P2BrZihdb44ePHT8262bIxznS/gB1Vh86HnSf8ve1+lhpxWfGtsrH7pS1Zt1K1eMjaxdvbR0f7o8f+szED31mYl6nEtyX6Y3zcd+jd5knepd5wuNqhsK9kHeVpBe/nP8tsyQceVdQEox8khx68YxUuY+Si+qu6a8ht9AFkUfcMP98K1YDMr59jez6Guqg248a6g+QE/IsHb7YRGBqjc0c2zvMwPYOMzCvUwleODOELSePFb3zqK6nmNYtw6rtPZEjMTFJMa1pi9ra7IasF4dJ2Coc47BVrq+6Lxbe27ratK6gaSKyrdaTppJt9WbVW2wqNIeEM3pWR/VyISAbjr2yrVIq7uD4fmxiq5cZs8PADjAmGplA4ssxAHUTSb6uoxbmyn3olfIA6uLitPq1tuA8UOcmq1XTUq8fdVyjOcFKn0UYNmJWSSrO7v0An45NwYK4degfsY9lIyX3t9iPN8PBe2GztzwC8uQ45pFfNZMH8bGq9qrxqIadpzW1CyY34jagskCjgdlh7VTnkU+vT5YcrfIbvFjLDJKTjcS2kifL5KK5O2Wtidu6XgZUa8pz8Mt4i3wyZ+nk4xoBWfgOGjYJ4zYPY/c+1RIEgM4XnkT6+xuRMDkSD2UtY58T8zqVYNaaJGzvMAOjypezvwmTI7HDuR0A2ZrHJ4zh3VL5uoC2WBrVcYiEJVHGZ0KNdHdHUmkpcgtdmGDkoTIetA7vqqrOtqrOrjr/fCsWc8nve+QRN5uEIwCMrLrA/t/h3A6RbsuZ5VFdpsMSagEYFnmR1Xu0pj1gm8XR0viC4/vh4JWLrFYo355/8BCfJc9F559vpfguv15dgT/ntW+W2VYPHDgAFxdtS3dlZSWCg4Nv+WyrQjzWk6YiHtVYSpBzq9EcxKM1COFoH+xZ5zE/zEch5qwtv0FCS09IaYlQtXDUasdPcNViztzY1G1JrFB9Sn49mtCW7ylXCEhbRGjIiFkm7XlXvVTfthh4RY5lXBgzEeM2DwMAJiR3TX8NodXr0CFv9i0hHAG53uOm1DzFcQkZMUtR/sXaGFN7oo5nbEg/vHCsTykPQ5QBEYaNigc2ANDr771wZMCRBt/TJ/PeQmbHFzHyjDuSh/oiYlcB0pLawte7o+bDHkC20HW+8CTePDGYubrGYLRCNA5PNuKrCGVZDbqP9Epz0Ge8OOTXcXEIhL+vL2K3dlC4s6oFKlm0yWJK4jF3YTUSJkdi1hr5gRUvIKkdACTul4UXiUayCo0qX44B081bn+qLnnjUEmzdT51CYJCcPZRsiPHGK5qCUU1SrzKFq+pId3dFvUeteEZejJIApeW2Zl2NPOIGqcdJJhoJPbdVvhyHWhSqLZHWlsawVIbF0rqW1tFq4xAXCCkmhwlI2U3V1Np4q4vH5rRf9UG4rTZzSCxSZlVyY/1fEI6WsJRdtSkQ6O8vhGMTZaJrpMJVz29voaaI0lpG5Rn4SXTIiFnID/Wxalu8sCAUyTZUwpIS3Ghl8lS3JYFSnLvTRLDSNgryCjTLAfj6+7L+tMp+0Lj5bVI7ctWLDvNHYY/t6B+xTyEcAaCwx3YAYGU7bhWmZugn/tGrG3ojoOtTXZbDWvjyLoB++Q8ePeGYuaIjYifPhq93R5S/8S7yQ30gSWFYn2+btUePiNNb8eaJwXjo2CxEhPbAu3cD2dEXFck/SMTRtb/6l9V488RgAHUCMA5bmfurc/EAxMbEYLSDbKGccu8U1o86uypBxypZFT9Jf4Pj+6FSykHm8a8Ubui8wKS/lCmWIDfc/REb8VDWMvzctwg/9y0CAPzQZ6Yc0xnuj12n5sItaB1GldeJGhKagOxuOWOjm8Jy1thQWQyyEo50d2fCEZBdSZNKS3WFI3MpDXUAQh0w9P23UBP7sqLUB++aqk64o7Zi8v/Xp1yH1OMkFp/1YNZGeunBl+MgYnMDEZsbiDBPOdnQEzkSguP7wSvioMJFVet/vsSHlgi0VEKJ1onDVuxOWQunLD/2fW2O2JgY2RK9LxZdlws31VsVYXmsJ/awPN5I91J1Yp3myq1iaeQR4tF+2NPyGDJaFkBaCWr45erMmbyFkHdto0mjnuWxoOgcwgsuKpLlALDKjZT61Gqr1V6NlpXTFkuUesyE2jLCi1H+eKT09cLZvR/A5/dR2DX9NSz98U1kuLx3y1geT/YCVobI1kf+HJHYv9EWR0LtXgrou5jyZUMKis4hLPoi0ha1VbTns6jaSsxHOZhVkoqBJZuZ6+bulLV4//SXMDx/0i5uqxn7PwcAvJa9GlfWdEZeQQEqpRxFQiy9MjF0Tw/1WoL5feTfU94KqZU0Z0tuKT4dm8JKdfCoE2qp7w21i6u67ZR7pyiE4/hwf6z+ZbXC1dDjagZr80OfmQCAxWc94Ba0jpWS2N5hhtnjV/TESQCy22V9LHBqzLmtDn3/LTmbKoCc7GwAQGBQEMuSyiet0Vqfz8y6o7SUJb7hXVcBMAuk2nWV9o/fBm+BtAUqyWFLghwe3hKZczWbLedrN2q9B/Qzp5LrNGAaG0uQC3L6+/LnywYor4+VIasU78uy5eRS8/ssxMqrHpia8YJV39vC8ti8EeKxnjRVt1XCGmHaHGMjm7t4DPT3V+yDEI72pTHE42vZq1lGyPCCi0xoZexMYBM8dUZUNWoBqhWjWOWZjvI95QCgm2lV3RffJ40D0I/PtCRS+PUGDZtk9ul0fWpZ0gR5S24pxgS4m8Rt/jrEiHu+kev7GSsybwnxSMJx9S+rUb6nHAV5BcxCe7NEI2EpNjFVVeaD2kaH+TOBl2ycoCjhQRlit+SWmli2zY2Df+BCJSfGh/tjw/ZfcPCpFXYRj98ee5EJu9jR5cgrkI9/pZSjKJMhxeSYxDOSqycJLxIUI11cENsqXyEQ1QJUnYHVuXgAxof7az5UAWASO6rOmqy3PgkC3p2QjiUAxT7kLqy2KBwJPhaSsprqCSpL9ZLV4o+PI+TFIw8JwprYl+E4YKnJ5wBwJV3O1sxbFh1j30OSTh1Hips0Nza9cepBmWYPuxUzF+eGoJVJVWsZv9zakhs8fIxiUtkMjKy6wOJhbYUeNliyOArx2Ly5qeIxPj4e27dvR25uLtq0aYMHHngAS5Ysgb+FCXV5eTkWLFiA7du3o7S0FN7e3li2bBn+9je5sPeFCxfwz3/+E0lJSTh79iz69OmD5cuX4/7772d9PPvss/j4448V/YaFhSE1NdWqsTd18Xir0tzFI48QjvbH3jGPE10j8Vr2akU5Aoov5JNbxD0faLWYUsdE0iRbbcG0tL4eWlZAa2MWad/UJQXU1Ec40jhiPpIn5rxVxphoRH6oD34dYsSbJwbDuXgATh43nUQ2N072AkIqX2b7bclVzBx6LqH1tfRZqr9pqW+KUeQhyyElP5pVkooEj3CFEIswbGQWECpXYY6rVZftJh5bu7qwsUQYNqJvt+HIKyhAeHY2Wv8SwWIfKR7RXO1G5+IBrCZkUtkM5Ba6YKvUXxHLqIa3FpqzcNJnw5Ple49iKrXGoT4HJIKdsvwwr1MJszRuSs3DUK8lmNdJzr5qqzjo2u1lRUIesjipRSQlgbNGQJIg4+MRSfCpM6PWcHUXtUQe9aUuucELRHWNR72+9EjqVWYxcY418Y1aUDIme7WzFl442mI5bChDTy9B4uJ5zUpkCfFYx00Vj+Hh4RgzZgzuv/9+XL16FdHR0cjJycHRo0fRtq32D+WVK1fw4IMPolOnToiOjoaXlxeKiorQoUMH9Ool53t+6qmnkJOTg8TERHh6emLTpk1ISEjA0aNH4VX7hfbss8/izJkzWL9+Peu7devWcHOz7otEiMcbz60kHAkhIO2LPcWjYYaBWcgAKOK6+CQbEYaNGLd5mMLKoufGqcZcFlOtyaIlEWhOgPIukmT58gwYodmnus4kUCcYeYsHobVMvT31+PNDfVhJBspW27vMU3b3ukETmMYketoqTI2aCkDe10/HpmB3ylq7uKqq6yJau461QtNc0huCL79iLrU/iZvdKWtNEjSp3awzdiYoEjoB9hePfPIREo8AELSoLVsOgLmyWnJjVV/7vFtrds4TbKJPok7vWJGQrvJMx/BkI7N+Rhg2MuuhXu3YoV5LFGVHhnotwfzzrSD1kK1Ai896sOyqAGy2KPGxkQmTIxWur9V98m2u66hXL1Eh5EIdmMupbhsO6kv9+ZX02WgV+55JfUi9vroekR/60F+tbViCz0qrRUOshA1BnQW1uk8+qwX6wpkhcPi9a6N+7/JZfbc5PddsLY+f/JwHZ5d2mm2qKi/g7/f5i2yrN5Jz586hU6dOSE9Px8MPP6zZZuXKlXjnnXeQm5uLVq1MA6cvXbqEdu3aYefOnRg6dChb3rdvXwwZMgRvvSU/lXr22WdRXl6OHTt21GusN1I8Nkf30sbCFgGpLoXRFBHi0b7YWzwC0MwimerblqX4J6zJqqqGt/Cp+wgZMYuV9yChqp446sU+6kGuknyym1dnvmoi/OqDloCkbQKmYinmoxyF6E56uy71fnMWjuSmSsKRiPkoB7tT1tqUudZeaJVUsUctSHJrXZSWh7DjIUjrloHoMH8WG/np2BR2jvWuTfV1o85I2xiWR8rqSkLRxSEQlVKOQljyYo+3RFpySaVl48P98YI0kf1mbQt0UPShzra6riIJYwLcFf3pCVQ9EUltySWVF31EwAInLPrQNIETTey1ILfVWWuSFKU8zEEunHpYY/G7kj5bIR6Hvv+WrtsqD31/MPEX6oCk2jId5qyXtK5aNBL2Eo83Al4oArJVsfOFJ9n7kVUX2HkcWXWhQYlt6Drjrzm+BIy67fYOM5q126o14rE57Vd9aFLi8dixY+jRoweys7MRGKjt3vO3v/0N7u7ucHZ2xs6dO9GxY0eMHTsWc+fORYsWLXDhwgW4urri+++/x6BBg9h6ISEhaNmyJfbt2wdAFo87duyAo6Mj3NzcMHDgQLz11lv4y1/+orndy5cv4/Lly+x9RUUF7rzzTmF5vMEI8Sgwh63iUe++7v/5i2jp3NrEbZOfdOeH+pjEdNHntlgeff19Wa1Ivh8eiiUDtOs/EvV1J7UETV71BKIadVIYa6xs8S9eQVSX95t9iQ7e4shjL8FmDXrbIsFeUHQOvt4dzcYkqi2VfPwjxeDt8RgLAOjw+hxmXSV2p6w1SZhkK8W5O9Gpa7hN4tHcPf3sqHvR+cKTOOxWrHBfBeoEJNVpNWclJPRiHHn4JENeEQdNrE0kYnenrLVo5STU4pIg4RiwwEmzn9yF1ex/W+Idf+5bhPsyvQHIlkcAWNX5G4UYUaMnHtW1FckN1FwsJF9yg9pZ+x2hJwStwda6jjTf4OMTb4R1kY+vVLuhEp0vPImRVRfg8HudSOSF8o3+zhXisXnT8mYPgLh+/TpmzpyJBx98UFc4AkBBQQH27NmDcePG4euvv8axY8fw4osvoqamBjExMWjXrh2Cg4Px5ptv4u6770bnzp3x2Wef4cCBA+jevTvrJzw8HKNGjcJdd92F48ePIzo6GkOGDMGBAwfQokULk+3Gx8cjLi7Orvv8v1aTsbFo6uU49BDC8eZj6b6WU+XL//NWR17IUeKc+kBirwrpiuQYJhN/nXg32r5W2Qy9CWZ9oMm/tcKR/noGjDArHHmRU90nHyhp8FBvKmpXVZ4xDeiXrjlr4yb1RGrc84GIg2Uha4gyIJx7SELuxSwrq29bRAMsnpHcaGMnz8ZDI3vKljEMsEk00oMJvvblqzNfxYbtv1jdB2D+npbH86Ycq2iIAABE1H5WKcluuGMC3OXajagTl3zGZP5eN2cBpPXGBLjjY8ePETZa/r7fhnyTtk5ZfgCU9yolDqryTFfcy3IGZ+3tlmVPRMCCdey9Wkjy/49aqG9pBOqsSZ2Hv4ihAM5krkDAAicszq4VJGcnogz6iXP0rI5qN1QSaLxQi3R3B7i4RyYc3d2BvbK9g1xL1fDL1cLRXOZUXrzaKhoJtVC8UW6pauEYn7WAxaaSaAQuaLqlNucHdYKbR5Op8zht2jTk5ORgy5YtZttdv34dnTp1wurVq9G3b1889dRTWLBgAVauXMnafPLJJ5AkCV5eXmjdujXef/99PP3007jttrrdHTNmDIYPH46goCCMHDkSKSkp+Omnn5hlUs38+fNx/vx59vrjjz/sst+WajLyAlNgu+BqrsJScGOw5r4mywEvBvSSl1hrdVRbDGkirzehJ7GqJRIB2SWUCs1r9atmXUUSc4lVw4s/ayDrEj8WevH76evvqzv+WwH1RNVvb6HiFWHYqPuQwVyNRUOUgWUwtReWLKBbckuR6tsWhigDCorO4cD8Q1iUlof+z9aJMor13ZJbiv7PxqFT6Ev4fWAe1lUk1Stel4SmZ8AIdv/Ux2JpzT0dg9GIz5J/d0m4AbL4BQApRlmk3dzx0rIWUo3HCMNGfOz4scnvFl+8HQAe/81PIRLVmVnpb5VnOhziAnWT51BiHLIw6lkgAei6tarZdWouzny1Ap2Hv8iS5BDzOpWY1IK0h7fPldrkOTwja8tu8JzsZfril/Mk9SozW3KD6kTWVzjebHiLo1vQOnS+8KTCMsxbHOuL+nrRu36sua4EzZsmYXl86aWXkJKSgv379+OOO+4w29bDwwOtWrVSWAfvvvtunD59GleuXIGjoyO6deuG9PR0XLx4ERUVFfDw8MBTTz0FX1/9iYuvry9uv/12HDt2TOHuSrRu3RqtW7eu/07WE2GRNEVd7kLrx4p3WW2K7qvC6tg0sOa+HhPgzkprOBcD4QW1MZBh/nCuDW2hiR0lrOGtJ1pouZcaE40KAaGVDGVFzRlEq6wdvFhVJ7nx9ffVrf346dgUgEvEQcIXMHU7NSeG1bFYtF1AGedIfRTk1YmIG+XGeSPQinPkGbd5GHa7RsLXv5wdF3IF9a3NuEvv+eNC14VvbimQOwzjNNyl7UV+qA86hb6Es3s/QHSYPyIMG/FW8Vqs2zwMn84/hLdS1gJBU+TGKWuxuzYzL/bOka9pVfkZNZauJTVUqsMWLN3TVZ7pSDbKMYcxGI2tUn9s2Sxn/o1dsxQwTmCxiYMzEyAZ6tzI9QS82n2VMjEjrR+gqsGn5sD8Q0B8PyCgLruoc/EA7C5eq2hHfUsxOahS1Zak/zvf9SSAN/Fz3yL8XJs4Xs91uGu3l/EzgFGZdRZIElwz05cjYIETyrIn4odOJVjsJVsbKXsrsarzNwDASpfQ7yz/e6v1AJfPpMrXZeTdU/k2/PIklLHYaEBpTeQtkzzx7WtMljUGZG21JmEOWSV5C22k2/J6lfdwyvJDPOS5Iisho3BRdbOLhVFtqdazXGvFO5qLqRU0P26q5VGSJLz00ktISkrCnj17cNddd1lc58EHH8SxY8dw/fp1tiw/Px8eHh5wdHRUtG3bti08PDxQVlaGtLQ0jBih/6P1559/4r///S88PDx029gbIQwbD/7Hq6kJR0HjkJOXh6O//27XPmnCVlB0ji3j3Ut56x25m1Z5pls1Qa7yTEfGzgST0h0EX7idCC+4CGOiEa9lr2bLtLZliDLA19+XWSTVTHSNVNR/cy4egPxQH2b14dexZbLvXDwAISNmMXFkLj6THysgZ6NMPD0dUtGt+b1IJVB4QU3nkxeDVLaEoAcKZMEcE+BuVyskIJ8DQ5RcXzPBIxyAfC7HbR6GKs90jAlw13WX9fX3VWTT1bNYW9OGR23RbiiXuvyoWQ8RgCID7JbcUibKvoowX1AdqHtwRIJxUVqeoj3vuhjbSumyyifoiTBsxKK0PIUApWPgXDyAjSlZQzhSu6U/vslqOQ71WoIf+szEC2eG4IUzQ/BDn5n4oc9M9hn9TZgciZO95Ml9fPsahXB0C1qHWWuSEOBTiQCfSiw+64EzX63ArlNzmZUTkK2TtiSJ0cp8SmJRXaKD/5w+C/CpxJX02SbWxKTSUiT1KmPfISQaSWhqQaU97AV/HHqXeZq8KNNq327DWXt6WSsc47AVcdgKpyw/9C7zZOeHiegjbkw4dj3SNFxTbyXheKzqL8ivul3zdaxKzpty//33o2fPnvjwww9v8mgbh5sqHqdNm4ZNmzZh8+bNaNeuHU6fPo3Tp0/j0qVLrM2ECRMwf/589j4qKgqlpaWYMWMG8vPzsWvXLixatEiRCjctLQ2pqak4ceIEvvvuO4SGhiIgIADPPfccALkOyyuvvIKDBw+isLAQu3fvxogRI9C9e3eEhYXduAMgEAiaNM7FA2BMNCoSh5Aba6pvW/jtLTSJbaNJnSXRpU6QoyUW9QgvuGjWDXBLbqnCcmgN/ASaRHHGzgTm4mouKYgaEq5qtMbMu+zO/moeVo1ruHvVjeZkL8sultYcP7rOeDEZXnBRcf1pxsTWExKNW3JLEWHYCGOiEcnGCfDbW6jIAEwPF+j80UMPasNbuum8U5vi3J2a1yAt17s+N6Xm2SULMA+JMHJVPXil7riSkPt0bAq75umepM+m3DtFN3kNIIvA7OiLClEIyA+20t41ze5JnyfXWjspIRHFUqr3n7atPv98OyrZsevUXDyUtQwPZS3Dqs7f4KGsZdjh3I7VaswY5sri4uLb1+DnvkXYdWoufu5bhE2peayfn/sWYemPbyLSbTnOfLUCP/ctYtviRShgGuNnLmyEtzCqxeSu6a+hJvZl1MS+rPisJvZlRR1HtdCk9zWF1UCoAwJ8Ki26oapjMPXgRSGJPZ7up05pLqPlh92KFQl1Mo9/pbstEofqFwnQ+KwFSCqboRDO5D7Mx27eTNEYsMDpf9p99aeffsLRo0dvyTIdwE0Wj4mJiTh//jweeeQReHh4sNfnn3/O2pw8eRIlJXVZFO68806kpaXhp59+wr333ovp06djxowZmDdvHmtz/vx5TJs2DQEBAZgwYQJCQkKQlpbGSnu0aNECv/zyC4YPHw4/Pz9MmjQJffv2xQ8//HBTXFMFjc/Nin0M9Pc3cVEVLqv2pzFrgKprFE50jWRxaASV3NCqZ6gHLzr1hCNZmFJ925qIVEBfGJKVCzAvYvUEDQlJskbpuUnyllMez4AR7Fjw1kdLMY9Lhy82+3lT4GQvYPmEMnTt9jKip61C9LRVCKl82ew5T/Vti0VpeRbdH+uLuf7yQ33Y52QlJNEIyIKELNG+/r4o31POzhldB0O9lmCiayRzgyaMiUZ0GNgBhigDqjzTFf/TuDoM7MAEpWfACKxMXMkSKdFLj/Hh/nhqcI8GHBklNK6tUn8kGycwyyItJ2tQQdE5fDo2BW8FTcHulLVM5K3+ZbWiP7XbaLJxAoIWtUVY5EUcmH8IT+RIiK3xQ6C/P8LmmIqYcZuHwSnLD6MdDmqKUrX1ddCwSVbto9Z9PT7cH0t/fFNRD3JqyxI4eK1TLOO3w4vSlVc9FMKxLHsi5nWS52YBPpUmpSHUQpIsh/xLywJJbXdNf00hEPm2vBWS7w+QBduu6a8hqbb90PffwpX02QoLI4k6elkLLxrVCYGOeXmZWBmJJ3Ikq2s70nGMwWisvOqBpLIZ7EUE+FRiZNUFRB5xQ+QRN8zY6AbvbV0xY6MbszTWVzgWPXESRU+crN/KHOpyMP/LQvJWpEmV6mhO3Mg6j82JG1WT0pxYUMc7qrmRbqxCKDY+OXl5LA62srISwcHBDa4J5/OmD+7oXWeJo3ITNKl+LXs1E4+pvm3h690RE10jWewg1W7USxxCWVJ5tBKmUIbL8IKLJnGStL5eeQ5Ln/NtrGnH7yexriLJbA0/c6j33xBlwGiHg3ALWqdZh66pQBlVKb7VmgcFdG55SxNBDw74MhjWwMcnUjZUrXUNUQZEGDYq3E554WgJPk7RXGkYPraOMqfy1kutRFJ8f/mhPopri7BXnUe+diuNiaDjQefiwPxDCI7vh7covhPWWY4pw+qitDwmHvnfAN5tNTi+HzvnU+6dwoSaXpZk+j6hLKzmyuaMD/dnQlernAdQJ4SNhgisvOqh6Guo1xJslfpbdX1QfyUtQxQlIwDtjKt8qQ4+1pGoqU2Ko2URjOSS5rSKfU/xWU52NgKDgjTHqI6ntBSTqYWeaDRH91OnELhsDnJmvsuWnRgxQtfqqNc3WRWpFmPREyc1M6faC148qus/qoWlufqQVOYFqLtOKJnTNqfnmm2pjpj9/4GTi/aYqysrEPdw/WtNNxeaTLZVwa1BfYRjfTLKmhNl5oTjjUQIxxsDf5x79rCPlaL9w+0V7z0DRiisZvykMrzgIvz2FiJjZ4KJJQLQnnRSch0e3pJJRBg2MsFBLqSvZa9W9Emxk9SGdyG0BFlLLYk/srTS5J62OdE1UrEujU3tslicu1MR62aN4GqKjCpfzibZdH7pOFM2Wd66SMf2raApuDT1DxZnSm6i/7zrewCycCR3aHPkh/owK/RE10gMy5S/6+ga4S2KgHx+nYsH4JN3h7P3AFC+pxzle8pZOzo/aktXxs4EheCjfVRfMyRk1CVd+Fi9DgM7mBWfvKtsY9BrkjL9Jn+eeCFJx/LA/EMYNGySQszx+6PHltxS1se2QAf2oJMXjrGTZ+PS1D+YWF39y2oTiyEf+8g/iEo2TkCVZ7qJcFQfuyn3TsGUe6eYtFn9y2qFcIzBaBPhygtH2v7gzDpXZfW2SlqGAJCtZdaIq6Hvv6Ub40gWR95SSP8nlZayz8mtlQgMCkJOdrbm9vhtqR8eW2uBVFsTrYGfgwQumwMAuGun0ltEy1KpGHvVBXhv66oQad7bGk84Uv/qbao/s4btHWYwl2b6fjCXAVjQfBDiUXDTaSxLpUiU879FY4t1tdVET3Cpl+tNNvnspgRZIsKOhyAsWhaT4zYPY59T2QSa7IaMmMVEgNrSyLuONhT1PjgXDzAZe5Vnuon1i5Lv8G6Levzzru8R1eV9TM1oulbHZQNmYHy4P2I+ykGVZzrWVSRxWWRlF8wIw0bkh/pgS24pBg2bhEHDJmFdRRKW/vgmAGBWSSrG1GbWvOcbA3sQQVl9SQAaogysXIYhyoCYj3LQKfQl+Hp3xKdjU5DSt25iujtlLUv0QudGfe7pfPHXB1Dn+hwyYpaJILH2+rFXbCIlnGosIgwbFdey2o04Osxfcb8B+hZAfnmEYSMiDBvhlOWHMQHu7CEBb3l8IkdiIiF2zVJmyaIEOxGGjTDW1p50Lh5gIvzMjYlfRgJRK2ZU/XCLLyKvPu58EqAIw0Z8FWFg1nY+SRAARfItoneZJ3ILXUyWk/hzAFhMIx/fyMc0RtaKPsfY95Bb6MLcNCOPuClEJEGWR+rPAbLVkd+WnnXSVqwVnTve+QzHvLzYX7V7qyV2OLdD0RMnmdvnqPLl7HUz4a2g5kjc3wonj7+n8Ez4uW8RZj+/zux6gqaNcFutJ8JtVR9yXVVbFO0pEm2JcROuq/87VFRUoP3t9XcZofu6/+cvoqWzdfHP5lw/zbmu8utk7Exg7oUAEOsQiFgpR1EPjoQlubECdYLAM2CEwh02ZMQsm8siaLGuIknhSsj3Tdul/SR3XXrPo+dOyS9PersUh92KEbfvniaRHVCPk72A/OK7MCbAHcZEI8rfeBdn937A4kzpGFDSIYoXJYGyx2MsEjzCsTtlLQYNm4TeZZ5488RgbMktRafQl5DgEa6b8n9WSSrO7v0Ae56ch4FfLGbnRs+FkY9P5MWiOs5Q73rhl/GTv/pcW2p3TBozP3Y+8zA9XLlefR2F/yy02z1tjTglt1Oq1ciLI3Ib1bL0qV1Ffwhbwj7n3evNxb1R3+YS81jjTkrrkNAjl1oaK+9WzH9GqPeb74P/yxOHrSw2L7fQxWxdRS14l1aCTwCjSagDkjjXV3JN5ct5ULsrsS8rXGZ5tKyW1s4dApfNwY53PkP3U6fs6vFE7qqz1iQ12WylJB6tsUZ27VYn9Bvqjn4zYC7wKeeBtjpjvlgBDGsPPz8/tGjRAtOmTbslk+Y0iTqPguaLOsaRBKOWgLxR8ZCEuS9x9WeNJSaFcLQemlw1Z0g88LFeQG1dSK7Eh1Y2UmOiEUYEyu0kuUg5ub8BwKLaGCkt4UhYm1nVHDR2qm2pRd3YZRGhFofqWEBeKKpFIxFavQ5LU04BLu+ZfNbU+PLufEDqDwDo8LrsjmaIkl2RMxLl/e4hheH3gXks1q8K6diSW4qB2Iw9AFArHAH5WPvtLUTMWFlUOtVmxPS4qtzusMxTGP/kPNmqxJ0bXjjywl5L4MmW4ASTGESttq/OfJX1//ayt03qiaoxF4fHW6sok6i6PT38MCYa6+6X5Te2Fqhz8QD4epfiAGpFpKHunliUlocDnCsrUCeyNhXnAZwhaV1FEmJbTUJsjR9iW+XjCdS6rloQjmp40a3l1qperlVzEoBCCK/GasVYd6esVbw3Jhph/GgrQlTHxePeDCYYtcqX8PGOtgpHwPrMpzxJtdZKdfKdAJ9KUCGlyCNuwF4JrYoWMIFao4qd1KoHrQ6B0ROOOTPftescgheNgHbdRKBp1E703tbV6gQ7J4/XfbcPPb0E5iugNm9++umnJiWKjx8/jvXr1+P48eNYvnw5OnXqhG+++QZdu3bFPffcY3N/wvJYT4Tl0Tp48XgjLY+2Pv1rTEtkcxdEjQl/Huk4NURENpblUc+CCMhxfuSumerbVjN2kaCyCGSN0kqcYw6+fxKPHQZ2YGKNF6iEra6r6iQ4aispb7nSquNIokTLwsWjFpR0fPkJRlMletoqTG1ZgvKSdji79wN2Pn39fZHqeV2RPImy5PrtLVRYl3uXeeKwWzEWxK3DwpiJmsJB62EAHVtAFvF0vDN2JigeSliyPttiPbS2rZY1UY25e4m29erMV/H2srdRkFeAXn/vhSMDjtjlnr7S/aCJuNJDSxwFx/djFkm+DZ27Ks90GA0RCEmpwKBhsnAkcvLykBoUhEopR1Eknoev4cgnyFG3MWeV5NfnIZfYkJQKsxZHWl+NWjBrQRlFgfrnHCBLI5XY0LJgqq2RlspxUPv49jWaonaku7tuvKQlSDwGLpsDrE3TzSBrC+oEOU2ZUeXLkTA50uaxXq+uaLYJc6yxPDal/UpPT8eQIUPw4IMPYv/+/fjtt9/g6+uLxYsX4+eff8a2bdts7lPEPArsikOrhSaCkV72Qks4UiwB/Q/A6jTcje3C2phlJJo7vEik49QUxTYvxighDFlRKCOqtf2ok8xYQ6pvW4Vw5EsglO8pZ8KNF2O2QpNDfnxVnukmApEXEZQYh4QLHwdpTmzoWR/tXRi+sZia8QJWXvVAgkc4E9ok4sYEuOO17NXY4zEWhigD/PYWolPoS4j5KAejHQ5id8pajNs8DPd8Y8CsklQAsjsqxUZSnCSVvqBXqud1FOQVIGNngqLEBZ+IxpxYV2OL26naddUSJCBtgdp7BozAptQ8FrPb5vSDNvWjx6UuP2rG7hIUd0j/a8F7AvAM9VrC7p+QlArNfQ/090d4rUDZFuiA4Ph+6NttOPp2G65wTwfkY8ELQIe4QATH9zNpB5gXjrRPU+6dAoMxGQZjsqI9Lxz5hEBVnukmopU+0zo2fCkKwtbf1dxCF0WMJMU2ahHfvsZkXbOEOgChDpj91TyFuyqfQKe+sZA5M99lMY3WCsdIt+WIdDMfs9gchCMgW0WttT5GT1t1A0YkUDNv3jy89dZb+O677+Do6MiWDxw4EAcP1s/+KyyP9URYHq1zQ20MV1U98UjUN+6gsUVkUxRFTQFrRSMfM6TXtrEsj7w7qqVSCqm+bXXLJgB1VjYSXID+pN8QZcCitDzd/rQsfzQGQl1eA6iLXyKLiTq2kdpYiq3SOh7qMhC8Cy99pi4dQfsxPty/SZfpUBM9bRVW/7LapOwDnTOgTojwMWL0f+zk2Tj/5qNwXl2Mwh7bFdlsyZIN1GVjpThLW1C7p2pZBS1ZFvl4x4aiV4pCD3uV6uiV3gstXFqw5bzVLcKw0aQOH1kZtayEwfH94BVxkC13iAtkNSMp0U1JyxCF5RGAxXhHwuNqhsKCO2jYJCYcqYxIdJi/4hjSPQ3AJFZTz8qqXp/ev5a9Wlco89CxUQtHwpbfYZMYxVosWRX1iHR3Zy6tvDusVnkQoK6chyULJMU3qvuzBnUMM2BanoOyqwJyPCEvzJqyoKSxWoIS/TTnUh3NzfLo4uKC7Oxs3HXXXWjXrh2OHDkCX19fFBYWIiAgANXV1Tb3KcRjPRHi0ToaK85RLSDtFaR+IxLpCBGpxBo3VXMCk1/fXuKxV3ovtKsYyJZT1kE1WqJOXa9RT/iZE47k3qjlUgbU1aPj6z+aE3K8mOEnjOsqkjAmwN3qibw6KY96m7TvZCGltlQjckyAu2KCS4KSku388N828C63vXTPzeRkL2BliFz7kSD35IKicwgvuMjOAwlAAEw8AgDWpiFWysGsklQkeIQzYU1CFKir+WnuwYRWLC0gnwdzrqRaWGpva3+ENfVHeewlHsltlWd4shH9HdsykQiYikcAis/0XE4BWfQBwNSWJSa/ezl5eWZr/BFq92Xeiqgel/r7ge7jQcMmWXRH1ROUepZFQL/Afe8yT5PfTku/yVrJcQClm6otSXf0xKcU6oAdpaWK+MWR7u6oiX3ZpFYkwQtIKrFBtRobMtc47FaMOGxl72MwGk5ZfgjwqWSuqmrUQrKpYot4DFjghLeWPt1sxeMdi8/jNiftMZM7blNKmHPHHXfgiy++wAMPPKAQj0lJSZgzZw6OHz9uc5/CbVWgiy31F9Vt6X1jC0feXVXQ9FGLfv69Ne69eu3t7Rp8ZO0R5o6pJxwB6ApKmtzRhJ9EldqdVM/iaEw0Iu75QDlxRe1rUVoeEw1aVgFbLVL1hSb/WpPP6DB/RIf5s/2lOMzwgosoKDoHQHbRpIktL7SHei3BqnFNd3KkB2WGNUQZWB1GQC6rQoIdgMJyaEw0Itk4AbFrlsqv2gRJA0s2Kyyy/PVlSThaEmN6Qk8v5pbajw/3N3nx6Lmn6i23V/kYW/lHv1cx2kEWjySQpJgck3uJhBK/PNDfnz2got8bLWvbptQ8lnGVx5rvJ+qP3OH5UhgRho2abqu8qy2/LlBX7kMtGLXuWyph4lw8QPeBlR5kOVOHjlh6EKuXHCfAp5K5ofL/W0JLZMa3r1EIx8CgIHQ/dYpZCvkSITyBQUEIDAqqc0etLbNBQlKLw27FVo8VUApHHlvqKDYlbKn9mLuw+pYv1fHTTz/h6NGjN104AsCYMWMwd+5cnD59Gg4ODrh+/Tp+/PFHzJkzBxMm2Ha/E0I8CnSxRfip2zZmVlX6IbfVgmdNDKQQoo0HTaBy8vLYS+szvg2hdc4tubA2BONDXRWT3PCCi+ylRi0MjYlGNslTW+V4MWBLfBoJsJiPckwsAzQZVNddpO0bE40KEcMz0TVSNznGa9mrmXgmIa3Vt3r/aHu8UM4P9UF0mD/2eIzFwJLN2OMxFgBYzUo6hmXZE3FSWcu9WTA14wU4Fw/AmAB3+Hp3ZIXi6VxtyZUnpxGGjax2Iy2bVZLKYh/V55bOW3jBRV3huDJxpUntRh5L8a986RWgLkkPLxT5moFaf6kdLxjNWSV9/X1tShRlD/JPuuDMVyvwz7u+h1OWH0sgYwmtWD496+OgYZOQGXRQ9/fPcfIZzbhFfhv8d4Rz8QCMdjgIpyw/FL6yFL7eHS2OD6izSK7+ZbWmWCQXV158Uqwtfw3SWM1ZHAn+97WhJStINNan3Acgi8akXmUsxpGEIFBneQSUAlar5qQaclfVEoq9yzwtjrV3mSdiMBoxGK3bvuiJk5puqs1RUOpxszPE/q+xaNEiBAQE4M4770RlZSV69uyJhx9+GA888ABee832DMeAcFutN/9rbqs3usxGfdhRqfwiVv+AqdNu6yFcV2XsLczUT99J/FnC2jHk5OWhsrISwcHBdo15JOsZuViSBYh3HdVKAMO7HPLotad1yMqg5aZIIovinkjM5of6KGIWKWMqwVv4eFdXHq2YSXOWLr4tWWl4qxm/T87FA5iLrNYx6f9sHBI8wjGrJBWJp6fDLWgdpma80KTrPaqJnlbnulr+xrsYlnmKHdP8UB+MCXBngnFMgLui3uO6iiR8eXc+qvvkK44hrQeAufbyWXXL95SbCEb+eiVstfaprYa8FdIecY/jw/1ZNlWtsfFZWzds/8Vubqt0T1d5pmPKvVNYXCJlQg3PzlYIJXXMIlD3Pca7sNLfOGxlv5OxrfKtGp86fhJQZl0lhnotweO/+WHz74XM1RaQxeOp5P66D4gIvSRAevCiVEs8WlPg3hJ6rquAMgnOfIMjkizEFfLWSjVacY6W4hTNja0+HHYrVhwz/r3aZfVWEop6DD29BImL592ybqtNcb9OnjyJnJwcVFZWok+fPujRo0e9+xLisZ4I8dg0UQvI+tKYdR+bSz3Dxsh+qrXv9hKQjSke80N94Le30CSmj96HRV+Ew2T9fmM+ymEF3smdkU8goxZU5sp9qIUgD03ELZXJIPRELL+fhigDEzpkieDFs1pI8+SH+uDTsSmKZDGxk2cjrVuGSd+8C9fQ99/CwL5Ss0qgw4tHEvMk5PjyLLyQ/HWIEYfdijGrJBXDMuu+c3iByENikRLcWEp0Q0lQLLWjGFZqVx+RqLWOpUQ71sQ/NlbMo3PxAPwQtkTx20YJbUg4BQVuM/u7l5OXh2NeXjjsVqwQmrGt8k2EpR58DCO/zNe7Izb/XoivIgwmGVS11uFJNk5g96ReuydyJEUMplosqi2a/D7YQzg2FnpJbwKDgphgtEUYUpIbe+wznzDHKUu+XhL3m8Zp6tHU4x5toSmLLD2au3gEAJJ8Dg6WE3eZQ7itCqyiOQjH5kBzLNuhdiFtCLYIR1vck+0tyC91+ZHFB4WMmIWJrpHMdTQ6zJ/V7iNXVnPCEaizyHUKfQnhBReZcNySW4otuaWIDvNnfZMFQc/d0JwLrS0lG1J927JxSFIYJCkMMR/lsH2jMUQYNrJYPH67NGZjolHTnS7moxyMCXBHcHw/FsMJAGndMuDr3ZHt39m9H2B3ylpU95EtNaHV67Br+mvYk+mATal5zcqNlVyHxwS4s0RB5XvK2YOHVN+28NtbCGOiEWMC3Fm5Dl44ArKY2pJbaiLsSQCaE4LFuTuZaCPLlaVMqmq314YIR7XrqiX3Va16oo0JPcQY6rWExebT30B/f8TW+GFboAO2BTooit5rERS4DSNdXBRJUADZYhno729ROAJ1XgTqZZ+OTUHr4VcQYdho4nqqdb+p9/HA/EMIOx7CRKCWe+tdO+vcldXjpGNAL+pDy42Xd1e9EZ47egx9/y0A2mU3eMvjrumvsbZD33+L/a/OwArIotFeYpn6osRK8zqV2LT+rSIcBXXEx8fj/vvvR7t27dCpUyeMHDkSeap5UXV1NaZNm4a//OUvcHFxweOPP44zZ87YtJ21a9ciMDAQTk5OcHJyQmBgINasWVPvcQvLYz35X7M8NifoaTDPSBcXm62S1vwIWpMYQI+mbn3UEnb2GrPaqqnl0lof7JVt1edNHxQWFSo+I+ujragtT+rPeAvkltxSfDo2hbmtlu8pZ4XgAbBi8LZsm89oass6fF1J9eeL0vLYpJeyqBoTjewYUR8kRGnfqYwJTeDJTfXx3/zw6dgUOGX5MRFJn1EGxabuwnqyFxBS+bKJtVHtvsyX8CDhuK4iCXuenMeEFm8ppP6szYhrycrIo7YWqi2P9izRobU92iZQ98BDXVrEXpbHqHmL0drJCQOmT8CZdl9g9S+rMeXeKeh84UmcafcFXpAm2ty3XmI43poZ2yofsTV+cGi1ECEpFcgY5gqDMRkRho1wyvLDrlNzAVguj8Fb762FXFrVbrG20rvME4fdiplwpN9X3vXS2rAQe6NlRSQRqLZA8tZHW/qztG/1tU7O2Khdx9KejCpf3iRjDJu6hU4LNu8/D+gNuaICaN8eVmdbDQ8Px5gxY3D//ffj6tWriI6ORk5ODo4ePYq2bWUPoKioKOzatQsbNmxA+/bt8dJLL+G2227Djz/+aNW4X3/9dbz33v+z9/1hUZXp+zcphogo7AoNbEJUwG74g8E+aVGEuiuuoFJZrrrWYiloqdgPFWqBNUQrRb0y0JI2V8lNV0Rxhd2SMNrsuzJqsgVYBBYQuguISCgW3z8OzzvveeecMz8YFXLu65prZs55z3t+zJmZ937v57mf9XjmmWcwbtw4AMAnn3yC119/HYmJifjTn/5k3YWAgzzaDAd57BuwNYz1Ws2e9nYCSRDNa7TWq7VRai+Sx55eD3uW6qCacDy5IwJmDRm7/ItlOLj4RcmmnctnE/Mnxz6RBkBy3ASkUNYAv2GMgFBtSFtgKYkUw3KV+qFj+2Tlp5idG81y8gD59QGMKk/aUyEsN5KIMa3/oGAbCsJ8kamLQnJaDrtWs3Oj8bdfVuFg3XKTHLzenA+ZtGgLI0jtPiWy8hz0mi+pQDmPlLMqkj8+pBSA2TxBEVRORW0bQJscWhPCypNOc9vQvl/Z8IqMKF9N8vjG07+TqTe1j5zBmrM6uQLkpbOoX/pvifXYaJLnSEokGaMoFYRPwQwcMMyVhaQSlEiiLeSRYK7Uhggii/Qs9qOFq0keqXajFtTKcBBpVKrvCMhJI72mXMmrRYxF8pi0aAsq0jssInt9KYRV6Vh/6uTR1vM6d+4cvLy8UFJSggceeADnz5/HsGHDkJubi0ceeQQAUFFRgV/+8pf45JNPMHbsWLN9Dhs2DJs2bcLvfvc72fJ3330XzzzzDP773/9afZz9rd7CAQf6EKa7SUn01pJIJaOdq4G+kv+oZW5D52DLuaiV7rje1+Ttqmb8vyeSAAA7plVizsggjH9vDeKmJSKnNQ+oaMJMgVCqIT0lDgcME3F004PAm+VIeyoE+gQ9yt4YhtS3tgOGuSwM7Wzx69gFKewxqvoiqvyGSQpglgGFAZWIsvI8iCzSMZo7Vq1cS377KAB4KgQHOJWSlotqKk+YmckPHUfCXMREb8d4w1wcBrBu6hoEow2jm33wn8kGPLtpBQ6GATPPtSFTF4UDhrnYVdGE7EeBipIObIhY0utI5OrNC1j+oz5BLzMJmsmZmpTmZ2JC9DyU5mciTiXnT22ygEgWYHuoqdo2IqG0pF+e3KvlPorL6D3lbhKqK6vhE2zhCViBNY9HAwBzsgSMYYBZkBNKBhUi6eScji63ZBMvgDTsRl7zEqCbE/DkSykEVpo8sszMZnVRJT7RS/swF04rQo00qoXV8oRRVBbNoadOq+ZgiQPrwcUvApx6qGaUQ8uJcALG0Fdqy2/7pRniaikqatwUcx1Xb16AhyCfaHioRXrfG9VDB9TR2toqe3/zzTfj5ptvNrvd+fPnAQCe3fddWVkZOjs7MXHiRNYmODgYw4cPt5g8dnZ2YsyYMSbLw8LCcOXKFbPbK8GhPNoIh/LY92BL2Cr9CTocWCWIBFFJkbSGRJrLpbT2mthLeeQNcwjkFgqYluDgIRIw3rmUD/fkITol8jUBbQEfKmmOENravyHLgJQ3y5n6SOdGCgmVnzj65xRmjgOAqaxni1/HzlkFsn5djgfi2f0rAMht9CM7cpCpk1Nn3ZVSi2fprwdIgSRVif9Mw6clMjMbLfDkkVcOiTyqqZCW9CGCTJZsqcMoKo5aiiZ/PKQy8ucjHqe9lMfzX5Tjje+NYaKAlPfIq45+e4bLySOHNWd1WCGYCVtaC1mJ7JGjqjniyJvjEJHjyZ09oOSsKoZgqrmXi7haxNEcaTRHWklFFEFkUUl1JOxrarKr+2rsSQ+zk14PtWxEcLILKtI72DP/W9dblEf+ONV+i29E5VFESkoKUlNTNfv/8ccfMXXqVLS0tKC0VMqLzc3NxR/+8AdcunRJ1vb//u//EBkZibVr15o97meeeQbOzs5Yv16uxj/33HP4/vvvsXnzZrN9iHAojw44oIJrnbvRF1RI8fhEImlN/U17E0d74vtbPsbJv8j/3WdyhCyJI0JE/Eht00NOLr+P/wbTn/8dPtGvA4ok0sjnCQJAijCAvPONZ4HgcybHxROwAL9h8Ip8GmeLXzchmoYsg0ylJOMbpVIatoDO9YOCbcCsAsQASMJcxAA4rJuFoxn34Ci6zUCQgpQ3y5H65LMIW3gOY59IwxCf5+CaugzJaTlIT4ljCk2wfxva5/ug2CUOFTVuePiLQPztl1U4ERrF2gLSwHv+yPm9UnkkrN68AGdGAdkjJRUyEACKayQH2uh5SHsqE+HTImSqm5irqEbkaHl1ZaZqjqOljrv8vknxMxd2qub2qqRW8n1RCC6/7pUNr3SfiylxtCceODsbg1vHs+MZU+aHrK+ckYXhssEtTyD51yu8GoCzUl8U6tqFOKw5q0Owf5tJuQWn08bB8uhRzWgc/B7iSyXn4LxRzdCNnI/4/g0wdIe4Zl/RYUHjZJNtMa4NS9Mk9Sk2Ykn39tKqWI+NVquQStBSH+3trGpLCKglaqMl/akpkANS1yOvmxgSQaTQV2qnRBzF8huWYHr7BQw/aXmu47GwWgRD+o9JWrQFgPTb0huII6H5VBz2DrXcNfZGwDfffCMjxZaojosWLUJ5eTkjjvbEtm3b8I9//IMplZ9++inOnDmDuXPnYtmyZaydSDDV4FAebYRDeeybMKc+0uyl+Ad3LR3kejuBtBcsIY/W5lLaS3nEXCB8RqKsXmI4hax2g18OyMsrrC6qZIoflaMY8tI/AQCpb62T5f1Re56EEnjHVaU6kmVhBqR2lTMVQ8nohsxb7jwchNPjK20y/TGH8GmJmBA9jx2HWHpkUtJFpHaVMxWFH3ANzL7VWCcSu6E3HMBLt72PdR+vQkGYL6LL6jDFd61s8Dj9+d8hbOE5zB85v1fnPwKSkU52uEQgSV0TDXCsVf2IAPHEE4BJriSB7iNLTXeU3FMtCXG1dj2hviIfLyx9QdEwyJ7K44iiu8y2VwprFZcrQWxrzeBebZ/ienEfTqeHI29Us92VSEA5XNXc/yG/XonMidtd7QlapeP80tdXUYWM9fTE5dRlMpI4ZdPLLHfSnNGO0nUi8DUrAaBx/xsApFBU0dCGfz/8dmlQz4eFr968wORetCeRtMVgR7zfxT5uROXR2vN6+umnkZ+fjyNHjuC2225jyw8fPowJEyagubkZQ4cOZcv9/PywdOlSJCaa/8+IjIy06BicnJxw+PBhi9o6lEcHbiiYC22hddcq5/FGhprTqiUQ8yztrdqOnbIQgJR7iOIahE9LxJyoIByG0RFTn1BiWoi9ewyXNAlMgTRkGTDkLQMwbxLOr/o1AGDSV+EIqKiUhXuiO9zTddo2RkT5MFelfMfz9a/hgGEuCyGNeRP4BIC+u84bkbLArBDoF3oCkM5HhEhSifAO/eNzFrnMSqGZ8wB0h+F1K6xEYqt2+gOACXEEJBX2++5llzddwNgYaUZ/iu9ajG8Yi5jo7ehAFSq4OpCpb63DrtxoxNVXIhzLUDpqfa8lkMNPAvFYgOwsID4hXqrzCKOZTmBxjaxkhSWge5CceMW8wfqKfIRPS2T3EX2m7T4lrFYkYGpQQySOYEvtRq1tldDuUwJUQEZWd8Ayt1hrsOKdAuAWbfIoDsr5QbBWSCtty6uXlsAcISUo9ee3ZziGA4iFB/JGmQ9lTe0MlE2emmuv9r93wqMed9RpEz8tkkmTs7YQR7XQU7W2SvUetfqgEh4HORVyOqc+qsGaMYLHiBwA0v/LQ/ulkM8kbOFauADdUYRnviIViF9/dWFLGgDdn2qGP71JJbULMqYAN6sorZc6ARzE3XffbZHbaldXF5555hnk5eXhww8/lBFHQMpLdHZ2xgcffICHH34YAFBZWYkzZ84w51RzKC4utqidNXAojzbCoTz2TSiV8TD3R3Y9yOONoj4StMqCqOVVKqGtrQ3jxo2zi9sqha0SceQdNAlEHpUG/jRwj9FvZ4ocvw0Vi6f1/HNiQyEydVEsN3LsE2kY+sfnWB9ELMmNlfqj17RfALK+lXIoiSge/XOKSe4lIUa/HbNzo21WLVPelNTRl257HxU1btjdNRaHdbOQqYtibqvFLlJIKg3uSHmkXEe6JhTiStd0/sj5WL15gU3HdS1xZhQQcOx2VFdWs+tBeZA8oQPkOY2i+ygPMQxUaZ1ousOrnnxpDsAyQqjVzpoyIQRzuZ/2Uh61CnsDpkROS0m0RJ0ksmlu4Ky2X6XQWbW++D72uQ7W3J+Iiho3dIRWmRjxmHNWtYT8WaI0WkMwrck7NPe/TbUgOzm10dq8Rq19hGx4DvtefZe9r6hxw8pQKUc2+4pOMTeY3q/evEA2cSGa5vRUeVRSF2kfBFtzyfnQWi30aeVxxRS4q5DH1kudGLLmoMXntXDhQuTm5iI/Px9B3LhvyJAhGDhwIACpVMff//53/PnPf4a7uzueeeYZAMC//vUvi4777bffxsyZM1l/9oCDPNoIB3nse1AijtbgWpPIG41AEixxXL3a5BFzgYARATIVZutnWwEYQzID/Iax8grWQClfbE6U5OZKtQ6D/duYMkAkI849Fi+e2soIHi0jkpDTmiczoBGt/dOeCmGEla87Sc6v2FaEotWSuc/38d/IlAkyv3HdWo+Di1/EXYf0iHOPxYToeUhsKGSmOCLEkh08ZudGs+MlYjll08tIT4ljZTqo/iMghdFNf/532Pfqu+zYdFdKe33YKo/ht0t1IFPeLGfL0p4KkTmn0n2hZCxDsNQER2xLEMNmxVIotqqNlpJHnjBqEWDg2pBHJQXwaqsl1oS22tKWf1aDFtG0tM6xpW359rbsQws04UQ5jXx5DTVQzUdzhHHKppcxoDt0NU9walVSNln/AnkEJAIpKY9SnqDHiBxUpHfgWFgta1Mak4mlqRsQnOxi0idPyGyZqCBzG7EvQPpt4n8HrDUjI9IY7xyP8AOJnGqqDAd5lODkpOyE/Pbbb+OJJ54AAHR0dODZZ5/Fu+++i0uXLmHSpEl44403cMstt1h03N7e3vj+++8xY8YMzJs3D/fee69F22nhph734IADfQQ3KhnrK+BJY2/4rPgSCDsKK5lqF+A3jJXWsARzooJkf8rUr2g0Euceiw8KtuHhLwJx1yE9EhsK4XI8ELsqjAMW2i8ty2nNQ1WkP0rzMxFYXIPZudH4oGAbPijYBtf6CPYakNS/v/2yCjH67dg5q0Ay9+lWKMMWngPmTcKkr8IVC5VnfbcYWd8tBiA5n9K+k9Ok15O+CkdVpD8KAwZBn6BHypvlSHmznBFtUgln50ZjXMY9GN3sg7/9UqqJN7rZB0cPPIgTHhIxnZ0bDf/TD+HZ/Stw5+wamcNk6lvrAACpTiFITsuB94VHLf4cegPmRAUh5c1yJDYU4oBhLhIbChE+LbHbrEaZHIowV+uzviJfFsIaPi0RVZH+CJ+WyMJjxXxLusdFckj9KK3j19O59UWI5CrxrTzVQTipM7WPnGGPh1o2smdRvRHf87CGnFpLZJWIhN+e4bKwWr89wzWL1F+NfMQ76upkD0u3AeQlNERQWCk9W9r3dE9Ps0rjwcUvIq+pyYQ4akFJdeTzHskYCQAjc/T9yTBcBmBqPiV+/5Q+X3MITnaxKD95R2GlInnVwoLGyVjQOBnZndmY4mveAdQBCV1dXYoPIo4A4OLigs2bN6OpqQkXL17E3r17LSaOAFBXV4d33nkH//3vf/Hggw8iODgYa9euxXfffWfzcV9X5TEjIwN79+5FRUUFBg4ciHvvvRdr166VSbdKaGlpQXJyMvbu3Yumpib4+flhw4YN+O1vfwsAuHDhAl566SXk5eXh7NmzCA0NxcaNG3H33Xcr9hcfH48tW7YgMzMTS5cutejYHcpj3wQRFFv/GB3q47WBVg6jVo6kvZTHsX9diCceGgkAsnILgJG4qamOYq6XWL6Ah7nwP94YxZxzZkCQUSml/ZGTJRGTgjBfZH23mOUOklvguo9XyQrVkxIqniNvirOrogl3zq4BAKR2lbOwUl7xpGWExIZCnC1+Hf+ZbGC11fjBG4XQfVCwDR/FZALzJmHfq+8ydYAMLPY1NSGyI4e5snqMyOkzoavZ4VvQ0D8cABix59VoACafNSmTauv4chdi6QtR1ePVQVvCTAl8CRJrFXjKvQQgu8+VcDWVR1sURy1CuHfoEtQ+cgaJb+XJQg5tDQFUMiKh/VjbD6AcEgsAG+c2W31s1+q/UO2/ms9dNKcCKoHCVi3NoYz19ESeUPeRB1M+u3+zeJBbbOPg9xDfvwFddVKI/pqzOlY6Zk5UEBY0TobfnuHscz4WVosxZX52KUf0UMtGeE9diBVeDWwfolGP99SFUjmasw3s3lC651S39WrAFu9D2FFY6VAee+l5NTY2YseOHXjnnXdQUVGBqKgozJs3DzExMbjpJsv1xOuqPJaUlGDRokU4evQo/vnPf6KzsxO/+c1vcPGiel2yy5cv49e//jVqamqwZ88eVFZW4s0334Qv9wPz5JNP4p///Cf+8pe/4NSpU/jNb36DiRMnok7hxy4vLw9Hjx6Fj4997agd6J0gQmLrH9+1Lt/hgCl4Ukmv6flXd95pl308NlHqh0iYa30EU2uo1qM58IqjUuF1ep3Tmicjp4Bp4Xef4GmKoX2kJGVnZTO3Sn4fLyx9QRZ6O/SPz6EjtAoVNW5oHPwedFdKse7jVQAgI46khPLHDhjJDoW9nt7pD8ybhNm50Sh2iUNiQyEO62YxtfBs8euMbH5QsA3jG3IxM9gTdx3S4/ROf9TcuRfrPl4lGeRsehnB/m0Y3eyDZ+97Cad3+uP0eDmhcE5dD8ybJFvWEVolDVZGSeSsN2P4SbByDaObfVCanylT76orqxUnCWi5FnGkdu0+JaiK9Gf3jKhU2pM4AurfBzqv+op8k4kT+i6J93lfwN6hS2QPAPCeulAyPlm0RUYcqb0l4NVMgkhk+X1a2icgqamJb+Uh4YFORm75fU5vv8AelkLpv/BLX1+Z6Rz/vqcQ1UqeOAJGMmgOISNGyPIdeZBCyD8Ied0hrvw2IvHc19SEzltNTZmC/dtkfW3xPsRek0pHxBGQPufgZBdM8V1r1zq2jfvfYPvIfDKWqeVJi7bgWFgtVuoHAGeluqfDb1+GpEVbmAJJJFJp8iQ42YWF48aXLsBHoUtV2zpwfeHt7Y3w8HCMGzcON910E06dOoXHH38ct99+Oz788EOL++lVOY/nzp2Dl5cXSkpK8MADDyi2yc7OxquvvoqKigo4O5sy/++//x6DBw9Gfn4+pkyZwpaHhYVh8uTJePllY+hDXV0d7rnnHhQVFWHKlClYunSpQ3m8wWCudAcPvowHX87jauNGVR/NQSk30l6lOjL/l4m//Us5V6jdp4QVehchFktXAyl7M4M94VofwVS/+op8/P65/YykWQKrXC0hDdwtyWGjXDSt/vk8S8qLzNRFIbGhkCmcNOt+wqMeiQ2FGN+Qixj9dqQ++SwAoPPWu7Bu6hqTOm53HdLjP5OlUGHqQys/ad3HqzAnKqjXK5BnRgFV9bexGp3ktkogkxxLajTy9yDdl3xZDiWVUSzvUV1ZjeysbACQlf/g24okU5zsIBiyDCb5mWoklfpQ+y4RrpbyyCsq5gxpqL2otvCw5yDfUlhifMLDe+pCZB1xlp37Qy0bkfmkXDm21HTHXMkOc+2UttEy0AGMuYoi1NRHNVLZmbpMqu/Y3VcsV3sxb5S2EqtWL9JSNA5+D94XHsW6j1fho9ClcPLNQVddnKbaZ235Fx5q94n31IUy5bP5VJxUz7Qba87qsFI/AOEHEjHFdy2yjjjjzCiwHHNeIZ3iu5Ypj82nJGX1YN1yVeW0TyuPWc/CfaBy3cbW7y9hSMI6BAYGWuS2eq3Q2NiIv/zlL3j77bdRXV2N6dOnY968eZg4cSIuXryIP/3pT9i1axdqa2vNd4ZeVqrj/PnzAABPjXjy/fv3Y9y4cVi0aBHy8/MxbNgwzJo1C8uXL0e/fv1w5coV/PDDD3BxkcdrDxw4UFZ488cff8Tvf/97PP/887jrLvO1ny5duoRLly6x962trdaengO9DNYQR8BRvqO3QakOpLVQ+17/9f3T6O+q/Oeg5FgqQslwhF+2o7ASO9xjcVjni7MVrzOVjwjDhOh5FhNIc/sClAf7YhveuITCHpXa8WQgsLgGAfVT4RM8DX9hy7fhAwDAcgBrkXDLJqADmJJWj/SUOLzkEofpTp5sBj89JQ6jm+XfRYkkGtjrKZByj9JT4uBy3E1mKARIxDXWbT1KS4G+YAof5x6LCbooJEYC4e7SbwkRNbrulhJIApGwdpQw4kj98jmVIpHzCYbwfhrLmzRHGimnlUycCgMGAZ2NSOKIobgPsf5kYcAgfBI9D7Nzo20yoBJh6X81ESdLoeR8SSYhAFh5hWsJpUE5f5wUSpj4Vh57veIRIPEtY3sijmS6Yo1bq5p7quiUas1/p+i0Ot3TE182NSmGmYp9hYwYISOQSgqjM1d6I09lIir2pIcigeTD5s3lPfJoHPwemk/FySbIGge/hzlRQdiCQyyMlQhicLILKtI7ZH1YEk6tNoEh3ru0rNbrDDxGBCG+fwM+qpuMNQrbdl2+jDXlwIoQYEVIJ9aUAx6LcrrXGnMoPUbkYM2pOKyAsZ+PQpfC76u+8Itsf/z73//uNaQ4JiYGRUVFCAwMxFNPPYW5c+fKeNagQYPw7LPP4tVXX7W4z15jmPPjjz9i6dKluO+++xASEqLarrq6Gnv27MEPP/yAv//973jppZewbt06pigOHjwY48aNw6pVq1BfX48ffvgBO3bswCeffIKGBuOMytq1a9G/f38sXrzYouPLyMjAkCFD2OPWW2/t2Qk7cM1RXlmJ8spK7GtrkxFHa4mgPUNxHOgZeqrK2vt7rabQqS2PLquTDZjDpyXKTG4AU8MdEeacMgHjIJ5UR74Ye31FvlnHSx48oeBVJp/gachpzWPr2n1KsLtrLMY35GJ8Qy7GxnzI1Ml9TU04uPhFHFz8okndx4oaN5m6SKTxhEc90rCbKZCJDYXQXSlF2od3YeR7z2L4SfQZ11VAclnV73zDJM9RfCbwtTiVQKSTDwnlVUf+oQT+vhG3y2nNw4RoqY7n6qJK9hCRNCkIUdUX2f1GpkztPiVo9ykxCaE1ZBkQVX0RBwxz7UIcAfPfaXEADZjmAmqBH4iTwlKR3iEnktcZ5KpJxej5XDd6DwAJD3RizVkdC2O1hDhOd3Mz2wbQViXN/X8S6VMKEyXSxvfPq4sUlhoyYgQ6U5fBqbgLAyLWsd8bcljlUVHjhowhneyBSMkBc7qnJ3sAEvHsTF3G8i2V+lKC94VHWVgnIb5/A3s4+eaYbBOc7GLT5IY5BCe7YO/QJUh4oBNbvA8hvn8D4JQGeOmkfEcvnfHRjRXckHxFiOQUG9/fOJ4ujXbHgsbJTLVc4dUgUzAd4avXFxTRWV5ejqVLlyoKdMOGDcPXX39tcZ+9Jmw1ISEBhw4dQmlpKX7xi1+otgsMDERHRwe+/vpr9OvXDwCwfv16vPrqq4wcfvXVV4iLi8ORI0fQr18/6PV6BAYGoqysDF988QXKysowZcoUGAwGluvo7++vGbaqNJt56623OsJW+wh6apQj4loqj46wVcthbdiq2vd67F8XmiiP1pRHUEJptDvCCyyPWOBJYU9zwkrzM1EV6Y/Dj65Q7E8sH8KX/wCUzYFEZcoSU5+UN8tZnUZAck3FvEnAtiIT8xwlxL7gydxKdw1z61NlOghnRgHhbctYmClgWopDLNehT9DLyqsQ+PtQSSlUMm8CLL+f6D4gxVFUGgHLlHh9gl5GKA1ZBlY2hu9H6Xtlbdiq2nfa0lIdloYGEkGjkguA+dp2vQF0rk6+Oci+omOhimrEMdZjI7o6k+HkLNUo7OpMlq23NoKHwKuL9H/Kh6fSulhPT1zmfhuUwlP5UFYic1Reg9xLxbB43oTr4OIXTQx49im4q4ohqlTGI8/K0FUyzsm+omMkLK9ZIn+xJz2QHb6FKY9KCrk1IdKkSJISDUjkbs1ZHTxG5EjOrxxR1ALdAwBM74mzUp/UP8Fvz3A2scKX/0j8/QYk/izxJxu22pvOa/v27Xjsscdw883yY758+TJ27dqFuXPnWt1nryCPTz/9NPLz83HkyBHcdtttmm0jIiLg7OyM999/ny07dOgQfvvb3+LSpUsYMGAAW37x4kW0trZCp9PhscceQ1tbGw4ePIgNGzZg2bJlMmehH374ATfddBNuvfVW1NTUmD1mR85j34KDPN4YsFfOo0geS/MzWW08rRxAc4SvIMwX0WXa9449SaPYr5a7qwgiIi+ekupb8uVJaNBvCXEgUD1JqtNIJDLVSZrWPl//GjJ1UUx1ffa+l9jALrIjB1nfLUZHaBWrg9k4+L0+Sx6r6m9jNToByOo8AjBRI5XII084rVGOqX9L6zHuqmgyMcVR+tx5gsijMGAQoqovmqyvivSX1RpVypcErn6dR0vyHXkkLZIG9mQkwtfrux55j7ag9pEzgJcOW5xM1TACkQORLIrQIo9i+Ko53FFXJwtPjfX0RIbhsoz4ieSRVx1pG57MUR+ARCCViKFYI5IPSS0/dUp2TKJLNJFbPhxWJMA8+FqPVGqocfB77H3JJsmpmvIIG/e/ISuxQf8PfFirWj4jALY9YLxXvS88yiYFLAV/L9DrfW3G9IE07EZXXRzWnNXJyCMA3H98A8aU+QEwlib5897PevS9vh7oq+SxX79+aGhogJeXl2z5//73P3h5eeGHH36wus/rGrba1dWFp59+Gnl5eTh8+LBZ4ggA9913H7788kv8+OOPbFlVVRV0Op2MOAJSHK9Op0NzczOKioowbZr0p/T73/8en332GU6cOMEePj4+eP7551FUVGTfk3Sg10DtT8yRv+iAJaBwQC1Cx9fLy2nN61G9K7XyHrbAkn6U8uJK8zMRVX0RUdWSA3Z17TlU156DIctgEXGsivRnz4d1sxC28BxWfT0RgFQmZHZuNM7Xv4bTO/3hurWeOa0ScSQUu8Qh4ZZNjDhGduRgwc4zfY44Ev4z2SAL8QXk11zJWbW69pz8PbdeiTiqhafSvrTuCQoxNWQZTNRONfBmPXyIbVT1RQQEBcjul4CgAEZICwMGsec3OhtVzXh6ipiWLPaar9fot2c4C9vUAm2zevMCNjAHjCpLbyaOCQ90stdMZT3bgAWNk+F94VHE92/Agq44dHUmswdgqjLyyhNgXnW0drL2S19fdKYuM+YkNjWxMHUidGolOYjYkRpCvx9EJFfqB7BlYjgqT0hFciqeg6g+5nWH4PPLtUJziQh7X3iUkUYi7eR2G5zsgjlRQSbEkcexMKOxCbmm0sN76kI07n8DK887M3UcAFaGpssmCJyc000+Ux6pzlXskYIZ7LXecABbnHJkDrLhBa24//gGdIRWGcNwu8NfP5q0FsfCamW1I0OP35i5kNcDXV1dcHJyMln+7bffYsiQITb1aTV5fPzxx3HkyBGbdiZi0aJF2LFjB3JzczF48GB89913+O677/D999+zNnPnzsXKlSvZ+4SEBDQ1NWHJkiWoqqrCwYMHsXr1apmbUVFREQoLC/H111/jn//8JyIjIxEcHIw//OEPAICf/exnCAkJkT2cnZ1xyy23mK0x6UDfgzlTFVucU+2Z9+hQFns32n1KWN6WNYhzj5U52QFS6QotkDqoVhjaFpTmZ6oWeSeIipf4ujBgkIy8aOXfVUX6o+VPr0GfoMfOWQXQJ+gRWFzDXFYB4IBhLmbnRuM/kw3I1EUxx1age2D3/O8AgKmO6z5ehfENuThYtxyRHTnYNcwNfi3qg57eCiolMt3TE3fOrkFhwCDoE/Rmw313VTTJQkUBee1HEZYoi2r3A5FGgvhZa00a0DqeSPLHyx8ztV3o7C07v9VFlYy8ijmSPcGBoQkAjORJfDYH3iCncf8bWL15AXYUVmLNWZ2JuUlvQ9YRyZne5Fy9dJju5maxAiW2szT/UQ2xHhIh582vlELXDy5+keUaihDJJL13Tl3PyGKwf5uM5JlzSOX/22mfnanLWH/8MU7Z9LKM3JpDRY0b4vs3MMdVugbx/RvgdFpOqIhsjSnzYw8KjR5T5ofgZBf2OBZWyx6AZISUHb4FzafiGGmkiQHxc0t1rpK9pgcAjMu4x+QcYvTbsfWzrdjdNRYHDHNZtAj9R7Y0DMb9xzewsh8A8NGktSzHEwC8fvukRderN6KztgOdNSqPWum34O6778avfvUrbN58HZy0uhEaGgq9Xg8nJydMmDABer2ePUaNGoX7778fEydOtKlvq91Wz58/j4kTJ8LPzw9/+MMf8Pjjj8tqLFqDrCxpJvDBBx+ULX/77bfxxBNPAADOnDkjCy+99dZbUVRUhMTERIwcORK+vr5YsmQJli9fLjvGlStX4ttvv4WnpycefvhhpKenK5b2cODGgDmiZwsRtJdiqUVuHcTy+oMUR2kgK+VlWVsjj5RIwDonVXuAL7dhrqwHf04+wdMwdHwJVhdVIqr6IlOICDw54AlFYHEN9MG5ACSSuLqoEgGR/tip347RzT5wcTqKFXopSuQ/TUBymjRLfXDxi4w0YlsR2ut/jciOHJwtfh3twZ6I0W/H6Nt8kOlRj9R3crG6Z5fluqGrNhk0B9wVexFR66Rrp6UUzgz2lMJWuWV8jqoIc/emEilLebMcaU+ZmtXRZ1sYMAhjn0jD0YBKJE0KUiWR5BIrfW8MjDBSCRJ6zSPOPRau9cDLIyLQ7iPdc+gOdz168A3Nc7EGakTxWFgt8JXpciUHS4lAuiAJW9B8Soos6M2qIw9ZSKGFeW72glIIK+X5jW72YevFsFLCwcUvYnrqehNHVQJf7zGE2wYw5iZSeKkS+PDXKZtehhNgkstYUeOGYMjVVuqXJ7fi8VOpIV6pi+/fgIwaN2QPNuY9dt15BlvCTUNUATAHVkkBl1cToPal0VKYZLthLHY3AgbfGKSEVikqyF2dyUh1rjKmD3AEEgAeKZc03McnBQHdv+MA8PKI+bIyOwCgl+ZlsKuiCTv1wNE/pwAj5iOsMRbzvedjQZekfPLH0fqrVqThp4ve4LY6ffp0AMCJEycwadIkuHGTBgMGDIC/vz8efvhhm/q2Kefx3Llz+Mtf/oJ33nkHn3/+OSZOnIh58+Zh2rRpNwxBc+Q89h3YmtBvDo46j70P9sx5fOKhkTKiRQNuW8xyeFAoK6mSPLQMTSyt58ij3adEMU9TdFzlyQZvkrKrognVtecUc9Z4KKlThQGDmJoUo9+OA4a5cK2PYK6d5LJKA67z9a/BdWs9Kh+WIkRu/VkRXLfWo32+D4pdpMHHqq8n4qXb3sf0/a/1SeUR6FYfI53QBaBo9SAWEmwtbL0Pe6LmFQYMwqSkiyhaLU0kaB07n8cIGAkj5TVq5XsOHT+UDVajKi4C22GXnMdv5rSY5DYSoUx8K0+TBJJBjhJ6u1EOhTJ6jMhBvHM8ui5ftlvflv6/auUB8v+l/HqxrquYiwhAlo+o5HxK21fUuGHledPx6eWSZ9lrMtlBsfawOGNIpywPM7b7uMwZ5/AKKyENuxFe0Ko4qSiGlvO5tqs3L0DSIklZPFi3HKXR7hYpyCJJBIDUJ59F6lvrMC7jHnyy8lP2DEjKo/g7DhijC3gjrF0VTdg5qwCzc6NN8qRfuu19WZ5lT/+rrwfot+S/KxbB3UUl57HjEn6+ZnOvOS+qOPGb3/wGOp39JoxsynkcNmwYli1bhpMnT+LTTz/FHXfcgd///vfw8fFBYmIiTp8+bbcDdMCBnqCndQAduDHx2MQ72Wut8ga24GDdck3iqAaleo4E/hjpuTQ/kxFHpf7pvahS8e6aM4M9merIK1DiY1dFk+xBZJJyI2fnRsOQZWD9JjYUGmfh503C+frXpGuz+EUE/e1tfOnri2KXOBlxjOzIQYx+OxoHvwcnv75JHAmXu/O6ap5f1yMSWJqfyUqt8LDn/cojaVIQwsr0SJoUZBJGS6DajUT+xPxN/jVvkMMfc8vhFkRVX0TSpCCMmjfKrudQ+8gZzdIBSuuSFm1RJY72gqiK2qu8wUMtG5H5ZCyyjjhLCldXil36JVgaumou1YNfH3vSAxU1blg3dY0sJHRfUxNT7akcB4HUxQGp6xlh5IknkT0q6UP50gMi1rEHirsYcdTKpyYSGnvSA7EnPYDiLqsdVwkZx5MxxXct0rBbsewS/e6TIVNFegenQEoh1HOigmwmjgCQ+tY6AIBvzFET4vjJyk8Ro9+OGP12hN0+lb3m85vpNRFG0UXZtT4Cq76eiIzjyWbzLB2wL/r164cFCxago8O+ofU9clttaGjA9u3b8fbbb+Pbb7/Fww8/jLq6OpSUlOCVV15BYmLPZuh7MxzKY++HvR1WRVCYzdVUIB2qo3Wwl/KY+b9M/O1f8sEcOa4CxlBWe0JNdbRFcbSkX6X+c1rzMDPYU1VhFENXeeWJL2pPRjlKZitUroMw3dMTqV3SMl5p4EO9DtYtR7tPCQ7rZmFo5bN91igHkJTHjCGdePiLQJMSKJaUO1FSgOnamyOiaqqjlqostqF7IMBvmKqZDj95IC4jUF8vj5gvWy6WjbG32yoNukllJNJGZQaoNqIInjyKKr69lMeelGQwB/48V6iX0mYQnVb3tbVpEkVRgbTUaTXWY6OsTAUPUeGb7unJyOPl7vqPVG5jQMQ62TZTNr0sc0CN9fS0iBgSznBzFtT+jMY8Rt6oZvOdcuAdVgn0WwdIESp8zrxooMbfgxOi50lupwplVGI9NiIFMwAYQ1EBYE+I0UAl1SkEqV3l7D2vHFKeuiU4YJiLqQcM2B8jOZNT5IuIKb5rkX96aZ91W+1LyiMAjBkzBmvXrsWECRPs1qfVOY+dnZ3Yv38/3n77bfzjH//AyJEjsXTpUsyaNYtdqLy8PMTFxf2kyaMDDlwtUsqjvLLSQSCvA/76/mlZqQ5SRShUR+1P0VrQoCCnNQ+HsUKxjTXEkVdvzDlq8v3zBNISF1UxXJE3QgkICkBgcbU0I91NRPnafjshD9+aPm+SjEwCksoIf0lxfPiLQBx0j4VrfQR2jXTD8PfMHl6vx8G65TjYTRz5sGHJ8da0VIel0MrFpckPc6HHautbDrcA4D57jZBVpT545RoAkhL0SAJgyJKHgxNxpPPxGh6luh9rwde8E0G17wAoqoxq7sf2LKdDZNHeRdV5VVPKeVQPXyNVKK95CfahjRm6dLmpK1u2poZQ32oQazMCxtDQAd1EM6OmE7HdxBHoVgW7y3VMT11vkkPJE8czo5SJpBJJNEccY096WEUgiTROb7+ALd6HJFXYA0BoN+EokBNHQH6vEbmUojmkVABR0UvxmIEUzGCkcU+IE8txHJdxD8Y+kYazxa8jrEwPcMTvQHeOOYWoWooY/XZ06QEY5ioazNGy3V1j8cMt1peHcMA2vPzyy3juueewatUqhIWFYdAg+SSwLSTXauXx5z//OX788Uf87ne/w1NPPYXRo0ebtGlpaUFoaCi+/vprqw+or8ChPPZulFdWXlVy56jz2DtxNeo80p835WIRGXKtj7DaOEcJ9iKi1BcAlmv2wtIX2Dq1sFdmtsApq0qKEZ+/BlhHbIi0pLxpnN1ObChktRuT03JQc+de7JxVICOSdx3SI849FnOigvpkTUclnBkFZIdvwY7CSsX6jGrqoJrZDL9eq+6jNbmOWvviFWYtmCOqvAEHn/8oKqj2Uh4TVqzBwVtMw8UBea1HclQlWEIOz3ylbMJiKyi/sqeKJpFlSxxl97kOBiAndEpKFo/pbm5miSOvLCquF9RGAhExPs+RJ4Fq2zFEOuEyV48RUM97VFMW6RjMHSOtt4Q8xnpsRPYVHSOPJZu2w3vqQqwMNQ3lzDguXX+lNAdCabQ7Uxa14HI8ELu7xrL3Mfrt+KBgmwnJ43+nDxjmmlUeXY5LNl5Uu5KchzOfjJUcV7tB+6H/ugvuh3Ey4mSvUujMgY37fz8B7gOUtbfWy1cw5C8fIDAwEP369cOiRYtk1SCuB3jTUb5kB5XwsKXOo9Xk8S9/+QtmzJgBF5erG//f2+Egj70XV5s4Ag6znN6Kq0EeRbT7lJgQKVsIJP+nbQ/yyP858+TBXNgrkWI17KpoQlT9TYqEgQ/jzWnNUwxjJKIQ4DcMM4M9cVg3S7bedWu9oj3/qq8nYv7I+X2eNJ4ZJQ0ql2z3YO/D25axEFWR9PFknSYpbCF+/D1pSTgsYFT/xPZiWRCxL0sJJWAavtpyuIVdB6V8SHuHrSqBJ1eJb+XJauiZgz3DVgG56tjTsFUt0kjGQQkPdDLiohj22K3iKYEPY7VUfSQyqUTIhp80fl9M9uXpic7UZVg3dY0iAVREpHGgLBJJwEj6aL88xJBZcRslmCOPRMyJPE5vv4A1Z3XwGJFjokQCYGY4Y8r8kPlkLNac1cmIZLtPCSN3pCgqQYkkisoi9ZP2VAj0CXqzpFF3pZQRRaX7VM2pmEx//rz3sz4btmoJeexN51VSol1mLCLC+vGH1WGrv//9763eiQMOXCv8lIijA70TpKaQQiIa6lhCJHNa8xCHWJkbKmCaSyVCiQTSoGB1kVRCgYijJSGrAPD75/bjgGGuYm0+1/oIBBabEpfC7jIKRmXJgKhugkEEhCeTSZOCEKPfDsNTITgb2YTA4hqkvFmOxIZCAMD053+Hfa++y/o/4VGP+YP7PnEkxJ70AO/xmdOah8DKGvZeyeBGq5amEngSCmjnNwJydZknbhOi5yGNC3EVyezqokosFJRJS5VILYh9SO/zUX3KutBdS8Gre357hsuIltKEi9qyq+W0yudkig6xlsDS+pUrvBqAboVrTfd7UiEbB78nGeyocKJ9bW3s//AObrnaf7AScVT7flPOIiCv5ahFHHnyVlHjhpW8ayrnqipCKSR1pX6AFPqqUjpEa9+EEx71GN3sw0hjXvMSVNS4wbs7l3sNjOR7evsF9nr15gVIeKATWUeccWbUeozBRmzxPgQPb6C9SyplI7mibgWKjHUYXaKasSLESORXfd1dw0+eFWDcT3c/BwxzmRs2fU+JWMbotzN1EZCuv/SZ3YXaJ6V7LBPGe43uVSVCuXrzAmAogM3Ajx2tAOxXhscBddhCDs2hR4Y5NzIcymPvxNUqyyHCoTz2TlzNsFUCPyi3xCmTV3FISSK0+5Rg/kijYYhaOQ2l93wfAFhOIYV5quGVDa/IlC46j5zWPBMDF4K5fDlATkDoutDMOIU/pT0VwkKiktNykJ4Sh8SGQgx56Z/Y9+q7uOuQHjtnFUB3pbTXlz+wBWLIKiBX9UgBJrMJQDl/UKzJKBJHwPxnVhXpb2KnL7YViSZffoWWhU9LVAyTtTakm74nJurnZditVIeS8khqSOaT0r1vjfLYk3BVJWVGhD2Jo1I/lhJMIpNK0Pov5EkkhbjGnvRgSp9WvqFW2CpvfkPIGNKJZ/evkJvkKIST8qZcPImlvEUAQKQT8rjSH0RixX75bdVAamAadiOveQkaB78H7wuPYt3Hq1Aa7Y7sK1KdR16NJPjtGY6HWjbK7ketMFVyR1VSFAHJMIc3yuGdVQGj4U1XSjnro8xbqk+c+FYea2cPI6cfO1rx7YohvUqhM4e+qjwCUjrhtm3b8MUXXwAA7rrrLsTFxWHIkCE29We18uiAA70J5KgaEhR0zYijAzc2aLAsgg8L2lXRxAbm1fnVbBDfcrgFLTC6Sb4Q9YJJPwRz7qj0zIc1KpE/vp4jhQfyA3tSKeMKYxXrP1LfhiwDG9grnT8fgsmvN3SX7N4VGY1xAYPwCaQ8mXVT1wCokkpxvBqHdR+vAtxjUfrhXQDugvVD5r4B/nM1CdVEN5EcX6LahrfIp4kIXrmka18YMAiTXA0wDhWN0CfoUV1UCYNCmLHMUbc7LzGpW3FMmhTE3QeSElmalckIMO+UKpXoME5OiOSQQPccbxYkvZ6G6spMjJo3Cie321d+lhvnuGDv0CXYu0ciU3yu1kehS3H/8Q0YU+YH76kLscKrQbbO7yvbj+FqEUceWttL5x5rtl3tI2cwvf2CKoE05zjOq27miCNgDCGdvv81dNYYywt0drurAt0hqDzZ68bBxS8C3cRwyqaXkTF1DQs9pfDbdVPXYOVJM+plN0kkkjkFRgJp0lYDpDwCQEZNMmJD05F9RYfGwe9hiu9alCId8f0boDccAEbOZ2GsZN40/PZlCI4KwjEpQAMToufhWY3wVMI7A95B3YHu/MZuZfKTlZ/KiCMtI4zLuAcHJgUhNSUF4QXbMMP3KADg/uPdxj3J0qQRP6lnyQSIGv4z7RsMUfaIc8DOOHbsGCZNmoSBAwfi//7v/wAA69evR3p6Ov7xj39Ar7cuygVwKI82w6E89h6QhfhPTXUEHMqjFpScaK9FziNgqj6KoaMEUWXk89gA8xbsPQFPBEvzM00MdJT2p1RnjI6bCACBJwlivT5eaVVSsw7rZrH6jbw9fanb+p9EmKoaKN8RkK71KxteMWlTXVlt3vn0T68hukz6HRKNKERir6Y+Uugx3w4AM7LhIaqN1J5Mo8Tj59u0HG7B0PFDsatCGpCLExzmFPbS3ZlXRXkkYxx+MEyErfaRM1hzVoesI84yEmcPQmcJxHIitvahtT1vprPmrA6N+99Qbb9xrjZJUvtPHBGyB3nNS1CyaTs2RMj7Nvc9FxVINRCBFJVHUg2VVEZ+/3zIqrgvyrOkciBiX9SeX6eFxsHvMZURgOSwCkBvOACDPoYpk+x3O9od4QWtACTiaA7jMu6Bb8xR1B0YK3sWSSPfnggkKY0znI7iYN1yzIkKkuU08veLPb4Dpyb9B0N+GdLrFDotsHE/ALUjbgUwBOhVhjn3338/7rjjDrz55pvo31/SDK9cuYInn3wS1dXVOHLkiNV9OsijjXCQx+sHUhsBadbzWhJHwEEeezOuNXmk0D8yjFGq20fwCZ6mapLT01qOBCXnVj401Rbw58WTRUA5v5MnL0rEpSrSH3/7ZRWC/dsQ2ZGD6LK6n5SbqhbOjALwYCqqct9BYHENI1dEuEhltNSAhp+4ACDryxKIeYhKxDGq+iKqIv1lZkhimDNNTvCTBkQWAWVF3BzoO3G1DHMoHJAPPeVdV5XeX21QHiYPrfBtGsj3RAF6qGUjvKcuROP+N+A9dSGyjhhVOeo/4QFl8xge4v8iH7JqSY6jmHeoZWLDm/iIoaeUo0iETinEVal/i5xSrQhXBYy1agmNg99D86k49l7JYZVAoakfFGwDIP0O75xVYPYYLQERRbEW4xTftazO6bGwWowp8zO5r+z1nejTYaswTx5703kNHDgQx48fR3BwsGz5559/jjFjxqC9vd3qPm8y38QBB3oPeOJI+KkSRwfk4D/78spK9rhWKM3PZA9Cde05llNCA+Q5UUFMwRMNTFzrI7CroknVXdVSkxtz4I/BXP/m9skTBN4gRS2fLXxaIiOqVBuQx8xgT3SEViGyIweZuiiUuq3H6s0/feJIICVBzUDGGudSWXhwlgE+wdOk+prdDyWkvFmOrrek59VFlYzcE3FMmhSEqOqL7AGAEceAoAD22fKEkC+xET4tEfNHzsfhR1fAK/JpeEU+zdqRuZSl9UcB4LGJd1p0LXoKpfy/NWd1zPmSh73rMD7UslFGHHcUVpqdTOKP11LiSPtJeKBTVpJkhVeDjLRSm8S38pDwQCcAydCFz8cjxHpsRKzHRnzp66tolGO2pAYsr6u48ryz1F9xF2JPerAwWPrtiD3pwcK0101dg4oaNxlx5Mke9Z8xpFMxv1I8B96ZVbZcZRsRjYOlArUeI3LgMSJHRhyzr+iQ17yEKZJ8TuOE6HnIac1Dde05tmxchtEkh5D6pLohkIgY/XasLqqUGbaNKfND4/43EJzsguBkF8yJCjJ7X9n7e+DA1YG7uzvOnDH9ffvmm28weLB6PrMWHMqjjXAoj9ceouJoL9xRV2eRgnmtiaNDdTQFhary9wJ/neypPD7x0EgAMAn95MM1LTEJscQ11RrlUUnhJBJBSpZP8DSTsFVLlEdzx6FWj0/pvHnVlSdDpDx2hFb9ZI1x1MAb5qhBrd4mQVT4+HbmaiuqrRNDWNWgdA/x7r5qtUQJtqjrV1N5pDxGHkqKijhItodhCN83hQWKRj1ahjxaCpCWEknn4j11IQCwcFUiiXwpiCm+a9lrLeVR679TrSQHoEwQLYU5BdNcjUYCqZnk7rqv22EVkPIsB6SuV1QuCZYolkQcAWOoqqyP5iWMmO9zHYyKGjd0hFYBAGbnRmNmsCebpORDTUXDG0sxOzcaf/tlFXvvMSLH5Lupdu9ZonJb0sahPF47LF68GHl5eXjttddw7733AgA+/vhjPP/883j44YexYcMGq/t0kEcb4SCP1x5XgzzyhJAI5LVUs8zhRiWQfD4jTxj5ZYDp9bEXecz8XyYGug8EAKsJmK3QIm5iKQ/eSZMvjaEUHsgTPlvqUar1x/dJ10bJiZZmt/l6kkcPPIh1U9fAY0TODUke4xPiZTmk/IQEYF595OuwpT0VYjH5s7SdpVD7PmjlMaq9VsO1II/XKixVC8NvNxrCTPFdKwsfVYO5/DNSM6m2Hn+tp/iuhceIHJbXdiysln0ePGkkMjknKgjx/RuQ1ywnBfQfqlqewwLlkQdPCpXIpSURCmdGmdZp1DyOSCdWB5LCXvkSHUrbWkIaAWOeIwCTXEdC9hUdmk/FseM94VGPNOxWdVUliDmLxhIe2qRSd6UUzafiZBMnWm6qPQmLVoODPF47XL58Gc8//zyys7Nx5coVAICzszMSEhKwZs0a3HyzeoqOGhxuqw70CVwtQkdOcfTHt6+tTVavyoHrA15d5ImjGmm8WqDBFuWVmSs/YI3xjThw1mpP63JapT/4uGmJQD0QPi2C9cOX6NhRWKnoqGqPvEqeJPKOmvUV+TJllgjlroomxLl353yiBId1swBIboHxpQt+sq6qWlBSrHmyWOjzIwI1PipDlgGrA+5hRjaWEkJriSN/nKS8E7S+B+J9pkUWlWqc8nhs4p04atVRW46sI85Y8Yj0mg8b1Sp+bi+I+Y3Np9YyFbCxbCNggRuruf4Jx8JqcaxQIIy+3dc8TFo+Z0QOmk/F4aPQBtx/fDkjkFN810q1Hy8MRp6wj55E4+QpuKWKUMp7VAO148klb2Sjtj/mrrrpZRPiqFXjMfakhwlBVULzqThkj8hBfP8GGWnkiWHzqUB0hFbhBMDcWZWIoxIppGVEHAGYJY6ApDjjSc5t14xSLS67mt8NB+yLAQMGYOPGjcjIyMBXX0kW0bfffjtcXV1t7tNBHh34yYJIIf9sSVsHegfE8FSRTNJrfv1wnc5u++cHs1KOoqE718/y7ewFImtUqjm8e9yuRED5fEteLbX2uESizKuKZBQk1vqT9gtWdoHUUD6sNlMXBZepgfAYkQOU3jiqowhRaQSMRjQ7ZxUAxSEm2+i7S2YQtOpumoM5FVIkuPZQrpVIpOg2TOsJ37d+36N9qkEc/PJEjl4nYQsjkmIbUvMAbVMbNfCETlL3lmPK1LVAt/Fh0qItmv2qKY78YJ9UxzHwAwAcxHKgDkAYAC48lfLvMrrffxS6FIBEdNac1eH+4xswJyoI3hcelZWfMIeSTduBCGWSYa0iqQQq+aFU+iPYv03mgMq7sgb7t6Gixg0rPkvFvlHPAZBcWafAmPdITqtaWHneGTjpoalCBvu3ARceRR6gWmIjtNADKJRIn1YZDjFclX9vCc6nvQ9d9z17LKwW9x/fIAtP5ZVqHsayNt3nlOyCh9KNBPJGI5OH/P3hepOyZUz7jz8CNTW4++67e43bKsHV1RUjRoywS18O8uhAn4MlIau8mmiuPa13EMfeByXVUatta2urXfb71/dPa7qtqkGLoIkhijtg+0CcSKE4GBfrNPYkzHbo+KEozcpkTpt8rb6ZwZ6YesAAoi5KdR/rK/IRFywPozVkGRDzps2H9JMAfT5KYantPiWoPnUOaU9JxLEwYBCrrdhTiGTRGuKolteopsSbU7lF4sjfx3ybOVFB+Ov7p82cme3gax2KIHIoup8SjoXVIhhBVhNHGqDvKDSStBVeSwEAa85K4avHAATDuugKo5JpPF5SFukafxS6FGvO6lgoqrR/SITSS4d9/m3YBynnboVXA7Z4H0Kw66PwGCEdS+Pg9zC6+VGLjif2pAcQscQihZEHTwS1VEd+nVIoa2w3qZu+/zU4+UnkuKs2GfumSmTx2f0r4JS6HnlNz8kUSirNwc7BgjDZWDMEEpCMhdTCUK3NWxTbm9s+DbuRcTwZuuRSVKR3sNzaMWV+ODNUapO0aAsq0o33PT85gs3GyRY2qTGUv5drgR7UPP0p4t///vd1DVt96KGHLG67d+9eq/t3uK060Ocgkjyl9yJhVCOG9jTeceDqgNRFMVRVzH8sr6zE56ev3kCzp6DC5/RazRHVUpTmZzJCKuaXmQuvtQTkCBtYXKNYmmN/jNHNk3fhpOPiyRFPRg4Y5iLhlk0ALMtf+ilCrTYi5THyTqlUG5Re9yRnsSrSH4UBg1AYMEjVkVWJONLnLxJCUrdFKBFHclrVAk8q1fqxF5QManiIpJF3QKVn24mjqdoKSK6nY8r8rOqTsHfoEqYY8cfK74cK0PPL7z++Afcf3wBAclRtHPwePEbkYM1ZHXYUVkqOpd19Np+KQ+Pg99gyglYaQU9yHq3BmVGmZDP2pAcjjgDg9MRqVUfV6Z6ejDRO3/+aVcfNE8cTHvWI9dgoew8oh6HaA7Nzo1WVR5fjgXA5HoiuujhWgoOcVPkyHLzzLiHzyVh2PyUt2sIetIzUxor0Dowp82NOvmpwOLNeWwwZMsTihy1wKI8O9CkokT1xmRJxVFIXe3uY6o1qlqMFXoFUCmntK7CUNLb7lMhUJzUlkcjiKxtegU/wNLyw9AUAPR9882ojYBz484SGzF2qKzO519Wy4yJURfpjJte/UrjZjQBRdaTrdsAwF1j5KXblRmNmgh5JAJBlUFQerSWRUdUXoZ8UhNW156TXMIa98vUlRWRnZaveR0rEUQ1qkxlq+ZFXCwkPdOJg3XIERwVhQ393oE7KH7xfmIARj0VcpuWEqhTGR2T1WKHRfIaoZ+JbeTKyeuar9ahI3wgMteycaGDO9yGGBgOS+c3BOilUtvkUcH+3AtnuU4I15UCw/2As6IqD04ABCD9QidJod0w5LuXtzYnKAZAD7wuPAiNygAuPsv/Q8spKQPjf7brzDJxOW5fRLP4W8DmPSutE5I1qRiyMpM8kJ7GpCZ2bXgYADIhYBxSvQ+xJABHrkNckEceDi19kxDFvVDMqatyk8FSFfWmBwnspxHd0s49mSKqlcDkeKHvP134khREwGh21+5Sg8a25sm1E5ZBArxc0TpbqhyrsPzjZpTucW36fE7EkIipOrNxIYa29AW+//fZV7d+hPDrQp3FHXZ1ZAkh/cEQirQlTtST01Vr1km/vUD6tB69E0uNqgq/tWBXp3+P+lNRCNfCkQWlgT+AVTerbHoNwOlbKd+NJDymT/DKRFImEgS80D9yYxFFp4oCumyHLgAOGuQgsrpHVYBRhq/rYcriFbcv3rVR2hidLWpMdWvelGuxVz9RaEMki8tbVmWzShkiXVigtKS18nzyUiGNwsgum+K7FFN+1WNA4GV11UrH4xLfyWNkMoDufzIYcMlI0LVFvJRJpNMWZ4XRUMtLpVhSzO7NRGu2O8IJWeIzIkZXvEAvdKyH2pIfVxBFQd1e19HdCVAuVzGwGRKyzSlUM9m9D3qhmk4cWRJXxhEe9XYgjAOzuGsseB+uW44OCbdKkEwC94QBbRyZvM5wku6ngZBes3rwAqzcvMKkrCsjvl8S38lD7yBl4T12IBY2TZesJwckuOBZWi6RFW/BQy8YbyjW7r+LcuXMoLS1FaWkpzp07Z34DDTjIowN9CrYqhUQaLSGbSvuzxGxHLJIsvubXO/Ise4brpcoqlcKwFj7B01QHdnwoq6jq8ERMLfyvp6GwaqA8TSoCT1ArRE8g4m0uXPFGQXb4FsU6bzwBk9xojQSRQkztAbXyH2R4RPeYpU7Atpjo1Ffk45UNr8jCWK8lmfQYkYOtn21lxHGL9yFmCAOoK6E7CiUlrvlUHIKTXbB36BKTcD8alD/UspENqgGJTK7evEAyiVIAkTPaFw3KLYFIAqwB7XeFVwMjCU7O6Yjv34CM48mMZJdGuyO+fwMa+oejoX84OkKrVP9L7WGEYwtMCGakEwAg1tPTJMyWCOnVmLwitZE3FbLUYIjH7NxoAJLS+EHBNrgcD8QBw1y41kcgRr8dMfrtaPcpQbtPCQt3d62PwPyR81HmnYcy7zxjTivASCPV86R7RpxwoLDpNWcl87kt3odk6/kHfWeCk12kXN2wWinUWTDccYSsXl9cvHgRcXFx0Ol0eOCBB/DAAw/Ax8cH8+bNQ3t7u019OsijA30OaoSO/sy0ciJtUfrUtlEKj+X3ZYkiKhJOB2zD1VIg231KZAN3e5AhpYEykT76UxaJo5K6Q8fAH0tPFMd2nxJWCoSHEjmgcFZDlgEBQQHsoQSxZiG5hS7YqV1q4KeK8AK5qZM+QS+7Pkf/nCJbH1V9EYd1sywikJYaJIVPS0RVpD+bDKivyJf1b4nxEwBVN17+vVquI21bX5Fvtr6pPbGjsBIGfQx7z5Mjfn9qDrArQ9Oxo7ASw29fhor0DpnjJG+wI64bfvsyLGicLKutRwN0c+6zYj4ZT1DNEcfSaPOmHZT3eLBuOatFSMQy43gyqnLfuWo5e1cFkU7I6y6xkWG4jJXnnRF70gOxJz00CSO1AaSQV3uCJ5Bp2I007JYte6RcXnJ9ZrCUm0mfg8eIHMwfOR9jyvyQ9uFdOJ/2PmY4HYVrfQQjl2PK/BhxS3wrD/cf34AVXg3IfDKWkbuDdctNVGoex8JqEZzswtTprZ9tBQBGVOkBAFs/26rYD01+0AOAyf3bl3G6pgaV1dWKj9M1NQCAu+++G7/61a+wefPm63uwAJYtW4aSkhIcOHAALS0taGlpQX5+PkpKSvDss8/a1KdTV1dXl/lmDohgxUL/+99eUwj0pwwxp43PV9TKXVQiZtaqffbMjbTUKRZw5DzagtbWVgz5+c97XFB87F8X4vIdR1lonz5Br+l4KQ7ac1rzMDPYk4V2qkFUePgBuLn8RjXYwyzHkr7EfEwt8NdPn6BnYXI3WqgTFS9f+cYAtkzp3hKXdb0FFK0277yqdB9G1d/EPkMyvxFJX0/KcLT7lMC1PgIvntrK6k5qHaM4maBkxsTjSvslHH3sjR5/pzP/l4mB7gMBwKRAOgDAy1jmx8k5nZEonswt6IqDk3M6mwBQqutKRiQ0QD4WVstqJRL89gyXmedQ/UURvILDh7GqhRwqwVgKxDJMiJ7HwiBd6yNkytYHBdswIXoeAFOyI/63qdVUnN5+QTOkVYvcWeLEqhRSao40in1ZUr/RGoghq4+Ud2FPiBNGN/uw//s9IU5sPeU1Nu5/g5k6TfFdi6wjprmXPMRapeSaSn2oqev0HSbQZ3zAMJd99jyc0kJkhmlaUPsP7On3+nqAfktWgfc0lqMDwEtArzqvn//859izZw8efPBB2fLi4mI8+uijNoWwOgxzHOiTsEThs5eiZ48akJYeiyOMtfeAHwC71kegKrLJpGYhtSvNz5S9DwSA4hroE4z9tRxukdVerK/IR3x+NfQJevYHWxXpLwuNVSNvfNkPEfYijnxf9RX5GDp+qGwgsKuiCbx1A1/rUYRrfQTCp0WgND8Tq4sqMfaJTdgFtxvWMIdABkLmJiecngRQfREQ2iiRPp7QHMYKvND9ekdhpQm5FMu58HVBlSB+vuHTErvNkwCckpaZm1AQiSOFRPPqZKHPj3YJERcR379ByjUUiaMAPhcyPjodpTDmR3Z1JsMpWnLwLEUDwgtapYmUGAO6vq3F/diA4VgGkJvlV0DWV0AWhiNp0RbsKKxE0qIgANLAfk5yEHYULsecEablds4MlZvyKJXj4KFUIkWLOJKCxH+vPyjYhqllBrwflshyInFc6odIBWCcVDVHGnnTG2mdbWGt1Ac9UwkQIou0X3qmshzmiOO1ABFtIoj0rEYcV3g1wOn0cAzvvn8A6R4CIAuFVsqN3VFYKZk5DQWwGUhK3gKk+7GQUgLdK6X5mUj9BQAYsD9G+i8al3EPmwgCjHUkP1n5qVRjMqUcU9OMdWi7UsrZ6w8KtrHX0v+i8dgM+hhkHE/GwbrlKBq5EEPwhoVX0IGeoL29Hd7e3ibLvby8bA5bva7KY0ZGBvbu3YuKigoMHDgQ9957L9auXYsgM4pLS0sLkpOTsXfvXjQ1NcHPzw8bNmzAb3/7WwDAhQsX8NJLLyEvLw9nz55FaGgoNm7ciLvvvpv1kZqail27duGbb77BgAEDEBYWhvT0dNxzj2XFVh3K47WHtY6a9lIde9qH2I/SH65Svw7l0XrYS3nEXAADlAfnpCrSIFmsxceTSP61GpQG60rkkCeSWuRRC0qDRWugtF9rHDf1CXrE6LfD5XggHv4iEHHusZqulT81EHmga0b3zuqiSpkJjjkyKd6XSgoYv05rGf9a/CzFkiFKx1FdWS1rt6uiycQYSel7oKSA0qQKINUZNWQZMPbXC+2iPOL8CnQN/BNwtoEpfwCYKvNR6FKZ+qiJs93kU1AryQQHgGwfgNwJtflUHA7WLUdpTCbCD3DknXvPl1IgKOU3Ui6mGA5tKXhlUrxX6PcCkH4zSqPdkdds3shHJGxa9RpF9FR5FNdbSxwpOqCnyiOpjbxCy5NEJVAY6/T2C0h8K08W9syr2YBt7qVnRgFLSyTXX/psSVl0SgtBV0q5TF0muBwPhMeIHOworDRZB4DlYooKphLoHnv43uFI/Flir1LozKGvKo8TJkzAz372M2zfvh0uLtKRf//993j88cfR1NSE999/3+o+ryt5jIqKwsyZM3H33XfjypUrSEpKQnl5OT7//HMMGjRIcZvLly/jvvvug5eXF5KSkuDr64va2loMHToUo0ZJvxaPPfYYysvLkZWVBR8fH+zYsQOZmZn4/PPP4ds9aM/NzYWXlxcCAgLw/fffIzMzE7t378aXX36JYcOGmT12B3m89rC1HIOt5jRqBM/a/tRmaMU++f4cxNE22JM8BowwJY686mhOYSGilOoUgtSuclb4XYSleWqAKYG0RWU09wdvTb9qIY9KChaR7l0VTfjbL6uwu2ss5o+cf8OEriYt2oKtn21lkwqGLAOqIv1RXSuFDFnioBo+LRE5rXk9UuVo8KbkImqORKrd83QP0L2ldA8p5fGq3WeyOqGXAWy3fTBm8l99toHlGh6sW47SaHdF11UtrCkHVoQYXxP40FSx/AZfdJ2uMxE3/rMQcyUtCVf9KHQp1pzVWRSeqvb9n+K7FitDpZDcOVFBzFHVY0QOmk/FsbBa7wuPavY/3c0N+9rabCaQpFRaE2Yqbm8reFWzosZNkUBO9/TEvu58yunP/w77Xn1Xsa8THvUmiqMWKFSVrjdBvD/47y5/r1gLOtfs8C1sMoPHnKggLGicjC3eh9h+AbAQbKfTw7G0ZCNzCua354+PQrNpWyKhpQ/cDAxZ06tIljn0VfJ46tQpREVF4dKlS4wnnTx5EjfffDP+8Y9/4K677rK6z16V83ju3Dl4eXmhpKQEDzzwgGKb7OxsvPrqq6ioqICzs2n89/fff4/BgwcjPz8fU6ZMYcvDwsIwefJkvPzyy4r90k3x/vvvY8KECWaP1UEery16QhwtLckhtrNnqKm5vhyqo31gb+XREpKoBV6VVOrLEuIoqn384M9WBdJaiGSQV195ElBfkY9Cnx8RVX8TK//Akx3Knxrd7IN1H6/CnKigG4o8xifEA1B2qRXVRwJP3KyZaOChpDgrKZJK4ImcORJJx6d1X6oZ7ohgZNPO5NHJWQo51RsOwKCPsZo48lhT3k0YSYHsViSJONKgXG0wDZiqwDzJpJxHek+OmSIJtRUUltq4/w14T12IlaFSrqcSmXj2vpdY7UJLoUQgeWVQbR0PpXY8tGpBituo9a8GrZIcPIlUAk8eCSKJpGtJKuXoZh/mDOsxIkd2LwDG+4HPYbxWv59UHxWQ3zc8vKcuZJMMavcm5dT+5o43sGbI2F5Fssyhr5JHQApd3blzJyoqKgAAv/zlLzF79mwMHDjQpv56Vc7j+fPnAQCenp6qbfbv349x48Zh0aJFyM/Px7BhwzBr1iwsX74c/fr1w5UrV/DDDz8waZYwcOBAlJaWKvZ5+fJlbN26FUOGDGGsXMSlS5dw6dIl9r611bYQEQeuLSxVB7WUwZ6AVynN1Yp0GOVce5j7XmvVWeRzt6oi/U1C9UTsqmiC159ew9A/PqfYnxooJ4xAyg6tsxTtPiXM6fTlEfMBWKYyluZnSrmY3LKo+ptQXSxdm+rKalRXSgok5ar5uAM+wdK2cd2Eggx2Yt6U+pgTFYT40gWwvhpc3wINTrd+thWFAYMw9ok0E0dVQmGAMeImwG8YAotrmEKJSH8EdhMqnkRaQgLnj5Q+7x318vIbWjm1dN/5BE+DT7C0zLU+QjLh4e5dalddWc0mGaorqxEQFMAmOkihpuWAdN/QPcLOuQfGPQRz32lGFr3jgDoA4PIfhbBVXmFUwooQYF/bYEyn9md1WOHVAO+pC7GjcDkAeQmOOcnSb7vorkqD8R2Fy4EwIBjGEgirNy9AEoyOlSJxLI12B5zSkGG4jIN1y01CTekzoGd+36QCzUkOQvMpyVl1QQgArwYc5P4650QFoeKUG3SDSwHIlUfxv43PQyTwBE2NyKkRxLxRzagY4oaV59XNYsS++O2tJYzmQKTRHHEMu30qkC/9ThNpHN3so0rAaRmRxqwjS4x5i92OpfTZByOou2aj6b6TFm3pkSKpBo8ROd3fFwkH65ajPUauYpNcs6Ow0uQ+BGgSax5i9NtxqdV+hkTXGu4lozDQrZ/iugFtPwARJ3H33XejX79+WLRoERYtWnSNj1COjIwMeHt746mnnpItz8nJwblz57B8ueWGWoReozz++OOPmDp1KlpaWlRJHgAEBwejpqYGs2fPxsKFC/Hll19i4cKFWLx4MVJSpD/ke++9FwMGDEBubi68vb3x7rvv4vHHH8cdd9yBSk7BnuK1WwAAkLJJREFUKigowMyZM9He3g6dTod9+/bJ8iJ5pKamIi0tzWS5Q3m8NrBGeQwJCrKqvbmwUiWI7e1h2nNHXZ2DOPYQ1iqPat9rUh5FaCmRWq6ZSutEcxxLYUnuoxjaSNu0+5RgV0WTVfslsxzAOAjgw3fJCIjfNxFp3hCFV68O62Zh1zA3iTz+hA1zzowCwtuWATCqsjtnFWB2bjRmBnuqqo08SO2jXFEa8FsCNXdFS8B/ZmrGPK9seEWVfFIupJgLTGRSBG8cJVtvpfKo9p1OOfJfpI41br/FSVJI4p3jjY26UpB9RSct60oBnNKQ3ZmNBV1xjEiaI5QUxmpLCCmRSDFUkaD0OVIY4f3HN5jdH08cx5T5YUOKRPKyr+hYOGTzqTgE+7ehcfB7JttT/UcK51Qrg6VV65GMbiwJS1VT/pRMefhtaR/iOr4Nn9eo5gxLmLLpZTinGnOztYijEni3VXPKLeU7AmBuqQSREPK1QK8GYRTxUIuUL1kakwk8aRpBQf91Uw8YmBsrf3/zeZZpj4f0KKLgeoCUx40a5PH7th+wJOJkrzovf39/5Obm4t5775Ut//TTTzFz5kx8/fXXVvfZa8hjQkICDh06hNLSUvziF79QbRcYGIiOjg58/fXX6NdP+vDWr1+PV199FQ0N0gziV199hbi4OBw5cgT9+vWDXq9HYGAgysrK8MUXX7C+Ll68iIaGBvz3v//Fm2++icOHD+PTTz+Fl5eXyX6VZjNvvfVWB3m8RrA1bNUSWFo+w5bcSWvI43Q3N/ONHNCEteRR7Xvtv8ofvxgda1TdLCBb5pwqZXlc3bAl31FUi+i9GB5KoNBS2jeZkvDOr5ZAKfSx3acELYdb2Hs1ssGTgRuNPGKnpDrwnwENulYXVZqUtwgQVD0eanUPlUiFpWGpBEtUSDr+7KxsWZ6keG8rkcYY/XZ8ULBN8XsAwMT1lcFK8qj2nR7714U4+qjRzyDjeDIj4u0+JZg/cr5J7idBJOF88XUAimU+ehpSSvvdUViJZ+97CdPbL2DNWR08RuRg62dbTfIWrf28We6ar0Siwwta2TKl/Ekilh4jctDQPxyA3AzGHHnkCZ0INYJHBG56dzRaZ+oyHFz8oqwfJdVR3Bcf2qp2PFohqgQikdaQRz4k1RyojAmdEynNYmgqqYtELq82aVTCQy0bsSFC2m92+Bb2PXKtj8AU37Vo3P8GM/mhMFsAKAjzRaYuCvuOzMbJXkayzKGvkkcXFxd88cUXuO2222TLq6ur8atf/QodHR0qW6qjV5DHp59+Gvn5+Thy5IjJyYmIiIiAs7OzzB3o0KFD+O1vf4tLly5hwACjXHDx4kW0trZCp9PhscceQ1tbGw4ePKja95133om4uDisXLnS7DH3JOfRyTm9R3kWNyKuFnnUIneikY3Y1t4k0qE89hz2znkkFAYMYmGESuUOeNIkKi60nK+1J8LWXDYCOeCRMgUAM8+1YXxDLgD1HDWeGIuF3JWIBF/bkY6ZVxoJ4vnw51wYMAjHo5rhMSLnJ08eAXmuI90ffC5oQZgvosvq2DXi2yjlmirdg4Bx8sIStVHJbdWckRJ/fGqhpVpurWqKI99WsY2dch4z/5eJpYMXYU050BFaBQCsnqEa6F5PedPoinPAMBcGfQwAMIdTRia7SaSTczr0hgMAbHc2bvcpQdmIoyxHk1xOYz02Ak5pkjLKgd8f76Cq9LnyhjiUsxl2aiwLa13QOJkpmXOighDfv4Gda2m0O1Iww+o6j0rk0ZwKKYavAkCspydQLO1bKySVz60kA5wVn6Wy8h087F3XkQdPHtXGEjxKNm2X5cWWxmRi+AbjtSZCyedD9oa8cb6EiLicX0afT0LRWmStWdGrSJY59FXyeOeddyIlJQVz5syRLf/LX/6ClJQUVFebTuaZw032Ojhb0NXVhaeffhp5eXk4fPiwWeIIAPfddx++/PJL/Pjjj2xZVVUVdDqdjDgCwKBBg6DT6dDc3IyioiJMm6adS/Hjjz/KZiyvFhzEsXfA2hzHa1GD8WoqrA5YDv87/WXvo6ovMoJUmp/JVLh2nxKZikKvzZXmUCJX9LAWdCxEHCnMadcwN7MD18DiGpN9SjluykQ3Rr9dRgjafUoUVVnajr9WhLFPpF21gVpvRHzpAmRnZUOfoGc5f6X5mey6RZfJf1foHhKvW31FvmpeLf857SisZANPcUKAbyPC3L2ilaM7JyoIc6KCZPc1f5/E6LfLQp2VDIOoXurVQst/fg8n53SZohaj384e/DJC6i+k4xVJZvYVHbKvSERxTlQQ7j++QXJw7TbM6epMRtmIozDoY9DuU2LyWRJoXbtPiUxVnhMVBIM+Bk7O6chrXoKudzoRe9ID0/e/JpHIrhSTccRLt72P+SPno92nBLu7xmpeC949FQBwtsGYF1tYyRw26X32FR2m+K5VVb5FKCmMWqGs5spuyLYv1tY7hp80JY4AEOzfBqcnViu2u9rEUXwtItZDIl4VNW7d+bJGR9WlqRvwUMtGPNSyURamyue+0nqxzbXE3qFLFBVQcRld9wNDE0zaOnB18NRTT2Hp0qV4++23UVtbi9raWuTk5CAxMdEkD9JSXFfDnEWLFiE3Nxf5+fkYPHgwvvvuOwDAkCFDmAPQ3Llz4evri4yMDABSeOvrr7+OJUuW4JlnnsHp06exevVqLF68mPVbVFSErq4uBAUF4csvv8Tzzz+P4OBg/OEPfwAgKZLp6emYOnUqdDod/vvf/2Lz5s2oq6vDjBkzrvFVcOB6wBL3U2pjDyOdq2XI48DVQc3pGsWcR4LkfGk62BbdJgF1UxtSlngQsVBSlmgAquS6mdhQiF0jShlxrEjvwIaIJciO2oIdhYA+wXzxdgpj9Qk2PR/CBwXbYMiX95PTmoe47nPhQzPp3MT9jm/IRYw+CrNz1wA+13/G/Gpj+Elg9ckFSFoExCMePsHTMHR8CVBPRbT1WF1UiYBIf8wMNjWL40kXKpXXqamB/CSAmrptaaij1Jc2GZUGvHL1c0L0PHxQsI2RTz6clb83eupsbA77uiYAmC7lFR43JQyjb3tfGsQb5jIC2aUHXAu2YU5UELZ217JzRYSJ8RAg5SkerOsOBw0BcLYBXYgDvOMkYumrnAdZNuIoACC1fxXoA47vL5HQvOYlkjLXko7hLYAf0nHmJJA3agkgZDmc8KjHBwWVcIX8d0lpUsCYN7scHiNMS7cQSHUsRQPC65ajvasEKRy5tgZKKmEstHMfaTsil1p5jOYQe9IDeVbmKloKpYllpf97o9uqUY084VGPFMxArMdGZNQks/qfY1I3YAz8AMhrhB4Lq0UwBIfeMqMrrz3CpR34aeH555/H//73PyxcuBCXL18GIIWyLl++3KJISyVcV/KYlZUFAHjwwQdly99++2088cQTAIAzZ87gppuMAumtt96KoqIiJCYmYuTIkfD19cWSJUtkbkHnz5/HypUr8e2338LT0xMPP/ww0tPTWWmPfv36oaKiAu+88w7++9//4mc/+xnuvvtufPTRRzbVO3Hg6sNaExxzsKQsx7VQGh3onRg7ZSHOnik0ySUU4VofgfBp3Q6U9dLvlCXhfQQ+/5DAkzce/MCaiOSuiiYE5tcgelqEyeBvaclGIFzNUFwO/hjUiAZvnKNP0OPFoq1I8gli2wBQzOkUCbJrfQRG3+aDOPdYdNUmww/pFh1jX0dFeofselRFNiGwe90nKz9FUre6xZMrvtSLSKzoHjAX8syrwLaER/P3htIEgwhRQdtRsE1RUVQikVeTQB7x2gn3usFAdy1Gv+2Sz+/w2yVDozFlfshO1qHZ6ShwXNqGyN7Wz7YCkF9DPgeYVxYP1i3HylB3hB8378he5p3HXqd2BiJ10lqkOldhAoA07JaFaBKGn5RIFx5MRVdnMlKdq9g6rRqO5MTqWh8hd2otkEKWG/rPw4TocBwwzEV8f3eEd583kcW06N0AYjDjeCAL+yWYmxhVI3ta4aosTLUHhJFdq27w6icR0owhnQCMLqriRK9YksNciY4vfX27HVWN5FALadjNXnuMyMEUrMWYVD+ZsnisUFpPCv+Owkp8FLoUfnuGoyJ9IyONwQjqLt9h5sI40CM0HDoJF5W/Vkof7E1uq05OTli7di1eeuklfPHFFxg4cCDuvPNO3HzzzTb3eV3JoyXplh9++KHJsnHjxuHo0aOq2zz66KN49FH1QrYuLi7Yu3evRcfowE8blNN4rZVBLQMeIsmO/MfrCxowW2KWIxJHwFiKwNL9mANfDoRc7WYGewLFNWj3KcGOQqkUAO/OF+8cD32ZaYig2jGokYuc1jzEBccC9RLpudPVgLBJUr+UgyeWXFAyRQGk/My7cvUoiHwa95fV4Yxfzwp79xXsHboESVFbMCcqG/EJ8QgsrpHIIbrNNPTbMTs3GlFBARg6fqjMTEcEM3KygAwqhUhbQyLpPrbEkEU0nCEiSZMkQ8cPNSGH9P5qE8hJn72BaXduYLXphofVdh+fdLw0WFdSBw36GIQXtEKfALRDbhylVBpDbwCACEWTKR5bvA8hvn+DLAQ1tbN7SsF5BlIvJ2NfWzOWKOQK3lH+CGDhXwRPHPljzjh+FAexHAZ9DF7qNnRJ08cgBTOAaMApLRNd3T8f2Vd0iO/fgIN1yzEhdB5T0Yj8UE5mT8ETR3vAXD4lr0BP9/QE5k3Cl6++y0x6eCgRR3OTzGItRx7isgWNk5G4/w1ZTiNf+5Oex5T5we8rafJj79AleCh9IysD40DvwL///e9ek/NIcHNzU60oYS16hWFOX0RPDHMcsB32VB+1zHAA+yuP/P6sgYNEWg57GeaM/etC9He1bFZOzCsTSZM9atcRxNBQEfoEPXZVNOHwoysAAOPfW4PA4hrVATkZ5pARDh92Kzq68udGhi/maluqlS9ZXVSJsU+kIbqszljv8QYgkIC8fAdvXQ+AuZG+0dmIpElBqqU8emqwpEQgRaMda907taDUF2++JEJ239jJMCdhxRqMWjUUgDHnT+38PgpdivuPb2CKXWm0fL8pmKFptiOqkebgWh+B0mh3nCp/BIDxNz/VuQpp2I2uujj47TFWRK1d2MnW8ccESPcQIF1fcril93y9R1pG+yeQIY4W+P0C3eG1HhtlBFLLEdUczNVp7CmUCKpIFsnZlV8nEsfpnp4oP3UKISNGAPMmYd+r72rul8giXb8UzJCR75JNxpBgXnkUo0r4SRpJaZTC/9XcWXsjfuxoxbcrhvQqYxlzoN+SFSugqTyuWdO3SpDYAgd5tBG9nTySo+tP0dm1pwRSqz6jJbUb7QFrwnAd5NFyXA/yCCg7qPJQCwO1hlTy5TXIcESpdiSRRSXnSiKyaserFEYrKkY9UYbCpyWi3acEq4sq8cnKT5HYUIjxDbmYP3I+4kulAc+NQCKTFknW9qQgEpTIOH0m/IRBT8kjYLyf+EGoWqkKvr1WX5ZAJKnmti3dnWkX8phy5L9wcZO2J3WRBt5UTmBMmZ+sth4N4CkHkQe5m9oLNIHwSHmXyf/Dl76+mO7mhn1tkkp2wqMej5R34fHLjzPiSQQu43gyqxPZfCpOdq7i50oh+UoF3anmJIEPVVUrO0EEkj3bGHIqOqbaE3wNySmbXkblw5IXBv33T9n0MgAw4gjIySOpjzzZFEmlFLaqXpqjosYNwf5tzCgHMJLHY92KOE8aTQyOVNAXSCPBQR77Nq6r26oD9gPZedNzT4kj9dMbYS8yJaqOfAgrvb9aoazWEGCHA2vvR/i0RE03Sp6s2eooSbX2ROMRHjODPVEV6a/qXFldWS3rg5xfqyL9GSGh/fD7da2PQEBQAMKnJWJXRRPbjt+WnvlrURXpj4CgAPa+viIfhiwDC8csdomDa30Etn62FdnhW9BVm4wzo9TdF38qWL15AeZEBUGfoMfOWQWYGeyJnbMKFNvSZ0Gfj5JTqS0gwkaEQnzWOhZRCbFmEmRHYSVe2fCKybaUz0Wg95mZV8+BtflUHIbfvowN2KkeXXCyC7ynLsSCxsnYUViJjOPJyGtewspVZF/RYYaTMXWGclKVclPVwLfjX+8JcWJ5jHtCnLAnxAnrPl6FLU45iPXYyP6fHr/8OHNX1RsOYN3HqwAYiXHzqTipDAeMxHGK71qMKfNj1zbQ52vMiQrC/JHzMX/kfBhay1Dqth5jyvzQuP8N1tcKrwaMbvZhDxGxHhtNiFCsx0bkjWpG3qhmq77Ptnz3e/J7ETJihKQcduPg4helWpKenoxIdqYuY+tF4khQWsaDn4wO9m9DRY0bUjADGceNYzTvqQsByL+DOworZcRR6/uZ8EAnK5lBzqvXy33VActx5MgRxMTEwMfHB05OTti3b59sfVdXF/74xz9Cp9Nh4MCBmDhxIk6fPn19DrYbDuXRRlwP5VEkdD9VZdEW2EKwtEJVxZBWW1VIMa+xJ305FEjzuF7KI6Bc75HAv9cKOyWCoFTzj2CpyqlWpoEg9msO5hQictXk2/P7EpHyZjlGN/tg1dcTAYDl+Bn0MajKfQd3ds6Ck5/xN++nqEiSApnTmoeZwZ6I0W9H2lMhAJTDnUl1NldWw9xnZY1SKE4kiAqWtQq6EpRCZgl/3vsZjj72Rs9rt55fgWxXf6boUP4Y/9576kKm2vHqI/+a6iMCYG2pjqcaiPDH6LerhruS8jgu4x58svJT9gxIoajtPiWychpzooKYkQ9B7b4YU2Z07ZS5dHafFxVzF19HLJ6LdR+vYrUf97kOBgA0Dn4P3hckXwkijRSCmde8BNPdJCtYGp+QYqpV09ESiCTR1r7OjJKMclbqB+By6jI4p65nBJEUx9iTHqz+45RNL+Pg4hcVCaKWeY4lxnx0/fKal6Bx8HsAlHOH+e8cfT/4exgAzny13rIL0AvQl5XHM5Uvw32wsvTYeqEDw4NeRGBgoMWGOYcOHcLHH3+MsLAwPPTQQ8jLy8P06dPZ+rVr1yIjIwPvvPMObrvtNrz00ks4deoUPv/8c7ioSaBXGQ7yaCN6A3kkEHl0EEkJtip1PNETf+R7Sh572g/BQSC1YS/yiLlA+AzbnClfWPqCYkgekT5LiSCFoKoVhFdqH1V/k2KuIq8m0mtLBvyUY6nUVuyDz4HUIsiErq5J6Lz1LqybugYPfyGZhHhFPo2s7xZjd9dY2UCY8iIBuXX/T4FQJi3agq2fbZWpT6TU8p8VTU6I94PSZ8l/1uZAA1Oz4aPd91x2VraJ+tETAskTRSVV5Ur7JfuQRwDoSkHG8WSW70ihnQBYjVS+LAIgKXhksiPmoZGaBxgVP63vNK8a76pokpVmca2PQJZ/HFfOAZidG43A2TUIP5Bokp+ollMpfm/UlCq1mo10Dei6rPBqgJNvDjPMyb6iY8QRgExxBMDI4762Ntl/KbUjMjm9/YIsj/PMKO3v85lRQNedZ+B02riNPYmoGohA8iAyqQVLiGNFjRtWhkq1PKe3X2D1NSvSOySDrUVbWFg1vTfpgzNIE2sq0va9ET918mjreTk5OcnIY1dXF3x8fPDss8/iueeeAyCFxHp7e+PPf/4zZs6cafP59ASOsNU+hK7OZBk5VHpvDfhQ194cpmotQoKCTB6WgA9ZFV/bCrEfCoV11Hzs3fibv6tN4aU+wdNkgzUa9JNBiRhyyId0iiAiVpqfqZi7CACFAYNY0fU491iTAbxP8DRVYlFfkW9WndQn6GXbT4ieJ+ub748fCCuZBlF/PA4ufhEJt2zCzGBPeEU+jUxdFBJu2YTVRZIal9Oah2fvewlx6VUIb1uGjCGdqB2ajOzwLcgO38JCXPt6mCuFAtP1kRxOjeUxeJTmZ5qtI8qHgpoD3a/myH52Vjays7IV16ndY/bAYxPvtEs/578oB5zSWAjgFN+12FFYiYN1yxmZpLDVHYWV7AFI4YTHwmrZMvG6EnFs9ylB+LREZGdly+51fYIeKW+WI0a/nT1IaQaMhO/xy4+zbWbnRmPnrALoy/QyoqhEGmniQVQeeZWUMMV3rSyXbkdhJeL7N2BHYSWaT8UxJUuqW7kcTr457JqEF7TKiCMgkUV6EPa1tWG6mxtGhOwx2b+TczpiPTZin+tgbJzbjI1zm5mBTe0jZ0za899vnjjSOltBxerNgSeOsZ6eiPX0VCSOUza9LFMmQzZIA31z//fZV3SY3n4BgOnntXrzAhlhXL15AVZvXoCK9A5GGuneBCSyyIetXi9cz333FrS2tsoely5dsqmfr7/+Gt999x0mTpzIlg0ZMgT33HMPPvnkE3sdrtVwkMc+CgpZ7Wkf/PNPlUwCpoSSlpmDvUxztEpzOND7cNutP0dhwCC8eGorclrzVNtprSP4BE9jpSxkrob5mSbkztK8SeqTd+IkktnuU8IGmLQNr0QNHT8UQ8cPlREUgtLAlF9G4XN8n+JrftBMOZCEXRVNrM2+bjv8Ypc4HNbNQqYuCrNzo3Ek/A0kTQpCYHENAotrEPuCJ8bGfIgJ0fMkhfKe1Rj/3hppYL/TCdjphPC2ZX2aQO6cVYAJ0fMQo9/O8kSVQNdWTeWjz3tOVJBMAefXK01GWAJrnFdtUSGJlIl5j3993365PRmGy4jv34D4/g3wGJEj2xcpiPH9G2THQSRK6XhpPW1LbqY7CivhWh/BJnZWF1XikXJ5kBcRR4L43aMcWCKbPMTPj+6LCdHzTGpOisY3B+uWMwMgOq/sKzqURrvjYN1yk/DI7Cs6aZ/R7pgTFcRCK0WIbquAvHwHTXbTg0JbAaPzKU8o6UF5k3mjmllNRsA8+bN2UiljSKdsX7RMdj5NTcjTCFPtTF1mNNd59V1V0njCo16xdEfj/jeY6kg5i3wZGcDoqEqE8WDdcnwUuhQATFxXeVXSgWuLW2+9FUOGDGGPjIwMm/r57rvvAADe3t6y5d7e3mzd9YAjbNVG9Ha3VUshhrreiKGv9jakUSKJjtzHawN7ha0a3hyOJ/U/Z3l45nLMLIVYxNvaQTxPxPgcS9F9lQ97FNuK0Mqhe/GUlFNFJJWvNUn74Y/BkGVAYcAgGanl8zh5p9a8V6RBmCyPaN4kFN1ealKeggbgn6z8FLNzo+EV+TTGN+TKHGBd6yP6ZNkPvnTHhOh5SGwoRHSZ6W8D73qrFEqsFKoqluSg+4A+h57UgFQKw+4J1FRSe+Y8dl1IALwkMuTknM6IEYHCUHklEYBJiQtz4B2RAVOiyOOAYa6s34llmehKKVdtx5fcUOo/tTMQqc5VLP94iu9aWVmSCdHzZKUiAGPpCL3hAKtpSZjiu5Y5requlMqOqaF/uEnZDj7HkQdPFgliO56AKpFRAGYdXNUIo9n2kU4yYkiOqNaCTHacU9dr5kOe8KiHy/FABPu3MeXx/uMbmAMwKY48meTzGwHjZyuGpvL5q70VP/Ww1W+++UZ2XjfffDNuvtm8j4IYtvqvf/0L9913H+rr66HTGX+vHn30UTg5OeGvf/1rz07KRjiUxxscvIJ5IxLHqwHRrVU03+kJcXTg2uAPgR5MJVtdVKmaX2RteJ44+CRnUq3wVR4UstjuU8LUx/BpiaxffYIe4dMSTRTNoeOHmvRVGDAIgEQ4lc6DzjlpUhALjyXiyIdX0nHT9SKTDx6k0PJkD5AGWqld5djX1ASnJwEnpyJ8svJTVEX6o+stiaxS7cqo6otIeyoEgcU1yNRFsb6JCLX7lGDrZ1v7nAo5/KREnKb4rsXs3GhEl9WZhBRrkX+C+JnXV+SbEDta33K4BYCpw2n4tET23lzIa3ZWNgKCAjAnKkhVhbYGorJprxqThPOdz0khmGcl1a2rM5kpcHyIKiANyqf4roVrfQT7bqkRR/rseIRPS2TmNgBMVEceMfrtLFqg3acE74cl4oOCbXA5HohUpxDWjieMfH1QkZiSU2tptDsjwg39w1X3/0h5FyORBn0MUjDDGLkQ7Y7dXWNZ262fbWXXjC9f0tWZjBTMUCZ7XE7kvrY2GWGsqHHDdDc3RWJJ2/Lb87UjeVgavq7VLsNwmRE/ADYRR8Do1qpFHAkdoVVMyd3nOpgZ3gy/fRl2FFbKlENSH6f4rsVHoUvxUehSplSKYaJ7hy7p1cTxRoC7u7vsYQlxVMItt9wCAGhsbJQtb2xsZOuuBxzk8QYDH45K4ak3umvrtVDyxDIgDvQNBPgNAyARSAJPJC0Nz1NTGEvzM1FdWc0elkJpIMsPdEXy0XK4xYScUrkMQH4efNhr0qQgmZGLUpkIOm4ilrybZEBQAErzM03qF4oD3ooaN4kwdk1CqlMIvCKfxumd/vjPZAPKwgy4c7Zx+8KAQUh98llGVmnZ6qJKrC6SaieSkteXsLtrLGYGeyKnNU/R9IigZmAktn1h6QuyZfw9QRMPgNzhVKnmo0gwCTsKK1mOr2jIJB4T/1A7XupTLFNgr5xHoHuy1DdH9h4wEkAqUeExIseiunp0jFphrYA8lxGQ1EG+5EWMfjv7/tL3b3fXWNx/QCKSBwxz2W8IfccNWQZV59bUTsmAis7BKS0EE6LnYUL0PDxS3iUjeXtCnJDaGciuRRp2w6CPwYToeYxUEuaPnI+85iUsNy8Nu5GCGXByTjdRIAm0L+a46rGRvV5h5MaY7uZmMgbhVUjAGKrKq4iWTBRpRSLQupXnnbFu6hoZgSTwy8TcRsAYPTHd01P2sBT7XAejcfB7SHhACpOl79yxsFoEJ7uw5RXpHcg64ow1Z3Xw2zMcx8Jq2YOHI+fw6mJI64sYcv455UerlA97991341e/+hU2b97co33ddtttuOWWW/DBBx+wZa2trfj0008xbty4HvXdEzjI4w0GNcOdG5U4Xg/0lEA66j5efZzcdhIzgz1lpIcGddaGsLb7lKjW5jOnOJIyyStIpCJqKTyiCqVETNXq0a0uqpStq4r0R4DfMM36dWrnp0aIadB7cPGLcDkeiIN1yxHnHoui20uR2lWOs8Wv4z+TDZj+/O+AeZOQ2mUM4yNlkwx6WKiu3zAE+A1jx9KX1Mf40gUw6GMAQLHeI32WhiyDyTVVuw+IvIh1O/n7TUnd4x06eeMYNRKpBjVDJjUiqXTsAOya8wiY+gVQDiQpTXx+GZnLKJ37nKggVgJDxJgyP4wp88MMp6NwrY8wmSzZ1ybV+eNL2/CTNkrL6L7m26gRSCfndMApjV1HCoN1OR6IEd01Dfn6gqnOVUh1rmL1LGmdy/FAduxp2I34/g2I9diIjtAqpGCGCblUA68u8qU8ZMfLQawZSSRS6TtN5E8klUpEU6kd3wcARTMc59T1mLLpZUzZ9DKcUyV1kCeJpDLyaqMlyuPoZh9mQOR94VEcrFsuUxvpniOFEQALZ01atIXdl6RY9oVw1RsF//73v/H555+bLdMBAG1tbThx4gROnDgBQDLJOXHiBM6cOQMnJycsXboUL7/8Mvbv349Tp05h7ty58PHxkZXzuNZwkMcbAD8185urAUvUR0sdUrXa0Trx2YHeByIllH9H6qNaCKsSclrzMH/kfFXCSSSPwk+ViCQRB1pPfQ0dP1RR0RTdOOl1dWU1C1UFJFIoGtoAktpYFenPlJA491gEFtfI8hXpmbbnVUBzRdL1CXo2IK2occPBuuVo9ynBs/e9xIhhde05RHbk4PyqX6Pz1rswutmHhbBSKB+vBvMq6q6KJrT7lDA31r4CGrDPzo1mijRgSv4A09qL4ms1tVFLKRcdRgl8DUYlsmnNJIa4vLqy2myYqz2VR4LSJGrj4PdYkXZyISUDGVLa6FpM8V2LBY2TmeJDRJKeg5NdEJzswkx5xFzBVV9PZPc9KYvWTkqRGY+I0c0+yL6iQ3an5IxL+xjd7AOPETnIMFzGuo9XYXfXWBPi2RFahXUfr2JK6sG65dBdKZWppNZCLddRDGE1h1iPjczIRoQSaTTXTgk0gSCqhvuamnBw8Yssj1EkhrzS2Jm6DJ2pyxQVTIo+uqOuDqObfUxMc8aU+cF76kKT79neoUsQnOyCDalLsaOwEo3732DOq7xJzrGwWsVyHg70bhw7dgyhoaEIDQ0FACxbtgyhoaH44x//CAB44YUX8Mwzz2D+/Pm4++670dbWhsLCwutW4xFwGObYjJ+KYY4DcphT9SxxTLWWENqiRDpMc5RhzzqPGCBfVxgwiIVx2sskRA2iGYlSqQ4yTyEnV34dXxeQJ30E0SSH316sQ0ltzZn7kHmOuRqPRB6T03JY4e3z9a+xPMbUJ5/FvlffBSCRy4RbNiHru8XoCK3CuIx7MOmrcJxf9WsM/eNzsj5XF1WyMGNAUibnj5zfa+uc8aCi5bu7xiJGvx1/eW2qrKYjXXs1oxsl9KT+o1Z9QCXw9UD5/YrHIJJeS47n4XuHI/FniT3+Tpv9rz7bwOrs8dAi03SdSIEUDU14tbL5VBz7fEXSRsvIFEotHBWQJmf4CRge4zLukU2k8P3zTsm0LS1T6osiAtp9Slj+ZvOpOGaeQ+DDVZVyHok8ahFFsQ0pj3x//LIl25VzH3sCKhcCQKYm0mueUNL7zlTT8PgBqetVHVmnP/87aftX35URx9HNPpjefgGJb8ndu83VduzLCmNfNsw5/2/AXTlNF61twJC70afOyxY4yKONcJDHny4sIZBUeoM3wrEFtrivOoijOq4meQSsG7z3FCJZC5+WiBdPbWVKKB2LElmzhMDx+ZFK2/sET2ODTZ588mSVCDUZsBDU9h0+TSp2XvbGMHTeepcsRGzdx6twuMwJNXfuBQD87ZdVTAmI7Mhh7qpVkf4AgKj6m9h+SFEN8BuG6tpzrM+kSUEwtJYB6FlB8asNGriu+noiWg63KBIrIvK0XoQWUaPrJOZLijmOtkCNpKrtU+n4RNJJxwYA37d+f83JI10TUhzFnEY6NhrEi6TRHMToBZ68jcu4h73mzadEQklEkwdPHolkkkLPk0qepPJGPEQyJ0TPYyG1FKpfGu0uc2fNa15iEl463c2N1XgEtAkjgVxVaVu+T+rXZJuTHnb/PvPkUQRPJu0BcloFOLWz/QLWnNWxPFWleqKAsRwHkcq+MDmmBAd57NtwhK064IAALXJmabipJUSQCKgjdLXvgAZkVwt8PhjvxApI5IEvYUGEzhqjHX5bGjCKA3tya233KYEhy2CiWvKklpRYMvyhcES1PM52nxIpxHVbEQBpEDVl08s44VGPnNY8jI35EICkGu7uGosTHvW465AeZ4tfZ8dB9R9NCG+36hhVfZE9DFkG6N3DEN62DEmLtrBHbwtnzQ7fgsiOHEbC+bBVQJkIihBLdNAy+jx4ZZD643MbAfMOqyK01E3+HhBzHOdEBZmErvoET5PVqaTjsnfOoxp4Ix3aN5FG3k1VdFbVIo68iypPGCkXUgmfrPxURgrJqZVI4OqiSsTot7M2qRUhJn0QGTVkGZA0KUimyNM+iIy2+5SwPsdl3IMJ0fMAGB2SiVymYIasxMcJj3rVnEe1kFSl2oa8oY5IHFXxYCo2zm22upajOcSe9EBFjSkr4BVGpXBUW9ARWoWO0Cp2zkQc+Rxjuq9okoIninzIKmDMd3yoZaPDMMeBqw6H8mgjHMrjjQMlJVJUCtVqO1qrTFpCOh3KozqutvJI0KqNaCuUcr9sIYakDJpTH/n2ogmHpduKIMKgtm1hwCBMSpII8L6mJjYQS0+Jw+zcaMwM9kSMfjtm50YDALwinwYAWU1HpT5pcFxde06xRiR/boBUZqK3zNifGSWRx/HvrZGpqQT+mlp63xEZU1MURVWTJ43WKGi0H7W8RUtDU3mlUlT1r1nYKpRrPzafimMkck5UECrSO1gBdsp5pJIYPOlVAm+4RUqyGDJKZHFPiBPGZdyDT1Z+KlMUXesjMCF6HmbnRjNzpUfKu7AnxAmAqUIpglcd+RBYvg9AOaSVPzYCqZB31NUhJCjI6jxGglhvGlBRHVUIpj3CWUUimjGk06RkR6ynJ/KamtizJVAizQTKJ53efgH3H9/AlosTOVTvEfhpGOP0ZeXR8OZwuLkqa29t7T9C/9QZBAYGol+/fli0aJFFpjl9DQ7yaCMc5PHGA08iLQ0ztUZVNNefgzSah73I49i/LsTRf76h2ZbPR+MHvNY6svLqDZE+QF5Dkd5bAgpnVcp1vF4gAhej347UJ58FAHTeehfa5/vgbPHr8Ip8Gpm6KDagTXmznA2OExsKcfTPKSakkAdvBKTUjsJrSb0J8BuGiee+tucp2oQzo8DKiqjVchSJPH+viQNMc8TPHLmxFubMbvjcW4K1Ey9X2i/h6GNv9Pg7nfm/THTULpKVh1DCFqccxPdvQPYVHZpPxcFjRI7smSeJassB+TVW+02g0FjKIxyXcQ8mxV5EanA5UitCkBpczpbz5BGQfisKAwbBN+YoACOh49uKxJTIqBooZFapjVKtyj0hTjLyqPZ/N739Ava5DjZd3h3e6uScjlPlj7D/OCWTPyKSjYPfYw6lhFiPjeiqi4PfnuGq52YJVFXMSCdkGC7LiGRFjZvFtSBPeNTLrp8S+a6ocYPHiBwTkkh5j6s3L8BDLRuZG/COwkqc+Wo9a9NXQOfQ03D06wFryGNfOi9b4CCPNsJBHm882FIiw0Eery3sRR79V/njJhdTFYgHESLeeZTA5wxZCt4VVVTwzCl6/DGp5Sf2FEoKniUgYpc0KQgx+u0y50Z+Rj6xoRDRZXVMVZkZ7IldFU24NPIAQjY8B2wrQtHqQarkkPahdWykUs4M9sR/Pyqz+ByuBog4Toieh7SnzDAaQDPfkYc4maEFSyc6lNRDc8SRv4/FOqKAUeEWz0ckuPYijyvOH8Ua90PIvqLDgq441fakPhKBJCxonIwt3odkSqR43FqknL/WdA1c6yNYGOyz+1cgPUV+XLyJDr3noUQOAWXyx6/3jTkqIzBK7agPquXIQySS4v8c5TECEnEkiASSz5EUzXLMQSnnMvakuvJoLkeSiGPGkE62bOV5Z1kbUiIptJVeK5HIEx71MkdVUdklkFnOmrM6NO43TliSur136BJZGCpfSgaAiUET777Ko7cRzCnfrUXWmhV9imQ5yKMRDvJoIxzk8caDNeTRno6rDtJoOexFHkeVjMLg1vGqahCP1F8As+70R5x7rGy5NQokETwtksi7maq1uRrgTTe01D818C61ea/IHQzvOqTHfyYbMGXTy0hPiTOxryfVMWlSEMrCDDhf/5rMZVXpWA1ZBkYmxePlSeb1JI8Uqrr1s60ATMl4+LRE5LTmIar+JpYLWBXpz96LREUrV1GN0CjlK9pinGOuVIfaMdJ+eGKqdB5/3vuZfcjjCuAfM6QJkPkj52sSSMIWJ2Me5ILGyQCA+49vwBTftczYhD8XgtZ15IkjYAx5neK7Fiv1A9A1bxLKl76mSDSI1B0wzFV1WxVBYa98+CvlN05KuiirocojsaEQmbooWZ4jgQ9fTe0MtChUVU19BCQSyYeqKpnmKJFKIqg8WY096YG8Uc0ygkekUotAahnmaJFSpdBW/jdMSXEksxw6vpJN2xGc7GJTKD3vxiqqlkQ0e0uIPo8/6P+HtAds/6++HnCQRyMc5NFGOMjjjYerRR4diqP9YE/y2M+tH1u+q6IJgcU1srZ8eCgg5RK9PGI+W5/TmmdCKM1BK3QRkBNGMZyxMEBZlespeDXT2lBYImtjn0hDsUscIjty8M3/JiFkxAh0pi5DzZ17Wd6WWEsusiMHZ4tfx52Hg4BtRehMXYb0lDgW2mrumFcXVSKq+qLsmInIutZHsMLa1wNJi7ZgR2ElMyVSglbeaXZWtibJUwpP1SI0SsqiUnuxnVq9SVqnRR55aJ2LPZXHmwWLxNTOQJWtuDbOVaxOI08gCaQcKqmRVPORzo/PLeYnlvhrTf2t2BwjGUt9ARa+mloRgtMGfwBg3xvCI+VdqDswFoCRMJpTGK0BkaCQoCD2X2hPszeeAPLLCDxR5EHEkiePALC0ZCM2RCxhzwQ1AqlFHqnf4SfVQ1tp24oaN5NyJjzZ5kubEJameZgojABkhJJCV5WgFbraW/Mjf+o5j33pvGyBw23VAQcsgLUhq3wxYCVyqLWOEBIU5CCO1xG80+jMYKnGl1LopiHLgNVFlUiaFISc1jw2QCTiqBU22u5TwtwNAcicMQGJQJD7qQiRWNhKHPlzKgwYJCs+LpJFa4ljVPVFiaxtlWbii13ipBDUeZMAGK8rAAzMvhUnPOoR2ZHDZu5pfWfqMlbWI0a/nZXrUDsPIo50zIUBg2R5ke0+JdfFcfXMKCNxVLsvwqclajr6hk9LNKsOkmOjOfCETrzHxO15B1g+xJoePJFUIo7iMdF7cpakx7VAamegRcQRkMI24/s3AJAcMbd4H0JptDs71oN1y03yHdt9SlAa7Y5jYbWyc3atj4BrfQTmj5yveK6l0e5YGZqO3V1jEbbwHE7v9GfEEQCK8gZh56wC2fdmXMY9GJdxD+oOjJU5tV4N4rgnxAmpzlU9/l+iXEceSuY4ec1LTJaLy4hMiqSSCCNPHAFtd1Y1J1VSMc+MUief5NQqEkdAum5qxBEAMp+U/itIKaTnivQOmXuqkpOqOWfVvUOXXHfiqHTMzz6Vo9Lagb4Ah/JoIxzK440HW3IebYWDNNoGexrmbL/yd6Y2aqlvvPJIAzfKd8xpzUNgcY3ZHDQ+T03NwVLNVKcnIIKnT9BjV0UTqmvPyfIGe2q6Q4Ttk5WfIvXJZ7Hv1XcR2ZGDIT7PIbWrnIXG8e6qmbooAFJoV0dolZQT1F2g+/ROf6a4UF4kqb+u9REyxY0nZ+L5zXA6iqwj8nwme0NpkBretkx2XGJOasufXpNCBZ8KUb329qwxqkbWelLzkYcYYqsUbmuuzqS9lMexf12IaXduAACsDE2XuXtagi1OOexY4/s3ILygla0TQ1EBYzgqoG1spHTufE1FAKz2ormcRsDUFEct184aiKrjnhAn6XvJ5SpaU9vRGljSL688qjmukrKoFsKqpjxO2fQyBkSs0zxGCpNVIo4AWDi+EnnMvqLDgsbJSHwrT5bPqPadoZBpKt9xLKwWY8r8APQ+dVENSYu2oOGTR/ps2Orf/uiKQS7K36mLHV14+E/tDrdVB5ThII83Hq4WeXQQRfvBnuSxv+vNAIxkjkIMqyL9ZaSFVEd6BmB1GQ+l/EilXDKRVPKE0lrwShwgKZfmXEutBV2fo5cvoiulHKlPPitzWSUieMAwV6r/CCkcj4ijy/FABPu34YRHvSzfa4bTUTZQozDWqkh/BPoYHVSzw7fIjoXyC3dVNCHOPRalbuuvSqFx2u/Wz7bKyp5URfrLQp+J8PKhqxRWS7CUPFJOJB8mbYlxjkjsCOYInbm+zC1XC6sVlwH2JY/9XW9Gu08J5o+cj+ZTcQj2b1NUwZSgVMaDQo95Ixx6rUQyLQW5sIYWeshqMlIZm52zCsw6p/YERFZ5kFKb6lyFR8q7EBIUBCfndOQ1L5FdQ1oGQEYubYW5z4fvn0JL1aClHJ4ZBSDSCZe5KAeROKrmRHpsVDQVEkm7FnnkQ6EJWt8pKhlD6I15jSJIgTwWVouDd8zDkF+G/GTJY186L1twXcNWMzIycPfdd2Pw4MHw8vLC9OnTUWnBAL2lpQWLFi2CTqfDzTffjMDAQPz9739n6y9cuIClS5fCz88PAwcOxL333ot///vfbH1nZyeWL1+OESNGYNCgQfDx8cHcuXNRX69ei8cSKNlLO/DTgT1JHoWkOohj7wblIBJh0yfoUV17jr0mUNFuMpaxFkpkk4qoi06VSsvDpyUqhnIqQQzhBOREMWlSkCZxVAqppPBacT8A8H38N4w4pr61DgcXv4ghP18sa0uqIIXjJdyyCR8UbMPDX0gD1tHNPiyf9LBuFg7WLccHBdswOzeakc6ZwZ6MuA0/aSyiHV8qPYiIBRbXoN2nBF21yXYJXaVQ1OG3LwN2OmHrZ1sZUQ2flsjUYTFnFpBceen4AeDlEfMVjVBElOZnojQ/E/UV+WziILC4RrZcaRtaXl+Rj/qKfJMwUnrmFUGCuZBS2l7tGERyKg6KxRBWwndVf4e9sfWzrdjdNRarvp7Illn6/72jsBLx/RvY8fPfXZ5ENp+KUwzFFMHnQU7xXYspvmuZo2vN8+uQnJbD7okDhrns94cnjkpGOT2BSBwBafLUyTkdadjN6jmSessTOF7RtYcKaU0fWjmLgPl8x7ymJgxIXY/p+19D7EkPRhzzRjWb9B3rsREnPOpxwqPehDgCsFjt9b7wKLZ4H8KYMj/Z48xX61GR3sHe0/fizFfrsaOwkoVE033IG+ckLdpiNpxVDbTtmVHG3zZ7ITjZhdVGdaBvo//13HlJSQkWLVqEu+++G1euXEFSUhJ+85vf4PPPP8egQYMUt7l8+TJ+/etfw8vLC3v27IGvry9qa2sxdOhQ1ubJJ59EeXk5/vKXv8DHxwc7duzAxIkT8fnnn8PX1xft7e0wGAx46aWXMGrUKDQ3N2PJkiWYOnUqjh07ZtO5OIjjTx/2UB4dZLHvgAa/VE6gNEsq6j3pq3BMCpPKRnyy8lN8opeHisXot+MA5lqsPlriysqIosr8Vml+JgKhbbJCIGIoEki2TiNMVS0XUsp7k4eJRmUZUFhUie/jgVSnEHSmSvUMpz//O6nReHnf38d/gxiPeinkN3oeclqlsNTDHTnI+m6xZCRyHMgMBQrCCnG2+HXMDPZEjH479MGSMrOjsBJQECqyw7cgfqdcybv/Z99rXCXLkR2+BfEJ8ey9XC1UvpbMwbboHuxc+SlQLJXqyGnNg1eDLw6Y9COBCDpfAoO/7gTxHiCCySvXSnm0PIHkny0JL1WCJWqk2IYnrfUV+bgl8LeogXbNVUshGtbMiQoCumOvujqTWdkIEeL/e3hBK+ZEBbFJAvH761ofgYNYjoN18vBVOob5I6WJkB2FlbJyHQTKodxRWInmqWsBVDGHVFFtvJoKJIF3DO3qTEZ5ZSXuAIDu/zOla9aTMFYtZ1YeYt+xHhuBUak9iijIa2qCU3doqzkyagl4BZKUa8qhzTiejOleDfDbvgAYarqtLAx1c7dyN9SoTFNpj4qyDpMSHsHJLngo3bYakN5TFyJ7hEQadxRW2qWW5EMtG1GRDkyZKt3r689Zr8g70HtwXcljYWGh7P2f//xneHl5oaysDA888IDiNjk5OWhqasK//vUvODtLOSv+/v5s/ffff4+//e1vyM/PZ32kpqbiwIEDyMrKwssvv4whQ4bgn//8p6zf119/Hf/3f/+HM2fOYPhw6wvNdnUmOwjkTxy8y5yt2zvQN/Bd1d/xi9GxJuqJIcsAbAMwbxImfQUE5EbjzsNBKLrdWJzbtWAbXGEaxqYG1/oItp8Xlr5gdb4ZPyCWCIH58iKAbWGpSoRGKy9y7BNpGPL877CvqQmRHTkY3eyDsIXnpPzQWZIj5Ngn0pA5qwAux90w+1A0ZgPYiXnYOasAMQAyASRikyzM9Wzx6wCka3cAc1kIcbtPCbJHbkE8jCFcIrkjSGGdQOko28JXSbUUPy9zeaL6BD1i9NsxKSwE5+tfQ0BuNNK6180M9gQacs3mmfJlLeZEZbPlvPpHz0Q0+W0B7XtTidApnasSaLJFizjyUGpDy3yCp6F0t33qlBLktRaNx8ITEZFE5jUvQePg92Rhqls/24r5I+crHj/vwOoxIgfo9kWTrgnQ7BQny4dsPgV5fmSddA0Y8ewmoaLaaC/SqNUXhaimOhvz+chl9cvua7avrQ2xHhuZ6mgP4tg4+D1GssTQWL5vE5fWB1OxcdQSzdxHS77v5oijktoIGF2jyfSLiGMadrMRN91P3v5tQLv5YyEQgWMhqgK5JKzevICV6ngo3Tq3VanchzOSRhgnclZ/ZZ+Q2GNhtfjIS/pMV97eYJc+Hbg+6FVuq+fPnwcAeHp6qrbZv38/xo0bh0WLFsHb2xshISFYvXo1fvjhBwDAlStX8MMPP8DFRT4LM3DgQJSWlmru28nJSaZgWgoijdYm4DvIZt+DLQTwRg1PvZYGQ/bGLYG/Ze6SNNgm1Se1qxypb0nhTDtnFSBs4TnFUM/6inyzeYxi/iINTimskMIS1XIaS/MzGdGg47tW9R9pn+I5imGtdK2KXeKYm2HSpCAkNhTK8vse/iIQXpFPY2awJ6uDNjs3GrNzozG+IRcAkPaUpND9Z7KRXFHYJ7njxifEAzudEN62DOFtyxhxJCdZaktks6r+NiQt2sLCtCxB0qIt0LuHATudTD4b6pt3reURo9+O1CefBeZNwpCX/onq2nOy47IEaiGkFNqWnZWN7KxsRuQIfKir1qSGrYY5gDQBokQclcioGuor8tHuUyKbGOkpvr/lYwDSNaB+t362FanOVSYkRyQqJzzqsfWzrYw4lka7s+3F41Qix/S50GteidxRWGnyfk5UEDNG4Ymoy/FA9t0gskdlOQDbw1f57yEPUhzLKytZvp6Tc7qi0kjKrTVQckolxdH7wqOytmp988SRL+eh9F2ufeQM8kY1y9bR65JNxnBxIo6Ng9+Tbd84+D22jK/VCBivFYWy8qBSL4RYj42I79+A6e0XkPhWns0hplrYO3QJM9WxhDiSkytfMoRyK+0FupdTfS/YrU8Hrg96jWHOjz/+iKlTp6KlpUWT5AUHB6OmpgazZ8/GwoUL8eWXX2LhwoVYvHgxUlJSAAD33nsvBgwYgNzcXHh7e+Pdd9/F448/jjvuuEMxp7KjowP33XcfgoODsXPnTsX9Xrp0CZcuXWLvW1tbceuttzoMcxzQJEk3Imm8nrDWMEfte03mGqLpiEgU1GorEhkgQ5SWwy0AlMMGRUI5dPxQRiIoDFXMJ2SDWEFZEkMRbTHSoePny12ogY5L3A+pbylvdten6853JFdVws5ZBUhsKESxSxzuOqSXwlR1sxBdVocpvmsR7N/G6j0GFtew68rngBF5VKrDqQSeoFHoLm90NCcqCPGl2jPt2eFbsPWzrarXSIsMFgYMQoDfMPa+uvacrA8t5ZKut5q5DEHLRZXf1lw/WrB1W3H/WtuX5mcClwFsR4+/0yvOH8U/vlyoWF9xQvQ8Fl6Yht2qE8GpzlWSQZM+BnrDAUUCXhqTifADieyZLY92l5nn0MCczwErjXZH9hWdppq5wqsBa87q0BEqHUuMfjuc0kLQlVJusg2BL7VBoG0tQWpnoGyyW8zlFI1xrDHKme7mBifndHTVxTHiKKvb2E0s1d6zfrhQV8X6kCc9TGo+AnIH1rxRzbJ9V9S4Idhf/TxEkigiDbuRfUUH7wuPYnq7RJh4VTX7ik6V4JFyKCmBV89Fld+P0nFQaSFb6+ImLdoiO4eNc5txwqMe/Z1C8BIs/173BpBhTub/MjHQfaBim+9bv0fizxIdbqvXCgkJCTh06BBKS0vxi1/8QrVdYGAgOjo68PXXX6NfP6mI9/r16/Hqq6+ioUGSwb/66ivExcXhyJEj6NevH/R6PQIDA1FWVoYvvvhC1l9nZycefvhhfPvtt/jwww9Vb+LU1FSkpaWZLHeQRwcc6D2wljyqfa9HlYxCP7d+yoNDodSCuIwHTyLNgcx5RIjqkdJxaLWndix3s5twqimU5PhpS4kOnjQVBgzCpK/Cse/VdzH9+d9h36vvAgAiO6T6XuMbcpl75N9+WYWDdcvR7lOCGU5HcbBuOab4rsWz+1dgbMyHMldSOr7DulnI1EUxAqlkSGOOQPLkkcyO1NxO+b5El9SegC+XIu5XJJL8JII1+YdaZjei22pPVEdLjsFSR1Z2f1tJHtW+0yvOH8WDmyfgk5WfslI6/L5Lo92l8Mj2C9jifQjxzvHounxZcR9EpJQIpJjjyM5HgTyK56y0rVKphsb9byA42YUREFr/4qmtmuGnWiYufF7jnhAn2fsRIXvYawohpdBee5jiEGEjskbvlUgkfxwAGCnb4n2IqZUieTRHApWOBZDIo8eIHBMVlG9L4av89QIgq+vYVRenuj+/PcNlyiNP3kRF0t4kkvoPTnbRdHXdELFE5l5tDaFNWrSF5WdmPhkLeOmQ6lyFS61tWDNk7E+WPPal87IFvYI8Pv3008jPz8eRI0dw2223abaNiIiAs7Mz3n//fbbs0KFD+O1vf4tLly5hwIABbPnFixfR2toKnU6Hxx57DG1tbTh48CBb39nZiUcffRTV1dU4fPgwfvazn6nu16E8OuBA74e9lEfMBTDAWE7BElBJDyV1UomMKZFCIpA8aVAjj3x7vk8lpZIHkUdSQWl/gHZOI69GKimTItHJWHgZCbdsQrGLceA03dMTYWVG9XB0sw8jk1nfSQ6sCbdsAiCRy9VFlTge1YyEW6ScR6/IpzHkpX/i9PhKVNeeQ4DfMMwM9mRurZ+s/JSFtvLHJUIkZ2okU2zLl2EY/94aVrLFWmjVDRVrP/JQuxfUymFoqXvWmt/wsPb4tParSRwBuyqPa9wPscE+EUglYk1GOGRs03wqDitCTJqZgMp5KF13LVWRBx+myvfBE0uq6wcYC8rz/fJuqUQaefVRSYkUyQ8PkTwC8tBeLQK5ZLsHNs5tZtuYI5smOYzCOh5ddXHY4n0ICxonw8lX+h3hy6kQ6RPzJ7X2waNx8HuaxBGQch/Fa0wgApl9RYfmU3HwGJHDCD8ALGicDL89kseGqADyBji0rTVhqOagRBw/miTdezQ5wt+vSvcc5VZqHQ+dF03QANI1c5DHvo3rSh67urrwzDPPIC8vDx9++CHuvPNOs9skJSUhNzcX1dXVuOkmKWVz48aNWLt2rWqpjebmZtx222145ZVXMH++9GdAxPH06dMoLi7GsGHDFLdVgz3qPDo5W1+o2AEHHFCHveo8EnkE1AkkDXBFolaan2nWNIVA2/LEMyAoAL9/br9MHaE2asRQVBfVHDX5QTmvRGqBOYNyUArV5EN4KVw1OS2H1Uw74VHPatRR0WwRRCZ5J1XKLSICyZcqIMMdMtDhyRzVVRQJotrnwtfs5GHIMiB8WiIjGVRfTTSnsScCggJk4cu0zBwxMwdr1T9LIaqw5upLasHkelpJHkXQd5qiCQz6GBMCSaDajICkKvIw6GMs+r+m0FZSp+kZAMq887DmrM7EfdXcBNWcqCDZQF2JaIg1JZXKbQCmCqPaOr4NH7bKk67pbm5Ida5iJjE8OSRFEIBZ51Q+FJV+F0Y3+8gUSIL4XoQaOeS3ScEMpGG3RQRSCWrhquK1JeIIQEYa6R7rqotjyqP31IWMIIoTAuJ3k4icrSRSS3HknX9Xhkpj1DXlxskM3oxHCWL9SQCM3JNT754QJwd57OO4ruRx4cKFyM3NRX5+PoK43LAhQ4Zg4EDpg5k7dy58fX2RkZEBAPjmm29w11134fHHH8czzzyD06dPIy4uDosXL0ZysvTDXlRUhK6uLgQFBeHLL7/E888/DxcXF3z00UdwdnZGZ2cnHnnkERgMBhQUFMDb25vt29PTU6ZeqsFW8kiEUXx2wAEHeo6rRR6JQIgg0geYOlsSieNJAE/EiGgROeUHzSlvlssGtvx+lKBELM2RAfHYCUrEl8I7J30VjrCF58y6ib502/smyyM7cjC+IRcv3fY+G3zxOZD/mWxgBDPOPZYNuGc4HUVHaBUSGwpx9M8psqLph3WzmEJJy4kAitdU6TjF8+AVSJFIEgGdP3I+Ux3V9mGtAY4SMaR+6Tj5iQGle8HcPdLT9uagFM7dk37oGv7Q9gNORpzs8Xd6xfmjuNndTZazSOAVZUAa3NN6fuKBVyIJSookH9bK9//sfS8x11aCue8pr/gQvKcuZASUwlgzn4zFFu9DACTlVCufUVQelVRJHlTX0VaI+YiWkDZqd8KjnoV/8sRRK5yVb1NR44aVocrmhPYmjyJ0V0qxoHEy1pyVSKPHiBymIi5onAwASHwrT7aNWggpYJovTOGjRAbNkUlx8kHcDz/ZQSVkVoQAOCuR3fuPb2Btx5T5yUiiWBeWX14a7Y6uzmSZY6+DPPZtXFe31aysLJw/fx4PPvggdDode/z1r39lbc6cOcNyGQHg1ltvRVFREf79739j5MiRWLx4MZYsWYIVK1awNufPn8eiRYsQHByMuXPnIjw8HEVFRay0R11dHfbv349vv/0Wo0ePlu37X//6l9XnYY1rKhFFB2F0wIHei1HzJAu+gKAATQLAD74pZJQetN61PgLh0xIRPi1RVhAeUHYrFUsriPshiCU6xAE7DQx491axT3LfDAgKYMeodL5EopyciswSol0VTTjhUY/pz/8O0znn7KzvFrMBLamJuadrMDPYUypRAaPN/RTftTism4UY/XZ0hFYxx1VyaY3Rb8euiiZk6qKwq6KJGdDE6LcjwG8YZjgdxeEyJ1RF+qOraxIKAwYp1rWsivSX1a4EjK6togJJ6+MT4tnx5rTKB348DFkGWf8i+OW8WkzuuqTe0vUeOn4oSvMzzU4i8A8e4sDOHsSR7h/ASBh5Nd2W/gh03ie39aBonwCadNAbDsCgj2HL6btERdfDC1oV1UAKZ6USHB4jclT//7Ov6DB/5HzZfmI9NrI+CErhxgQijsfCanEsrBbeUxfiWFgtywmmYwlOdsEW70MyUnvAMJc9eJAjq0gcCbwaSU7h1oxxKmoUCq1yUFIEeQIoErPRzT7Ia17CtuNJI59zyPfHv1YjjrReyR21J0jDbvYAgDVndVgZms5CVleGpsP7wqPw2zOcEUeR9J35aj1K3dZjTlQQxpT5MbdeQAoVHVPmh9WbFzAiuHfoEkXi+FDLRiQt2oKkRVusIo4EXiEnAkzHciysVnPSo/lUHLsfReIo3pMO9D30ipzHvoiehK3yaqNDeXTAAfvBnspjwAiJxPE5gYBEjuLcY022VSJnSmj3KZHlCyopj1pqJw/RDZY/Dl6lUnJ85XMr+RBWrZw7c6iK9GevvSKfZnmKVKORwlUTGwqRqYsCIA0kDutm4Wzx6/jPZAPWfbyKkafRzT6IfcGTXRNeTSHVkmo/qjm5DvF5DgBQtNpoTKMUxqoVaqyVG6mmPlZF+ps4qSr1CZgSLjHvVautmmsvv04JaqHN1kAM3eZDMK1VNtUce+0VtqrktkqhnZYMZvnPXxxkA/KwVifndKNyqY9huWOl0e7QGw4wUyhArjyKOY5kjMMP0vlrXBrtjozjyfIakYBJ6K05FVLJSIev70iTOoQe1XHsDm0lRVFJ/VMyzFGCVviqpRDJJ69ynvCoNzl3ghLhpG0JpHyK4aikOhIS38rD3qFLkLRoC1u/5qxOth2ZzhBJ5ENPWd1HDmJoKpV+AUxVQnFCw6CPYSHQfK6ulvGWCGof37/BhDwCwL4js3sUUXA9wMYH51cA7jerNLoEDFnjcFt1QBn2yHl0wAEH7At7kUf/Vf74xWiJIPKmNKJ7Kj9AtnQwbolLZ/i0REyIniczf7E0540nERTK2u5Tgl0VTYiqv4mdC9+fNXmaIkSSs6uiCTtnFeCDgm2YED0Po5t9mNvhlE0v4+DiF2Xuqyc86pGcloOxMR+ycNdVX08EAMWBPiGxoZDVfwTAnFspnLQgzBfFLnGS+jlvErCtiBFIW6BEINUMhvj1SiGs4jIl117eEZc3QlK6z8TPnNRre4alilDL+bUFOa15im65AOxGHqn8DoHIH1/2xRLMHznfZLBNfaR2Bpq0J9Uu43gyVng1AF46rCmXQhhFF1U+FJUnDkp5aR4jcrCgK471BYCRhGD/NqNrbDeRVCtqrwbKczQX2kkhqfZwXuVDVAG5SqlEJKnMhy2w9HookceKGjd0hFYptDaCz3fk3UYptBiQSOIW70OoSO+A99SFaNz/BlvH50ACkJFGMSdSq4yGUn4ib+jET0a0+5TAoI9BXvMSrPt4FWv/0aS1uL9ouUnOtBKZbD4Vx/IjReJI5WHGZdyD5ffd8ZMmj33pvGzBdQ1b/SnByTld80eMX2eurbX7dcCB3ohreW/ae1+3BP6WvaYBOE+S2n1KFEMI1cpf0EA1pzXPhDBQ3zzpaPcpwQHDXFk4aXVltUWKIB8yS/swZBkwM9hTkTjS+5bDLZphlloQ6y+6HA/EFN+1mJ0bjXUfr2I2+QcXv4gpm17G+VW/xsDsW9ns/eEB0ow7Oa++dNv7iNFvR0GYLyZEz0NBmC/bFymMZ4tfR9mIozism8XW7ZxVgBj9dkyInodMXRROeNTj9E5/nF/1a4lA9gD0uVFYq0gG+c+QJ9PiNSoMGITVRZUyE6Kc1jwZGRNLqdBrmshQus/4ZT7B0zSJIx8GR+8JfMhrTmseXjy11WR7PtRZhKjIWQIKA74WaPcpYRM4dL+Oy7gHMfrt7D3lNgJy0u9aH4EdhZUyJY8G3mnYjS1OpmGsXZ3J6OpMxsrQdKT6XoCTczoO1i1H86k4mTkJHyJ4sG45dhRWstBACl8EjCSz+VQcnJy7wyGd41l/jfvfYGY1Cxono6suDnnNSzC62UcWTimGVxIojNXS31TKZaTSHT0BH6KqRFpFtW9fWxu6OpNN2mdf0clcV0UoEUfxOtAyMQz3hEc9OkKrWOi9OcT3b2CkcM1ZHeL7NyC+fwNTHxc0Tma1Pr2nLmREj+4B76kL4T11IWofOcP63FFYiYr0Dowp88MU37V4qGWjSVkPAh/OSmHZ7T4laOgfzr6r9J1wrY9AV12cjDgCpvcC/X5Qf/yD7mOatODrYMfot+OAYa7NE3gO9B70v94H0NcxxPk1wFmagVALP1X7EbZHyKoj5NWB3gT+Xr/W96aTczrO4xm79PVd1d9xk8tNMjdSnjyIBItXJ8WZXNf6CPZ+ZrAnUFyDgKAAmVqk1CftzydYes8P1MVwVV4BVVoePi0RqAcCglpk+XViqGOceyxc64HwaRHIac1DnHusav1J8Vjp+P/2yyo2K78ztAAFDYUo7m53wqMe07/5D4b4rEdSmR7oVntmd+csni1+HZgs5cnMzo3GWQCz8Toyu0NTk9NyMD4sFgUNhUDk03BaOAApb5Zj9Z9TkASpL8orpXBWAMjURWH2+NcBYz12mZLY03qNSkSSwNeE1CfogSLTPKGdswqA4hB2X4jXuyrSH1H1N2Ho+KEIgKkCzauNBPGz5Q2VSDmg+4NXtvi+q2vPdZsPmZ5zdWU1uzfFaxE+Tds9VGkbgj0+DyUcPfgGM8EqDBiET94sZ/l/SZOCQJmJrvUR2AojYVYOVZ0n+46nwV1GVuh3kP8NpNdpkvUCy1vkCSQpiIBc3Wk+FQfvqQDqlrN6qB4jctBVF4c1Z3XIMBhDGhOmLgRg9IkAjM6neTASiYyaZJN8wEfKu2RlOawFrzxaaoyjBHFb8X3j4PcASKU4lNRO7wuPsjaWgCfUPLFMwQx0hFbhhMI25pRHveEAMHK+VKZjqvT58J8vn6P6UehSJL7FhSiHGfuh+2TNWR1TEb1PrUVj2RvdIavOSOomnEnYIqvBSGGwpF4iTJoQ2hlt/G0k0P19/3HTc+FdfLVURxFdnclIDZFfJ/od/KHtB7PbO9B74SCPdoC5QbK43tpBtSMv0gEHLMMQ59fs1hflCorgSUc7pPXV+dUmIa0A0HK4BS0wEjvJPCeCkb/qSnWnTgJfhoNXDsUQR3PnQAPy6spMFv4okhQiAzmteVKIa7FRDRPDaHkUBgxCQEUT/uYUiN1dY3G4YRayvluMhFs2yZ7hAaS+tQ6pAI4euAvt830w9I/PYeeb5ZhxPBD/mdzGXFkPRz7N8iITGwoBAGNjPkSMfjsyIYVAkanMJys/RQzAwlYB4HD3NuODPWF4KgRi2Xh+MsAWiCpjVaS/TEEzZBm6a3zK24t9iPuX7hV5qHQgtWEcTzlMlV6rEUcx5FXNvZXycnmI7dTCVdXuRSVYMjFhL4yaJ5XqAIBPukPnPln5qbSyexIjDbuh9ylhCglgVEt4QxHdlVIAxsmh8PpW7EAr2n1KoIdRgS+vrERIkHyQ3dWZjNRoaUB9sECo5QijCQ6vMPKqJCD9jizwNrp4AkaFaYWXnDjybYL921gOXrD/ozLzmRTMwJ4QJ+YCrwYiomrlN9TURwoxFQklhbTz4NuQ2sgTSO8Lj0r5jho5j6R8ibA2fJeHUokhIp5ivzH67Wg+HigjjM2n4pDNvad1W7rfq5kn7Sjs/vzDgGOFALAcCAO8T601JYgw5jtWpBtrMgYnu2Dhe3lsUm1cxj04IJiCaZWMmeK71ngcCscqHncplK8//eaN+v0o1e0d6P1wkMce4nznc3ByVyd3SjOQ5iCSRQdxdOBGh7kJFGZUgT/aZX81p2tQUysvGQBIhED6gzUNW1Qy0dAKHeTVQ7E8gQi2vPv/WhxwS6GMymqkcUAgHS+fD1ddmSnLp6PjCOxux/c3OzcaH2iY6eycVYDZuYHAL6sQXbYcwHKgezA8viEXh3VAcXMcC1vN1EXhgGEuO7eHvwiE//6HUHPnXhiKa5D55nYkNhQiuqwOiJ4nlS7xMeY6vnTb+7gr13i9qmvPYefKT+FasA05rXkYj9weEUOlMh7m+hPvAXJs5beL4vrjnwGjmkefDb8tf6/w6jFP1rSIG5WSoX2o5ejWV+RjqM9Q9l6aKAF8YFn+pDV5lvx5AvJrLIbu9hSTR2/BP75cqLiOCCJP/Og5DbsRzqmMAFjoH7+M4FofgQ/qt0mKonOlIoGk3Mi0aHegwGhE0nxKWv9R6FIADfAYEYQdhXKCSdjnOpiRzBVeDWhsIedfKVebLw9BNQYbAQT7P4rpjZOxz9X0OjxS3oXUkCpZGbF9MBK76W5uAFe/UYn4ieBzIZWUyGD/Nk2VkjfVsTTH0RIjHaUwVVpuKcEUiSM/4QBI59YIaTLgoyeXYs1Z0z68LzwKAGie6oYx3QZJVM6DIBop8ZMJ7L4Ik5d1IWfVivQOya23EGjoJo4HDHNxYFKQbJJEC5L6bb6NeI+KuY6AFBkyM0EPw0b7RxdcK4wtbJXlT/O40n4JRwHcfffdDsMcB0xhqWGOpeRRKU/CAQcckGCOPNJ6e7qths9IVFQeyZ1UHNiqKTFq9e/IpEYkHGo1FgGJjFhDiHgXTLWC83x9SlKutExXxGMlxY3UWDofPnw0saGQuanytRypPxrEsAF7t8JJ9S6pzbiMe2QutVTfkVcEiFzaS1HUWqZVJ1LNxZXa0LGTAvZBwTYZwRNRFemPOPdYTCAi3Q21khg8wRT7Ez9jwtDxQ2WKY4DfMKamutZHYEL0PBwwzDVb1N4aaOXxBgQFoPpUtV0Mc0aVSMrj/JHzWbggH3rID6L5+5DUbXGQrZTXqgTqi9xLleDknC4Le6XjW+HVgH2ug5layK8nUgiAuWESaCBPpJQICq8aTm+/ACffHGRf0TEl71T5I6y4vfh7u6YcZokiD1FpFA11eMLIkz1z7qvUxhxBtKSNCDXSSISSzHO0SnuIhj9U15PCk+lzpM+OjJQS38pjuY9iPUfaXlSgKaRZaTkAZsTD3+fjMu5hk1r0u2vr97k02l0W0srjo0lrUV5ZiccvP86+AxQZsquiCTnRu/psnUfRfIvHlfZLOPrYG33qvGyBwzCnF8LcINkBB3ob7GkCpQTxO8HvT3y2JyhfUfxzHTp+KBt40+CxND/TKrMQqvFYmp+pWSKCx+qiSsV6hTwpFQkq3z/1V11ZjfqKfDZw501YSIUk0xX+nOor8mHIMmBXRRNi9NvR1TUJ/5lsYITDkGVg+wsslmo4HjDMRaYuCnHuscx8wivyadnx0wBGLLeR9lQIJkTPQ4x+O9KeCkHSpCC0/MkYmpw0KUhGHMdl3GMTceRVQK38RdEYR3wPgF0LWq5W4iNpUhAOGOay2pX8dRbvLQDMjZSII322PNQcWEWYhitLnzVPHKOqL5o4oH5QsM2uxBFQJl/2cHAVMfC7+5jhDQ22KfyUB38N9Al6HDDMVQ3X1iKOvAEPINVPTHWuMilZAEi/b/H9G7CgK47VAgQk9bCixo0db/Mp43pysqRteROk+P4NjKw0n4pDRY0bI46AlDNIrp/x/RsYyfrS1xejm30kxbGtTfabuiJEIoBiXUaxX4IYokrEkSeA/Hs4pamqjyIR1CKFRMLtRRz5deZqQhLJ1OqLDHMI9FnzxjZ8vU5AO79QJI6A0RjnWFitCXH8ZOWnMrMo1/oITPFdi9Jo64mOSBzpHmz3KUGqc5WsBIzL8UAEFtew/wYH+jYcyqONuFqlOszVgHTkPzrQm3C9DHLoe8Ar+07O6Tj/v2fsojwqzSyKuYNKEJU+JXVKSfVTC89TIiWAsgKpT9Cj5XCLRaF+vFqodlx0Pnyul1h6IuXNcqQ6hSCsTD2kM+XNchwwzGVlOABpEMYrjYA0Ky2FvkbLji1j4WV0hFYxBZIUMFIz49xjcbjMCekpcThgmNtjsxVeGeRBs/VUo5NIPL0mRZR/Tf0pKY/U1ycrP0VyWg5q7tyLOPdYRSVOVAiVajtq1XvkFWVz584r4fxxXw1CB5gqj2IdS6/hUT2aydf6Ts+JCkJD/3D2ntRF+lz4e1S8Xw8Y5rJ2aU+FKBpekWqpBKWyHgQn53RkHE9m9z1grOkIGAkH+80928DqAsb3b2CKF0FUKkWkYIZMMbMkUkqN6CmRQ5Eo8ioeIJFOUkfV+hT3p0YOSUltHPye6vkqgeo6EsQSHVqkkUDk0eV4oBSy2v0ZNJ+Kk5kT8SU8AIkAjinzYzUbh9++jCmN4rMSKCIAMM1bnBA9T1FtpEiOJC7vcf7I+Zq5jIBpeKqSQRxFivDgj6/dpwSGO37T50paOJRHIxzk0UZczTqPIoEkiINlBxy4nrBXqLWlEyJqkyn8vu0VtqpFHgF1AskrTRS2SYSAJ2diOGG4kEsoGa1If+q7KpoQWFwjUxx5ckJtidRYCjViS8dEJIjaiaSI+thV0WRCRAlEHF3rIxjBIxD5o7DW8Q25rFbjzlkFOGCYi8O6WcjURTHDnLPFryOwuAZVkf74z2QDqwdJyiQdkyXXQo1M0XVOmqQ8228pObXGNbTlT68xIqw18SASOD7kmKCUcyia3Yj3n1bNT6XP3xyRJCMcS2qTiiHVovHUtyfyUPNSjV2+05fvOCrrG5APrsUB9eqiSiRNCsLUAwakftvt0tpNKi1FjH47HinvMlFhDtYtZ7VLRSLp5JwuU6+I2IUXtLJQxRUhUijpihBgi5M6MSSiwq9PwQxWkgMAc1jVmrim5bQ9T660ajxa6rqqRDJJcdTaXgxptRZ0fdTIqyWkETCdXAAkArru41VMBSYCyZN7ykflcxpXeDXg/uMb2HZEGo25scbf0RVeDTJTJCWCSd9pwOh2yt/rMfrtslB4JfD/f1rRB/wEnwieQF5wP9xn6zw6yKPDMOeaQmvwS7Akr8sRuurA9YY970FLSadSO5NJFudLdjsuGgCT+gaYJw5kptNyuAUzx3uyP9n/3965x1VV5f3/Q+T9CuUFHANRgQoVj/moyWSoJea9JxtHe8zxUt4m41czI1qBlWKpY840aabUY4l2mdDEhPHu2KAvfx4wsAE0RHsEzR5uiooX9vPH4bvO2uvsfS6AgPp9v17ndc7ZZ+211t5nr3PWZ3+/6/slcUjRTGk9Gm1XrUWyZVG1T6iiKCqvHFhtBRR3VmeWppSgFlhgsF0uT+04O2braqutfwZuSJZZFuxOXo9RIzcAFmD7QH9ss9rF3t6mU6vSchRgpV8URlVFViXr4+7W47DSEoWm6cFY2due35Gsps2/ewuby4qE0CRIOBqtUzQ6VqNyZmtL3cmBSYI62AML6ODCRGwGHKy7gP17pOi+JXtKdGlZ5BsTco5GFXm7LBoBmApHwH5e5OuO6mo7uC2aFwwybFMVjkZRXY2wBwiyjZ2OwU8hHx8428Vt5EkvjekB8WttUVerriGzmwaWWRbbmFGCorgSktuskzEgNQfP4BBOdrLlK31L64/msPeFXFlJRMq/dfINsi0DLwEXgWJUCcf2hVia5QefHvb21DkCiZP4dFtqDhKlPcK+Mg3MZyYcScTJgkoIPRgLPHfTdcjljKyWcnva2am6aK/VFY7EzHsLscbE+mkUYdUIWTgKK64PEAE4WH1trsg5Ys3gzJG2cgCJP71oJOxpMmzrJoszp9rcj3/Wr3sk66C6jILGFvWVolTLyJZFdwSjbG2kJR62/RzFI3122X8/mp0cCOCYYZ1Mw4fFYx0hr8sysyq6eq3uY9QGWySZuqCub2IYWeBv9bVuWwdme+2uBUk3+c6BLt+daq2hiXRQSBDaDm4rpWGwt+dJxElVMMkCIS8nD7mRgbq1JktSc7DATSsdUDWp9sDqNsqyAdswGYDNsjPsxwg065qD/lMWofmiBGGFjPMKw5aiIrHvwzss2DgxGUNQNXGjnJGSNXKUXxRgAdoXdhIWR9WNdEHVMarRTe0pNGzWWlRZl+TzaHSc6rpIo/WoqvBQA+hQu86uJ3mfiDHRSChLQnCOPpcmCbGC7K0OIk0OlCMj5ywlSJRCmhubBYKhQFFy/WbC0Qjqo+zmJrcncytcZK90/A6zHp2lc7kbZdmANIv9NQlB+Vxvzi7ChFEWw8iURukOVOQ2die/JSbkCWVJ2KhMsOMa5TpYIXXzBZ+qbZftlqfQwEsYV7X+0WgfsqxRoBbZPdUTTybt+kJ4+dh/h0ks0r5yVNbaRBWQScXzDCPFeoqRRVZ2M6Xz5cyd1h1GdHoHM++1fQ/Uli2dyjs4iMWGaw2duanq3Ub/BJy1PavlbcLUNs4ss4xzCQ+I74eggHYieBmgD9LjjoVRFo60XWabdTJGb7OiyehrYlvzgkG42HGPad0NnSsdvxNpf1Qof+WdHm2VA+Y0IMwCf1BwEJowOwsewjC3GrPrrTrXoNk+akAc+bpXb8DcCiF5peN3bpVTXQYpCA4hT6zliXtB9lbxJ5uXk4fmBYMQFBLkkB7Dk1QFZpY2EghGQQrUdX3O8NRd08iNCwCary3A4tip2J28HgsXJSBOy9Ld2W8fORfhxf7ijv/CRbZJ3MJFCdjjNxFtXt8pJvGDCxNhmWXRCUfAbjmk90EhQbCutgX2Udc0RuWVe7ROUs0PaV1tS9siC0eKUEqfEWZWLdpHnaxd9t/vIPjbDm6LvJw8HNy6UgQ6IoujnLdRFpRUxux4yBoQ+1GW7jqS+2/mgurMmqgGWyrI3iqO8bXMtYbrOy2zLG4LUk9odm6gw3qubdbJGBDfz7APgO37kifW1VlPuzt5PbZZJ4s1u0Te6QuG5Y0C6gB2kaZdXwivTgniMc5nlenvn3Z9oQjCQ8KFhBj9prr72ymn21DdROkzEl/uWOqM8kGaWRBdbXfXuqliJAxl4UjuoX43DqJpuvkaVWf49EjQRdJdc8MPS3/2062BlCHXVDm6rox8DcvC0yh9x5CR08Q1Rzf0rKut8FoUhm3Wycj/wwpMbT1OuMe6A/1WiD5IY/iy/36M3mYbI9usk8V/gBabhS+1/qbpbe5Ejhw5gh9++OGOFI4Ai8c6Q/7hV7cB+gmx0XZXotGTPwGGqQnOJiqeYObGrYpFdcw4W4tTev1Vj/pgRumBUt17M3dFWdxREnbVPVCOiknP+vyL0EU9NUtdEJVXbmohtMyyYI/fRNPjUSe9UXnlToWMJ8gRR+k8Jb1bpCuTFnMYcetWoP+URcjv/jUmJY5EQlkSFsdOxaTEkWiaHowV370FAFjpF4WHd1iQ4VMg1jpGF6ag/6h9AIDSt57A5uwi8ZnRhF62nuVGBgr347d7vCBE44JhIQ6BbZwdoyykVKGufm4mylUxSVB59buX6yGBvDm7SHeDQb6BIV976rpGWoNI5em13PdFM8IM+9e8YJCDddPMwimPiZI9JTphSySUJYnXRhbOumCUZYPu/Ko5+gDorCqUk1TuX1rMYV0dZImhSKty8JChR1c61K9C6xBJQG65dAlxjXIdLITynMBdqyE9xrZsWa3fanU/EmzyWkdK+WGWQ5HEntkaSVkEOnNFHXv5IsZevgjt7NRqC0czZOEopybxJE0J4GjZJKEqi3gKgLTmhh8eORqAR44GoDhzKh45GoDsxVddthGfvlAIP1kAXvbf7xDxlca3ZZYFWmwWmhcMQnHmVDwXFYLz33wg2jfK13jZf7/ut0m2OMq/RZuzi6DFZjlEGpb7QDQ7N9Dl8TENFw6YU01EPrjS+dCavVmjuowiRzLM7UBtXLNma3ndDaIjl/e68kaNIripeR5l6M+TJpBybkRA72qnBgGRIZFJGFkXPU2QHvtRlgh+UJ00FdXdhyb+8kQhbvoriFu3QryflDgSx4fb6pctEtGFKVjpF6WbtMdNf8VeT1UddMf/au9cEWSHcoV13xOCPrMviP7LbqG5kYFoHzkXbd/Q31Awcx11x6XU6DwAxrk5SZy7U5/8HZAbsxzhVi5HrqLkhqpGJwWcR16Vy5hFVVXbVdtQrY3uWAqpPdm9zdW5scyyoPHJ/rUSbZXyPKrBcgjZJXX0Niu+GWUP3KNGkZSvWTnAjpwLU0aOYEv7U6RWTzDKv2gE/aYulYK9zjfONmKKnFpD9vRwV6y5iqCa4VMggu4YlVXFo8gXefmiyFMpr3v0NLqqEWquTRKM1L9xPqucpuEgZPFM0V9lxl6+iOh1Sfi67TycfuYMAODX6e8BsFkesxdfRejCpi4jn5pBFkmLdZsIhkPXH13bRi6pRvklCTVgnPwfILdhdnNEHjO7k9ff1gFz6LfEiJuXbt52x1Ud2PJYQ2RLh5krnyt3PnfCYjNMQ6Om16W8f3XdYOU76l6NFtea5bHXtF7itez2A9j/OJ256zlbKyJbYcwEoivhmBsZqHMxnJQ40jR9hyvM/uzJhTZiTLRDPZuzixD7URaO9rHnC6OJYNy6FcLtFLCtVaT8juHF/piUOBJxXmFo8/pONE0PxubsIjQvGISm6cEofesJWwPrUxFdmILowhR8qfXHl1p/MfloHzlXWFlTux50OGYSjnmnLzgIx6CQIAc31ZSgFtUSjtQWYZbvkdqQUcsSJNIoX2bzgkHiO4gYEy0seeSGSjciyIVVRhV0quVQngxS/bSfmsLFCNnKrrrIyq/pobq3uUPzgkFuu5C7gvI8ErLIU12sd/WJFpZDuc9LUnN0bq6UN0+2xKjCcZRlA17LXIslqTm6/RcMC3FwmaVxY5bGIxbjTd1aAYg8krEYD69GixHTezF8eiTAp0cCvBo3thX6udCW2iMLOnGp/t6SeNOuL0RWTo547S6u1grKAsusLLnIqsIRgE44Uh2y+HPFmht+4kHvqZ4OF5/VpdqQMXJfpWNZhC8NP8/ObynqOt/qC0Svs1vel/7sp4uW+llKDkIXNnXrGEjsXfbfL/IrDhk5zSHXpNl4U9dbUn5Iei3nl7Ra7KF15PXfoywb4LUozHCto/qaflcu++9ny+NtDlseq4knqTrctc4YlWNrJNOQqY31hs5Eoid1ezVaDJRV1IrlkUJxy0JPnvyqqTVoG2CP0iqjWhI9tSyqqOkkjESjvKbPDGcRSeU+yvkryWJCLnZh770qrIQkGDN8CnR5Gyt6bsPJTp2EK2qb13cC61MBAHFaFsKL/ZGd31IktA4v9sdYX19g2jDErVshAjvknb6A/lMWoc3rO5Ha9aDD8VGk078/mIuYDxrrzpfZeXB1Lp2dO7P8jWpwCtlV1qgN2ZotB7ZR1xnK+Terg3zNyv1Tb3Y4u7Zld1WztCA1ubZV+j8xu9byPE55uqfOmpJQloS80xd0LtxmUVSN8qzS5Jlyk8rlFgwLEYLSyI05KKAdJoT6VssC6QrKN0j43Tio+9zMQieC30gupRk+BYi7HuzgZkprFs1SdLiLanUkgehuig+zOp1ZIVWRSRFpZShXJGC3QmbntxRrFVULJIlGEp1Up5zL8Z+9XwYAW4TUKj5LyREup+Qym734Kr5uOw9Pl9gEvDMxqVonyZpuFAWYrN6Uz5GivbrDc1EhWPv9WgfXfbJk0rihGyqqG7i6/Xa00LHl0Q5bHmsZObgNvQeqMQmuwp1oq2yZZOoK+fqu7nVnNDaM1u5Ud8zUJrL7H/1ZGglHACLlhjtBRdTJtTsWQhla/2i0hs5d4WgGWRz9Q8foAvjILkk0AQh771VsWbZJWFAirybohCOtS3z+2vM6N7W4dStwYmOg7fX0V/DwDgtmdfwLtlkn24TjH34rhGN0YQqCAtqhfeRc0cc+s23BRtR1m9bVVgTvzUfMB42REtRCBNNxdh5o7aPReSSrpGo5lMvIbaspLuQ0F+6sMVUtdK5SW3gaWMbIikjC0SzNR1BIkINYlMeFup9/6BhEjIlGbmSgYR+cnUujcXBoe+2k6fjN0O4A7FaYg1tXYkKorxB5gO07m5Q40jCIzoJhIbrvUO6rUfCbUZYNoq2ggHYO+wM2C35QQLsaHpkjqrChgDnFmVOFqJHFktlv7TifVQgv9tcJxLEtW2Jsy5am/wFjfX0x4i9vA9Bb3MxQhSM9y9ZGwlVdRnUSqqWRcCUcAbuoI+EYn74QTdODxQOwiUY5yM2aG3548fzwqsiqxpDwW32gEea3LxSWv9CFTTHrsesIXdhUCEczF1Zaq/jP3i8LEapa+uiZcu4SzoQjBcahx2cpOXih5wtYs3oN8FGs+C8g927VIq96tMg3SOpqXfOtovRAKUr2lBg+KF5C37598dBDD+Fvf/tbPff21sDi8RZSW1ZDV4l72SrJ1CXOgj7JuLrRQa6mRoGfPL2m6yJtB2HkAkQTSaOANyS+1Imx7A5qz20XbeomqLZlto0sGa7EitlaR9nyJVtdN2cXIc4rTNR7slMnlL71BDJ8CpAWcxjhxf5YWZWrkSKmHvokFsF780X0VQC2/I5VxGlZSO16EHmnL2Bv06loXjDIZulYtwJblm3CM1kaft77PtpHzsVKvyikxRzG4MJEkRajZE+JQ//JnVcWhCQkVSgKqyxcSDTK1iIj8ekspYXRuQZs343R56MsG8R3b/T9kzhT3UuN1h7KYs7IddXMaqkGwZGvaTVfo1zejKmtx4mbD/I5MhPyZsGEahM5/YC8Xlce0xsnJouJ7pLUHBFYRw2wQ58DVfnyqibLb/d4QVhY6HPVKjlsQTnyTl/AxonJplFXa5tYjBfiR46+ql1fKMThlkuXdGsdVcsfWRtp7WNS8TyHqKlbiorQ6KfjAGyCymG9n1J+3gYfh77SmkYSjlSmumkzXLmzqlbK7PyWDm2db/WFQ9qTq71zcbV3rrgpRuVkotclYfWBRrqANp+l5AiL5HNRIVgw50OdNRIwjp5q9v7rtvOw9Gc/4bkB2K5r+Tdedhld+/1aADa3VTV6qvpedsle+/1arP1+LSKSy7A7eT2sllEiOE5azGHETX8FaTGHMWycfYyTqJSjr8Z+JPlL36FwtFXGbYwCfjib1Gbl5Ii1BFTeGZ7kfKwrGkIfmLrD2TVoFPTGTByqUVXN8ka6ymtaV2lqDm5dKf58mxcMchAbzia9ztZ3Ge1nZJWU25MnsOo6TMIsaqY7yJFhZSE8IdQXqUtawLrats5xxF/eFkIwujAFY//wWwyI74fwYn/sbToVY319hdCMGBMN62ormq3pjMirCYguTMHGickAgMHXXsTgay8iO78lEsqSbOk7pr9isz5WMbgwEZMSRwpLZv8pi3S5LImIMdGmx27kOkj7qxMsdzEqL1vcVGHpzAKaUJZkKsZcWSDlcu7kfKR+kfiWxaZ6TgDHa8HISmmWW9IIErCqddLVjZOa8PmuEwAcJ8d0U2NJao5uUiu728nPAEQ6Arq+6bMlqTli3SNdb7IFZsGwEAQFtIOX1C/VZTXOK8zQ8ikHk1L74y7qWjjAJhgzfAoctpsJRxUjt9UtyzY57YdcFwWMIXdVEo4yqyYXO63PCE/WP6r49EgwtXLK9dIaR1cW1gVzPnTYRrkc3eG5qBBdMBt6/iwlB/+/z2lRv7yOlK5r+TeIhB7dMLFYt4nP1Iiq8nYaL3Kwq8v++xGfvhC7k9djQHw/DIjvh9SuBxGXHYbUJLt3wYJhIQ4utEYutcztBYvHWsYTy0lYSAjCQkIcRCTgfrCQ+qYh9IG59ajBbYzSaKjvjcaCs9QyajmjfI5mgvFWCUh1ognYhSQJtiWpOaaueAB0LnE0OU4JamEoKo3+vGmCT+0sGBais6SRW6UnrqpU3p1Iq9QnyptI7W5/6TVRZqVfFLYs24S0mMN4eIft8y1F9nQdQ0ZOQ+xHWWKyvdIvSgjB7S+9hu0vvYbQwEs4PtyKxbFTxeQzrEcPUcfGicloc/9LIlhOyZvLxWdk4UooS9IFEjIKVEPlVayrreK8kCurs/Qo8n4yUQX36Npy16IWvDdfJ95cuTI7E5SqgCRI4JE1gazMJDKN1iqS0AsKCcJl//2G9Zn1R550WmZZdFbPiDHRuhyKgD2dyK1iyMhpDu50ZFE0WneYFnNYuJXS52kxhzGxe6Bh/bLFUn5P0PaIbeZrVuO0LMO+yBGMjep2hrMIoRQYR7aeyZiJRiPcye8oWzfNAuCYvfaEDhef1QXbIWSrq9F22b1XrqvDxWfF9pn3FopIrDG9FyM08JJuX+LDDjvQYfRsfJaSI6yV0euSHHI5yoFqaF2kHKyGypjxWUoOvtT6G37P9D8V9yvbe7IAGgV1U70SqAw90/ihB+VuXDAsBIeulePtHi8gLjTLUDASXotsYX+HhzsKaub24d767sCdgJqXzlPCQmon3xrD1DZmotETsaaKTdX92pV1kfYz65f8edn1MrTBUrf75gyjVALq+jnraiuiXNQjC0KanEfllcPdVY55OXlIuW4TjZuzi7A5uwgTqkSYWT5BZ1hmWbCgqu/w0NKWEtQC/f0mgo4o8moCUGyfLIUX+2PjxGTETbdZDTPWbcCoj2wTlj1+EwHLBrSZ/gomDX4fbfaEIHyZbV95PSS9f3hwDrqvt7cdXZiCE3tHIu/0BaTFHMaiGbZJCInG4wNfx0Yfe+oFFTp/E0wEM323JCBdfa9G5EYGInhv9YLFqEGUSvaUoHlotaoyRV6rSK9dBd85uHWlvW85gGUWgGzHOo0wC8Tjqn3/ULswrbxaiXzkO+2jO1zp+B22WQ+J92LspPbDsHHlSIMtz+JXYV4O+6ZHFWNSYjDyYLP4TZAC5gC2a2uUw16SdZCEXqrt/WuZa3Homv13ZFKi/bq+1VAwHbJSyW6rMmouRvl1EvT5GEmgqQJUriM7v6VDrsQPO+zAzIMvIqmX3bKopuBwB7N9jKyB8ekLcbV3Lmbea5yLErCvbSzOnCoE3jifVYCPvY5sQLw32hcwtn7axKTNJdVIEFLKDhnZ8ugMyuNohizoVNdUI3dVObWOuj9gt6ovmhGG0b9CldV9vy41jcquPtFoXgDsuPSiy+O5Wzhw4ACWLVuGo0ePorCwEElJSRg7dmx9d8spbHmsIW0aLde9JyuikTWxtrnV9TOMSnVulDgrayYcXVnw1WTZVJc6HmuCkcBwx6pHVjBXFhRPXCRp/V7w3nyxhpAsge5ayOR2VTdXs+OQscyy4MrMn7C36VREF6Ygw6dAt34xw6cAY319EedlTyg3IL6fbq0jvT4+3IotyzbZIqoCwk117B9+i/Bif2GVJDZnF2GlXxQ2TkxGUEA7IRwB293wjROTbUIWepdd+dxszi4S584Isoq6Opeyu7L6mBDq63bwI7VcXk6eEFLVjabqCc5SecjQdUB9al4wCG0Ht9WthXTmwkqpRIxyozrD1ZrKmiBbGoeNK0dcqC1PqpFwJKa2Hof0qGKxH7m4yuk+BsT3c7ihQ+u/SEj+/cFcLBgWgv6NWwh3P1oTSVYhqkveT36OyzZ2ba0OZtFS5XWQKuN8VmGczypk+BQgqXieQ05Go7pV4UiQcKR0Pluat8L5Vl8IF1aZ862+cOoeSp+N81klIp6qlsaY3ot17p1GxGI84tNt/ysdLj4rLKrk9hvTe7FufaGK7A4qr10kVCFI70d0eke4ssrbyDJpZn1UczDq+lIVEViOiOpsf3mbvE5Shdaxb7NORsSYaGixWbp9CVl8ym6vjJ3y8nL06tXrtgquw6k6qolIJl46H1qzNwE4ijl3LIpGQXCcBdrJyskR9cqvjaD+uOqHq3qYuxdn4q4m9ZhZMN2tl8aNuuayrKwMbe6/v1YSih/79JjH+xultzByRTXCZrXK97hNasvddgDX6zRVSt5cjsGFidjjNxEr/aKwcFGCcFvN8CnAwkUJWBxrF4dHP7C5+sWtWyHSGLzeZZewMFJaDiNXubG+vlhqvYb5lsbYUlSEsX/4LU4MzsGEUF9dWoTmBYPwysDXxX7N1nQGUL0Is3ROAH0CbKMyatoNGVmUm6XjMGvbutoqvkdK0WEWvbc6UF3ydWKWCkRFFX2WWbYk42Zuq5f99zsEM6LPaeJYsqdEJz7bDm6rCxxF3LhcUSupOuaXHkKT1i1F0I4B8f2EsIsLNQ/gMSlxJKa2HqezwiSUJWHjxGSdJcbIVZUEnryNrl9ZZNLncg5IwHbTRC5LQleF1li6slyqosndVBg1SZshY+RhYOYuO+6Yj84iKae/AOzBc8b5rNJZ+FSXVPrMWeoOFdn9k6KpXu2d65ACBdCfU/UzSpFCaTEodYdPjwSRosNIXHqKkZcMoA8KJbM7eT2eiwoRYlR2Lz+4daX4PTIKBqZuM7IyqtsoRYjMk90+wNI2/W+rlBZi3j8ZQGOTQtcAbACCg4Ph7e2NOXPmeBQ0x8vLiy2ProiPj0ffvn3RqlUrtG/fHmPHjkWOG9a0kpISzJkzB35+fmjSpAmCg4Px7bffis8vXryIl19+GQEBAWjWrBkeffRRHDlyRFfH119/jSeffBL33XcfvLy8kJGRUSvHROsY3RVjnkZPlet1tw1XFkoWjowRRsLRWXAbd5ED5hi16cl635q4izvj2HrPhSNgtx4FhQSJICOqNcnMMkXC0dn6STOoHVdWL2d5HVUomIlllgV7m07FHr+J+Hnv+wgv9sf2l14Td+PVyd/m7CL0mX0BJwbnYJt1MrpPysfRPlY8vMOCRTPC8NapoQgNvGTP5VhF5NUERF5NwJaiIsy32P6Zx/r6AutTkXf6Avb4TcQ262QRnTKhLEn0gayO7kSYNXuvptkwYnN2kct2zNY4ujrnllkWId7ycvJ0ORXJegfYvuvL/vs9TtNhFDyHogNTsAyz6ycvJ0+sR6QItWYUZG81FY6A8fmRhaOcGsSTGyKu2JHxok44AkBqUgukJtksgJMSRxrul3giX7wm1749z87H7uT1aF4wSBdtUhaBauoCwCZEVOGolk+LOYzN2UUYZdkgbpjQdhKOVF6OYOmuyytZ1AgzqyFxvtUXQjgalSUrJH027piBL2cV6m+FnBdWrZ+EI1kT5einaiRUIwtjTViEL8Ujpvdip9ZKNQiRvC+tkSQrouwGayYcn4sK0VkgXeFKOAK2mwuTEkdid/J67E5eL1JvqIFwDo60iThn45vGr2qVHGXZoIvMStsA2w0T1YV9X4qxFfROgaOt3kL279+POXPm4NChQ9i5cyeuX7+OJ598EuXl5neOr127hieeeAL5+fn46quvkJOTg48++gidOnUSZaZPn46dO3fi008/RWZmJp588kkMHToUZ8+eFWXKy8sRERGBd95xb4C6Q22KsNqYEHsqZBkGcC3gPBWOnqxxBDx3czVLYVMf0Pq7toPb6tIqAPrAM5ZZFhHYxWjCXh0BaTaJkHFHNFLbwXvzEftRFkZZNqDZms5o8/pOHB9uFSKPXFffOjUU+d2/BmCzvtDkmJ5PbAzEr7dFC3FsXW3FuD/64q1TQ4Fpw0S7K/2idG6wmDZMPIIC2uHQJ7HYnF2EtJjDWJKaI6K1PrzDgp/3vi/aB/SupXJwIXfOjxrdVobyAlJZNUqrJ98b5UKkSLRmLmUqJN5IYAJwEJiqJYA+z8vJMzwu9TjMUoaQCCSB13ZwW7Qd3FbXDuDoliqLVrq5IlsdyaVVbTNiTDTO5X6L2oQsIPQ9psUcRnpUMdpHzsXu5PXC0kRibmL3QJ3V0WqxrW687L8fQ0ZO01lU4qa/ItIVyGKSnv/z38HiBgShir4B8f2Qd/qCTswuGBYiBOOA+H4ICmin28/d6JWxGI/5YdAFkjGyKMquoR0uPivEYXz6Qqduo+N8Vumsha6gesOL/THOZ5WD5Y6sjbI4JeF4vtUXwtXVKIosURNRSfXKD2dlVYFJrq3UvryWkqKtkrCUo6n69EjQCUujwG20ncasHCk49qMsEREYsIk4OTiV1TJK1CfXbbFuM/3tM4PGxe7k9aafTwj1dXBlvdLxO7fbuB0pKyvTPSoqKuq7S7VKg3JbvXDhAtq3b4/9+/fjscceMyyzZs0aLFu2DNnZ2WjUqJHD51euXEGrVq2wdetWjBgxQmzv06cPhg8fjrfffltXPj8/H126dEF6ejrCw8Pd7quR26ozjFxRaysPJMPUFu4IO0+uW9WtVN5uZMGsyVjwarQYKKsA2iytsYubU7eUKshFVXbpixgT7XA3l3C2LgWwu0QuGBYinp2JHSOrmZklzRlG7pRkdWwfORc/732/KgjOK4hbtwLhxf7I8CnApMSR6L7HNuGhSJBx019BateDSIs5jOjCFJH3kVz/jCxJSe8WOWwb6+uLLUVFeOvUUCHoyIXv9S678PAOi7DK0GSaLJIUEVa17pi5s6rH78xl1dU5rYnrsVq/KqToWlMjkqrb5c/lPJ3utKm2Lbupqn2jdsyirMpC1JnrLfUtYky0gxtsQfZW5GXmARtQK67o3i29dSk4FgwLcRDtshCT3e1GWTYIqw2xObtI3MQg6HoEID7r03U0jv74jRgTA+L7IS3msMO6RVUQUt/kdCJqOXd5JkvDSekmu4zsPkqvz7f6Qgg1o2A3hJE10kiQynWo+8jlZRdZuVwsxiPuerDDf0YsxuOZLNs09qswL5frGdV9ZYxcUKluI74K89K1bYZc75obfrq1iyM6vQOfHgmYeW8hIpLLxHbZrZTek+gEHG8Wqik5VJdqulkiWxkt1m2mwW2MXE8B6AKVEWpgHbM1jfKaxzvdbVUlNjYWcXFxLtu4XdxWG1S01dLSUgCAr+TKpPLNN99gwIABmDNnDrZu3Yp27dph4sSJ+NOf/gRvb2/cuHEDN2/eRNOmTXX7NWvWDAcPHryl/TfDbLLNopG5HamOaFRTb3gqQt1pT7u+sFajrQJ2S5KRkKOJtWplsa62IjcyEHmn1+q2L/C3ewAYrSWxrrYCUqoId1DXiF2GnBrBPQEpC88lqTkICmiH9pFzxefHh1sR52UTc+HFsOVfXLbJJhzXpwIA4tanYktREbYs24TIqwkY5hWG63H/D01H26w4Gycm46AU5EZm3B99ET/7Gl75Zr5YR0lrHTPWbYAVtgA4eUEtYN2bj8g3EzCYXP9S+6H/lEX4ee/7OnHornAk5Ci6ZufM3XQbtYVRUBn5mpPX1xqVdSbYSAyaHZM9eI+5aywJTHVdpjPhaLSeU56E1vY6TxVZKKbFHHaIkGqUj44m0duskwFleZ4sHClSa1rMYaRVbROuqD/axN5KvyibC2FAOwQljgSqbnqo6yTTYg7rxKoYl1MWiRsyBAlTZ8RNf8U09+LYli0ByZ2URGRx5lR0qBJ7ZsLRLDWH0RpJszpiMV6UV62PJBjjGuXqtgGyqPPM/iHXrwo/VUw6E44qzkSkbJWceW8hMNIulg5icVW7X+oE42cpOXguKgRrv1+L5gWDqrbbhSMh/5fQulcSeBQsJ80CNFcsg2tu+GEtzIWeLAipjNeiMNNgXnL5F3q+4BDcR7Z03g389NNPOlHcpEmTeuxN7dNgLI+VlZUYPXo0SkpKnIq80NBQ5OfnY9KkSZg9ezZOnjyJ2bNn46WXXkJsbCwA4NFHH0Xjxo2RmJiIDh06YNOmTXj++efRrVs3hzWV7loeKyoqdGbn0tJSPPDAA/jp1Cm0buVeWOk2jZaj9PqrbpVlmLqEopSq16dR9FJPrmG1XhoD6nNtUXbxIjp36YKSkhLbHUIXmI1rTAD+Htwcbw7p7rD+sf+I2br3h7Z/oHvfa1ovsU+vab0wPPxD7MiwhyV/Y7ctWfmRV/YAAPquGCxex8y1CeldXdIw9M3LaGPijfb3wObo0vl+nPrpF/xn/mVdm57Qa1ovALY1nr2m9cIbu0+IvvQo7qgrOzIwEPGlh8T2TJ9ziGnTHwCQnJ8vymX6nLMdS5v+iC89hFfjP8X9Bc6jyNF5ouNPfms9Htz5GL541uYiN/vcLow69yU+zrW5xN3/2As4snEJ3hzSXfRf5u+BzcXr/8y/7Pa5qO5a19rAnfYDuwciv2oNnvzarD4ZT48tsCqXYcfgpxyuccJoLFC7zc4NFNvP5X6LjsFPiWdnXOn4nW7fQ0kfAJtR4zEd/dNuNGnt6FZstPbqSsfvMHzHMfRtbPsNkMeFO4T3moCMY5sRM3ch4t9fLJ4B+7gAAMT3x47htmuf9qHnvisGY9nDU4R7H/2ODA//UPebQeVV5HaWYgs2Fs902udJWT7YGOba5TTT5xx6FHdEps85LMUWwzIbi2ci94zNpTT4AUfR+HOrJLS/aHejnOSzBvMxVvy20HsAGPODbYq69SG7KKNtRsjl1P5RnUZ1yPu5akPdTy5L9ajblmKLrn31PeB4LR6Kao2VNzrg810n8HjUZOzIeBFv7D4hfveMOLb+GOb/9RCW/r4/5v/V9v03OdYNAJBa+IZD+Ssdv7PlXKy6Fo2Q/8NobNJ12ezcQIcx+5uh3fH5rhO6NuT9hod/iIqycqzsPMTtcd0QEJbH3wJwdHy0cR3Apup7StwulkdoDYSZM2dqAQEB2k8//eS0XPfu3bXOnTtrN27cENtWrFihdezYUbw/efKk9thjj2kANG9vb61v377apEmTtNDQUIf6Tp06pQHQ0tPTnbYbGxurwXaLix/84EcDf7j6HeFxzQ9+3F4PHtP84Med93B3XDcErly5onXs2NHlMbVu3VoLCQnRHnzwQe399993We/Fixe19PR0LT09XQOg/fnPf9bS09O106dP18FRVY8GYXmcO3cutm7digMHDqBLly5Oyw4aNAiNGjXCrl27xLYdO3bgqaeeQkVFBRo3tjsil5eXo6ysDH5+fvjNb36DS5cuYfv27br6qmt5rKysRFFRkYjWyphTVlaGzp07O5jxGffg8+c+mqbh4sWL8Pf3xz33uI4HxuO6+vB1WTP4/LkHj+m6g6/JmsHnz308HdcNhatXr+LatWtOyzRu3Nhh6Zwz9u3bh8jISIftzz//PD755BNPu1gn1OuaR03T8Pvf/x5JSUnYt2+fS+EIAAMHDkRiYiIqKyvFBZebmws/Pz+dcASAFi1aoEWLFiguLkZqairefffdave1SZMmDj7Lbdu2rXZ9dyOtW7fmH9QawOfPPTxxgeFxXXP4uqwZfP5cw2O6buFrsmbw+XOP28VdVaZp06YeCUN3ePzxx9EA7HgeUa9yf86cOfjss8+QmJiIVq1a4dy5czh37hyuXLkiykyePBkxMTHi/axZs1BUVIR58+YhNzcX27dvx5IlS3S5VFJTU5GSkoJTp05h586diIyMRGhoKH73u9+JMkVFRcjIyMAPP/wAAMjJyUFGRgbOnTtXB0fOMAzDMAzDMAxze1Gv4nH16tUoLS3F448/Dj8/P/H4/PPPRZkzZ86gsNCeo6dz585ITU3FkSNH0LNnT7z00kuYN28e5s+fL8qUlpZizpw5CA0NxeTJkxEREYHU1FRdao9vvvkGvXv3Fuk8JkyYgN69e2PNmjV1cOQMwzAMwzAMwzC3F/XutuqKffv2OWwbMGAADh06ZLrPs88+i2effdZpvVOmTMGUKVNcts/UnCZNmiA2NvaOC1VcV/D5YxoifF3WDD5/TEODr8maweePuVtoEAFzGIZhGIZhGIZhmIbN7RPiiGEYhmEYhmEYhqk3WDwyDMMwDMMwDMMwLmHxyDAMwzAMwzAMw7iExSPjNkuXLoWXlxdefvll0zKffPIJvLy8dA81J05cXBxCQ0PRokUL+Pj4YOjQoTh8+LD4PD8/H9OmTUOXLl3QrFkzdO3aFbGxsS4TszZ06ur8yVRUVCA8PBxeXl7IyMioxaNh7hR4XNcMHtdMQ4PHdM3gMc0wzqnXaKvM7cORI0fw4YcfomfPni7Ltm7dGjk5OeK9l5eX7vPg4GC8//77CAoKwpUrV7By5Uo8+eSTOHnyJNq1a4fs7GxUVlbiww8/RLdu3ZCVlYUZM2agvLwcy5cvr/Vjqwvq8vzJ/PGPf4S/vz+OHTtWOwfC3FHwuK4ZPK6ZhgaP6ZrBY5ph3EBjGBdcvHhR6969u7Zz505t0KBB2rx580zLfvzxx1qbNm08qr+0tFQDoO3atcu0zLvvvqt16dLFo3obCvV1/r799lstNDRUO378uAZAS09P97zzzB0Lj+uaweOaaWjwmK4ZPKYZxj3YbZVxyZw5czBixAgMHTrUrfKXLl1CQEAAOnfujDFjxuD48eOmZa9du4a1a9eiTZs26NWrl2m50tJS+Pr6etz3hkB9nL/z589jxowZ+PTTT9G8efMaHwNz58HjumbwuGYaGjymawaPaYZxD3ZbZZyyefNmWK1WHDlyxK3yISEhSEhIQM+ePVFaWorly5fj0UcfxfHjx/GrX/1KlEtOTsaECRNw+fJl+Pn5YefOnbj//vsN6zx58iT++te/3pZuMPVx/jRNw5QpUzBz5kw88sgjyM/PvxWHxtzG8LiuGTyumYYGj+mawWOaYTygni2fTAPmzJkzWvv27bVjx46Jba5cOVSuXbumde3aVXvttdd02y9duqSdOHFCS0tL06ZOnaoFBgZq58+fd9j/f/7nf7SuXbtq06ZNq/Zx1Bf1df5WrVqlDRw4ULtx44amaZp26tQpdoVhBDyuawaPa6ahwWO6ZvCYZhjPYPHImJKUlKQB0Ly9vcUDgObl5aV5e3uLHzxXPPPMM9qECROclunWrZu2ZMkS3bazZ89q3bt31/7rv/5Lu3nzZrWPo76or/M3ZswY7Z577nFo19vbW5s8eXKNj4u5veFxXTN4XDMNDR7TNYPHNMN4BrutMqYMGTIEmZmZum2/+93vEBoaij/96U/w9vZ2WcfNmzeRmZmJp556ymm5yspKVFRUiPdnz55FZGQk+vTpg48//hj33HP7Lc+tr/P3l7/8BW+//bb4rKCgAMOGDcPnn3+Ofv36VeNImDsJHtc1g8c109DgMV0zeEwzjGeweGRMadWqFcLCwnTbWrRogfvuu09snzx5Mjp16oT4+HgAwJtvvon+/fujW7duKCkpwbJly3D69GlMnz4dAFBeXo7Fixdj9OjR8PPzwy+//IK//e1vOHv2LMaPHw/A9mf0+OOPIyAgAMuXL8eFCxdE+x07dqyLQ68V6uv8PfDAA7o2W7ZsCQDo2rWrbi0Gc3fC47pm8LhmGho8pmsGj2mG8QwWj0yNOHPmjO5OY3FxMWbMmIFz587Bx8cHffr0wb/+9S889NBDAABvb29kZ2fjv//7v/HLL7/gvvvuQ9++ffHPf/4TDz/8MABg586dOHnyJE6ePOnwA6ppWt0dXB1wK84fw9QUHtc1g8c109DgMV0zeEwzjB0v7U4b4QzDMAzDMAzDMEytc/s5pzMMwzAMwzAMwzB1DotHhmEYhmEYhmEYxiUsHhmGYRiGYRiGYRiXsHhkGIZhGIZhGIZhXMLikWEYhmEYhmEYhnEJi0eGYRiGYRiGYRjGJSweGYZhGIZhGIZhGJeweGQYhmEYhmEYhmFcwuKRYZg648CBAxg1ahT8/f3h5eWFLVu2eFyHpmlYvnw5goOD0aRJE3Tq1AmLFy+u/c4yDOMWPK4Z5s6CxzTjjHvruwMMw9w9lJeXo1evXpg6dSqefvrpatUxb948/OMf/8Dy5cvRo0cPFBUVoaioqJZ7yjCMu/C4Zpg7Cx7TjDO8NE3T6rsTDMPcfXh5eSEpKQljx44V2yoqKrBw4UJs2rQJJSUlCAsLwzvvvIPHH38cAPDvf/8bPXv2RFZWFkJCQuqn4wzDmMLjmmHuLHhMMyrstsrclVy4cAEdO3bEkiVLxLZ//etfaNy4MXbv3l2PPbu7mTt3LtLS0rB582Z8//33GD9+PKKionDixAkAwLZt2xAUFITk5GR06dIFgYGBmD59Ot/NZADwuG6o8LhmqguP6YYJj+m7HI1h7lK2b9+uNWrUSDty5IhWVlamBQUFadHR0fXdrbsGAFpSUpJ4f/r0ac3b21s7e/asrtyQIUO0mJgYTdM07cUXX9SaNGmi9evXTztw4IC2d+9eLTw8XIuMjKzLrjMNGB7X9QuPa6a24TFdv/CYZlR4zSNz1/LUU09hxowZmDRpEh555BG0aNEC8fHx9d2tu5bMzEzcvHkTwcHBuu0VFRW47777AACVlZWoqKjAhg0bRLn169ejT58+yMnJYfcYhsd1A4PHNVNTeEw3LHhMMywembua5cuXIywsDF9++SWOHj2KJk2a1HeX7louXboEb29vHD16FN7e3rrPWrZsCQDw8/PDvffeq/vTevDBBwEAZ86c4T8kBgCP64YEj2umNuAx3XDgMc2weGTuan788UcUFBSgsrIS+fn56NGjR3136a6ld+/euHnzJn7++Wf8+te/NiwzcOBA3LhxAz/++CO6du0KAMjNzQUABAQE1FlfmYYNj+uGA49rpjbgMd1w4DHNcLRV5q7l2rVr+I//+A+Eh4cjJCQE7733HjIzM9G+ffv67tody6VLl3Dy5EkAtj+gP//5z4iMjISvry8eeOABPPfcc/juu++wYsUK9O7dGxcuXMDu3bvRs2dPjBgxApWVlejbty9atmyJ9957D5WVlZgzZw5at26Nf/zjH/V8dExDgMd13cPjmrmV8Jiue3hMM06p70WXDFNfvPrqq1pgYKBWWlqq3bx5U4uIiNBGjBhR3926o9m7d68GwOHx/PPPa5qmadeuXdPeeOMNLTAwUGvUqJHm5+enjRs3Tvv+++9FHWfPntWefvpprWXLllqHDh20KVOmaP/7v/9bT0fENDR4XNc9PK6ZWwmP6bqHxzTjDLY8Mncl+/btwxNPPIG9e/ciIiICAJCfn49evXph6dKlmDVrVj33kGEYT+FxzTB3FjymGabhweKRYRiGYRiGYRiGcck99d0BhmEYhmEYhmEYpuHD4pFhGIZhGIZhGIZxCYtHhmEYhmEYhmEYxiUsHhmGYRiGYRiGYRiXsHhkGIZhGIZhGIZhXMLikWEYhmEYhmEYhnEJi0eGYRiGYRiGYRjGJSweGYZhGIZhGIZhGJeweGQYhmEYhmEYhmFcwuKRYRiGYRiGYRiGcQmLR4ZhGIZhGIZhGMYlLB4ZhmEYhmEYhmEYl/wfoW5C2C64u68AAAAASUVORK5CYII=", "text/plain": [ "
    " ] @@ -839,13 +840,1021 @@ "legend = {\"ticks\": [1, 10, 20, 30], \"label\": \"colortype\"}\n", "colortype.plot(x = \"x\", y = \"y\", col = \"time\", levels = levels, colors = list(colors.values()), cbar_kwargs = legend)" ] + }, + { + "cell_type": "markdown", + "id": "0cb61d55", + "metadata": {}, + "source": [ + "## The STACCube configuration\n", + "\n", + "Semantique contains a third built-in EO data cube configuration called [STACCube](https://zgis.github.io/semantique/semantique.datacube.STACCube.html). This configuration is targeted at ad-hoc data cubes built from the results of a [STAC](https://stacspec.org/en/) metadata search. Contrary to the Opendatacube and the Geotiffarchive, it doesn't require the pre-organising the data (e.g. to ingest the data into a database in case of the Opendatacube or to create a temporally stacked geotiff in case of the Geotiffarchive). Instead, the STACCube contains a retriever that knows how to fetch assets linked in STAC search results into a data cube. If the linked assets are provided in Cloud Optimizes GeoTiff format (CoGs), the STACCube offers a high-performance option for fetching and subsequently processing earth observation data only for the area and timespan of interest. To initialize a representation of such a data cube, you need to provide the STAC search results and valid layout dictionary. \n", + "Semantique contains a third built-in EO data cube configuration called [STACCube](https://zgis.github.io/semantique/semantique.datacube.STACCube.html). This configuration is targeted at ad-hoc data cubes built from the results of a [STAC](https://stacspec.org/en/) metadata search. Contrary to the Opendatacube and the Geotiffarchive, it doesn't require pre-organising the data (e.g. to ingest the data into a database in case of the Opendatacube or to create a temporally stacked geotiff in case of the Geotiffarchive). Instead, the STACCube contains a retriever that knows how to fetch assets linked in STAC search results into a data cube. If the linked assets are provided in Cloud Optimizes GeoTiff format (CoGs), the STACCube offers a high-performance option for fetching and subsequently processing earth observation data only for the area and timespan of interest. To initialize a representation of such a data cube, you need to provide the STAC search results and valid layout dictionary. \n", + "The STAC search results can be provided as an [pystac.item_collection.ItemCollection](https://pystac.readthedocs.io/en/stable/api/item_collection.html) or as an iterable of [pystac.item.Item](https://pystac.readthedocs.io/en/stable/api/item.html). It is important that the properties object for each item contains a datetime attribute that is non-null. Otherwise, the data can't be indexed temporally. The spatial index will be created based upon the asset-specific proj:epsg, proj:bbox, proj:shape, proj:transform attributes. \n", + "\n", + "A valid layout for this configuration means that the metadata objects for each data layer should contain at least the following keys and values:\n", + "\n", + "- `name`: The name of the data layer, called asset in STAC terminology.\n", + "- `type`: The value type of the values in the data layer. There are no limits to what the value type categorization should be. If it differs from the [semantique value types](processor.ipynb#Tracking-value-types), this needs to be mapped through a configuration parameter when initializing the instance, see below.\n", + "- `values`: An overview of the values in the data layer. If the values are numerical, this should be a dictionary containing the keys \"min\", \"max\" and \"precision\". If the values are categorical, this should be a list of dictionaries, with each dictionary referring to single category and containing the keys \"id\", \"label\" and \"description\".\n", + " \n", + "Additionally, you can provide several configuration parameters that tune the data retrieval process, see the [documentation](https://zgis.github.io/semantique/semantique.datacube.STACCube.html) of the STACCube class for details. Different to the Opendatacube and the Geotiffarchive, STACCube doesn't require to specify the timezone in which the temporal coordinates inside the data cube are stored. By default, the timezone is inferred from the STAC search results and converted to [UTC](https://en.wikipedia.org/wiki/Coordinated_Universal_Time). \n", + "\n", + "We will demonstrate the initialization of an instance of the STACCube class using some Sentinel-2 data fetched from the [registry of open data on AWS](https://registry.opendata.aws/sentinel-2-l2a-cogs/). The layout file we use looks like [this](files/layout_stac.json)." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "47de8519", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Found: 8 items.\n" + ] + }, + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    geometrycreatedplatformconstellationinstrumentseo:cloud_coverproj:epsgmgrs:utm_zonemgrs:latitude_bandmgrs:grid_square...s2:datastrip_ids2:granule_ids2:reflectance_conversion_factordatetimes2:sequenceearthsearch:s3_pathearthsearch:payload_idearthsearch:boa_offset_appliedprocessing:softwareupdated
    0POLYGON ((-3.00025 47.85369, -3.00025 46.86571...2023-09-09T07:24:43.535Zsentinel-2bsentinel-2[msi]0.0006803263030TWT...S2B_OPER_MSI_L2A_DS_S2RP_20230503T232911_S2020...S2B_OPER_MSI_L2A_TL_S2RP_20230503T232911_A0177...0.9696602020-07-30T11:18:07.218000Z1s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/b2b3...True{'sentinel2-to-stac': '0.1.1'}2023-09-09T07:24:43.535Z
    1POLYGON ((-3.00025 47.85369, -1.53274 47.84432...2022-11-06T09:10:59.398Zsentinel-2bsentinel-2[msi]0.0444233263030TWT...S2B_OPER_MSI_L2A_DS_EPAE_20200730T131922_S2020...S2B_OPER_MSI_L2A_TL_EPAE_20200730T131922_A0177...0.9696602020-07-30T11:18:07.217000Z0s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/2aa2...False{'sentinel2-to-stac': '0.1.0'}2022-11-06T09:10:59.398Z
    2POLYGON ((-3.00025 47.85369, -3.00025 46.86571...2023-07-18T00:30:34.159Zsentinel-2asentinel-2[msi]82.3781613263030TWT...S2A_OPER_MSI_L2A_DS_S2RP_20230323T230825_S2020...S2A_OPER_MSI_L2A_TL_S2RP_20230323T230825_A0265...0.9687472020-07-25T11:18:09.991000Z1s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/e73f...True{'sentinel2-to-stac': '0.1.1'}2023-07-18T00:30:34.159Z
    3POLYGON ((-3.00025 47.85369, -1.53274 47.84432...2022-11-06T09:16:29.219Zsentinel-2asentinel-2[msi]76.5553133263030TWT...S2A_OPER_MSI_L2A_DS_MPS__20200725T120536_S2020...S2A_OPER_MSI_L2A_TL_MPS__20200725T120536_A0265...0.9687472020-07-25T11:18:09.991000Z0s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/1ede...False{'sentinel2-to-stac': '0.1.0'}2022-11-06T09:16:29.219Z
    4POLYGON ((-3.00025 47.85369, -3.00025 46.86571...2023-09-09T03:08:50.038Zsentinel-2bsentinel-2[msi]25.6809623263030TWT...S2B_OPER_MSI_L2A_DS_S2RP_20230423T113853_S2020...S2B_OPER_MSI_L2A_TL_S2RP_20230423T113853_A0176...0.9680612020-07-20T11:18:06.203000Z1s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/d045...True{'sentinel2-to-stac': '0.1.1'}2023-09-09T03:08:50.038Z
    5POLYGON ((-3.00025 47.85369, -1.53274 47.84432...2022-11-06T05:16:55.629Zsentinel-2bsentinel-2[msi]19.9634043263030TWT...S2B_OPER_MSI_L2A_DS_EPAE_20200720T131521_S2020...S2B_OPER_MSI_L2A_TL_EPAE_20200720T131521_A0176...0.9680612020-07-20T11:18:06.202000Z0s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/ba8f...False{'sentinel2-to-stac': '0.1.0'}2022-11-06T05:16:55.629Z
    6POLYGON ((-3.00025 47.85369, -3.00025 46.86571...2023-09-09T09:10:47.384Zsentinel-2asentinel-2[msi]85.1731723263030TWT...S2A_OPER_MSI_L2A_DS_S2RP_20230423T090139_S2020...S2A_OPER_MSI_L2A_TL_S2RP_20230423T090139_A0264...0.9676062020-07-15T11:18:09.131000Z1s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/61a3...True{'sentinel2-to-stac': '0.1.1'}2023-09-09T09:10:47.384Z
    7POLYGON ((-3.00025 47.85369, -1.53274 47.84432...2022-11-06T05:17:10.863Zsentinel-2asentinel-2[msi]81.6961013263030TWT...S2A_OPER_MSI_L2A_DS_SGS__20200715T140105_S2020...S2A_OPER_MSI_L2A_TL_SGS__20200715T140105_A0264...0.9676062020-07-15T11:18:09.130000Z0s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W...roda-sentinel2/workflow-sentinel2-to-stac/cbfa...False{'sentinel2-to-stac': '0.1.0'}2022-11-06T05:17:10.863Z
    \n", + "

    8 rows × 42 columns

    \n", + "
    " + ], + "text/plain": [ + " geometry \\\n", + "0 POLYGON ((-3.00025 47.85369, -3.00025 46.86571... \n", + "1 POLYGON ((-3.00025 47.85369, -1.53274 47.84432... \n", + "2 POLYGON ((-3.00025 47.85369, -3.00025 46.86571... \n", + "3 POLYGON ((-3.00025 47.85369, -1.53274 47.84432... \n", + "4 POLYGON ((-3.00025 47.85369, -3.00025 46.86571... \n", + "5 POLYGON ((-3.00025 47.85369, -1.53274 47.84432... \n", + "6 POLYGON ((-3.00025 47.85369, -3.00025 46.86571... \n", + "7 POLYGON ((-3.00025 47.85369, -1.53274 47.84432... \n", + "\n", + " created platform constellation instruments \\\n", + "0 2023-09-09T07:24:43.535Z sentinel-2b sentinel-2 [msi] \n", + "1 2022-11-06T09:10:59.398Z sentinel-2b sentinel-2 [msi] \n", + "2 2023-07-18T00:30:34.159Z sentinel-2a sentinel-2 [msi] \n", + "3 2022-11-06T09:16:29.219Z sentinel-2a sentinel-2 [msi] \n", + "4 2023-09-09T03:08:50.038Z sentinel-2b sentinel-2 [msi] \n", + "5 2022-11-06T05:16:55.629Z sentinel-2b sentinel-2 [msi] \n", + "6 2023-09-09T09:10:47.384Z sentinel-2a sentinel-2 [msi] \n", + "7 2022-11-06T05:17:10.863Z sentinel-2a sentinel-2 [msi] \n", + "\n", + " eo:cloud_cover proj:epsg mgrs:utm_zone mgrs:latitude_band \\\n", + "0 0.000680 32630 30 T \n", + "1 0.044423 32630 30 T \n", + "2 82.378161 32630 30 T \n", + "3 76.555313 32630 30 T \n", + "4 25.680962 32630 30 T \n", + "5 19.963404 32630 30 T \n", + "6 85.173172 32630 30 T \n", + "7 81.696101 32630 30 T \n", + "\n", + " mgrs:grid_square ... s2:datastrip_id \\\n", + "0 WT ... S2B_OPER_MSI_L2A_DS_S2RP_20230503T232911_S2020... \n", + "1 WT ... S2B_OPER_MSI_L2A_DS_EPAE_20200730T131922_S2020... \n", + "2 WT ... S2A_OPER_MSI_L2A_DS_S2RP_20230323T230825_S2020... \n", + "3 WT ... S2A_OPER_MSI_L2A_DS_MPS__20200725T120536_S2020... \n", + "4 WT ... S2B_OPER_MSI_L2A_DS_S2RP_20230423T113853_S2020... \n", + "5 WT ... S2B_OPER_MSI_L2A_DS_EPAE_20200720T131521_S2020... \n", + "6 WT ... S2A_OPER_MSI_L2A_DS_S2RP_20230423T090139_S2020... \n", + "7 WT ... S2A_OPER_MSI_L2A_DS_SGS__20200715T140105_S2020... \n", + "\n", + " s2:granule_id \\\n", + "0 S2B_OPER_MSI_L2A_TL_S2RP_20230503T232911_A0177... \n", + "1 S2B_OPER_MSI_L2A_TL_EPAE_20200730T131922_A0177... \n", + "2 S2A_OPER_MSI_L2A_TL_S2RP_20230323T230825_A0265... \n", + "3 S2A_OPER_MSI_L2A_TL_MPS__20200725T120536_A0265... \n", + "4 S2B_OPER_MSI_L2A_TL_S2RP_20230423T113853_A0176... \n", + "5 S2B_OPER_MSI_L2A_TL_EPAE_20200720T131521_A0176... \n", + "6 S2A_OPER_MSI_L2A_TL_S2RP_20230423T090139_A0264... \n", + "7 S2A_OPER_MSI_L2A_TL_SGS__20200715T140105_A0264... \n", + "\n", + " s2:reflectance_conversion_factor datetime s2:sequence \\\n", + "0 0.969660 2020-07-30T11:18:07.218000Z 1 \n", + "1 0.969660 2020-07-30T11:18:07.217000Z 0 \n", + "2 0.968747 2020-07-25T11:18:09.991000Z 1 \n", + "3 0.968747 2020-07-25T11:18:09.991000Z 0 \n", + "4 0.968061 2020-07-20T11:18:06.203000Z 1 \n", + "5 0.968061 2020-07-20T11:18:06.202000Z 0 \n", + "6 0.967606 2020-07-15T11:18:09.131000Z 1 \n", + "7 0.967606 2020-07-15T11:18:09.130000Z 0 \n", + "\n", + " earthsearch:s3_path \\\n", + "0 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "1 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "2 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "3 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "4 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "5 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "6 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "7 s3://sentinel-cogs/sentinel-s2-l2a-cogs/30/T/W... \n", + "\n", + " earthsearch:payload_id \\\n", + "0 roda-sentinel2/workflow-sentinel2-to-stac/b2b3... \n", + "1 roda-sentinel2/workflow-sentinel2-to-stac/2aa2... \n", + "2 roda-sentinel2/workflow-sentinel2-to-stac/e73f... \n", + "3 roda-sentinel2/workflow-sentinel2-to-stac/1ede... \n", + "4 roda-sentinel2/workflow-sentinel2-to-stac/d045... \n", + "5 roda-sentinel2/workflow-sentinel2-to-stac/ba8f... \n", + "6 roda-sentinel2/workflow-sentinel2-to-stac/61a3... \n", + "7 roda-sentinel2/workflow-sentinel2-to-stac/cbfa... \n", + "\n", + " earthsearch:boa_offset_applied processing:software \\\n", + "0 True {'sentinel2-to-stac': '0.1.1'} \n", + "1 False {'sentinel2-to-stac': '0.1.0'} \n", + "2 True {'sentinel2-to-stac': '0.1.1'} \n", + "3 False {'sentinel2-to-stac': '0.1.0'} \n", + "4 True {'sentinel2-to-stac': '0.1.1'} \n", + "5 False {'sentinel2-to-stac': '0.1.0'} \n", + "6 True {'sentinel2-to-stac': '0.1.1'} \n", + "7 False {'sentinel2-to-stac': '0.1.0'} \n", + "\n", + " updated \n", + "0 2023-09-09T07:24:43.535Z \n", + "1 2022-11-06T09:10:59.398Z \n", + "2 2023-07-18T00:30:34.159Z \n", + "3 2022-11-06T09:16:29.219Z \n", + "4 2023-09-09T03:08:50.038Z \n", + "5 2022-11-06T05:16:55.629Z \n", + "6 2023-09-09T09:10:47.384Z \n", + "7 2022-11-06T05:17:10.863Z \n", + "\n", + "[8 rows x 42 columns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pystac_client import Client\n", + "from shapely.geometry import box\n", + "\n", + "# define temporal & spatial range to perform STAC query\n", + "xmin, ymin, xmax, ymax = -2.75, 47.25, -2.25, 47.75\n", + "aoi = box(xmin, ymin, xmax, ymax)\n", + "t_range = [\"2020-07-15\", \"2020-08-01\"]\n", + "\n", + "# STAC-based metadata retrieval\n", + "catalog = Client.open(\"https://earth-search.aws.element84.com/v1\")\n", + "query = catalog.search(\n", + " collections=\"sentinel-2-l2a\", \n", + " datetime=t_range, \n", + " limit=100, \n", + " intersects=aoi\n", + ")\n", + "item_coll = query.item_collection()\n", + "\n", + "# list results - part I\n", + "items = list(query.items())\n", + "print(f\"Found: {len(items):d} items.\")\n", + "\n", + "# list results - part II\n", + "stac_json = query.item_collection_as_dict()\n", + "gdf = gpd.GeoDataFrame.from_features(stac_json, \"epsg:4326\")\n", + "gdf" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "694275fc", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
    <xarray.DataArray 'stackstac-e4a20ff0df5f8779104284b323af0f6b' (time: 4,\n",
    +       "                                                                y: 500, x: 500)>\n",
    +       "array([[[9., 9., 9., ..., 9., 9., 9.],\n",
    +       "        [9., 9., 9., ..., 9., 9., 9.],\n",
    +       "        [9., 9., 9., ..., 9., 9., 9.],\n",
    +       "        ...,\n",
    +       "        [6., 6., 6., ..., 9., 9., 9.],\n",
    +       "        [6., 6., 6., ..., 9., 9., 9.],\n",
    +       "        [6., 6., 6., ..., 9., 9., 9.]],\n",
    +       "\n",
    +       "       [[9., 9., 8., ..., 4., 7., 8.],\n",
    +       "        [4., 4., 4., ..., 4., 3., 4.],\n",
    +       "        [4., 4., 4., ..., 4., 3., 7.],\n",
    +       "        ...,\n",
    +       "        [6., 6., 6., ..., 6., 6., 6.],\n",
    +       "        [6., 6., 6., ..., 6., 6., 8.],\n",
    +       "        [6., 6., 6., ..., 9., 9., 9.]],\n",
    +       "\n",
    +       "       [[9., 9., 8., ..., 9., 9., 9.],\n",
    +       "        [9., 9., 9., ..., 9., 9., 9.],\n",
    +       "        [9., 9., 9., ..., 9., 9., 9.],\n",
    +       "        ...,\n",
    +       "        [6., 6., 6., ..., 8., 8., 8.],\n",
    +       "        [6., 6., 6., ..., 8., 6., 8.],\n",
    +       "        [6., 6., 6., ..., 8., 8., 8.]],\n",
    +       "\n",
    +       "       [[4., 4., 4., ..., 4., 4., 4.],\n",
    +       "        [4., 4., 4., ..., 4., 4., 4.],\n",
    +       "        [4., 4., 4., ..., 4., 5., 4.],\n",
    +       "        ...,\n",
    +       "        [6., 6., 6., ..., 6., 6., 6.],\n",
    +       "        [6., 6., 6., ..., 6., 6., 6.],\n",
    +       "        [6., 6., 6., ..., 6., 6., 6.]]], dtype=float32)\n",
    +       "Coordinates:\n",
    +       "  * x              (x) float64 -2.75 -2.749 -2.748 ... -2.253 -2.252 -2.251\n",
    +       "  * y              (y) float64 47.75 47.75 47.75 47.75 ... 47.25 47.25 47.25\n",
    +       "    temporal_ref   int32 0\n",
    +       "  * time           (time) datetime64[ns] 2020-07-15 2020-07-20 ... 2020-07-30\n",
    +       "    spatial_feats  (y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0\n",
    +       "Attributes:\n",
    +       "    spec:          RasterSpec(epsg=4326, bounds=(-2.75, 47.25, -2.25, 47.75),...\n",
    +       "    crs:           epsg:4326\n",
    +       "    transform:     | 0.00, 0.00,-2.75|\\n| 0.00,-0.00, 47.75|\\n| 0.00, 0.00, 1...\n",
    +       "    resolution:    0.001\n",
    +       "    value_type:    ordinal\n",
    +       "    value_labels:  {0: 'mask', 1: 'saturated', 2: 'dark', 3: 'shadow', 4: 've...
    " + ], + "text/plain": [ + "\n", + "array([[[9., 9., 9., ..., 9., 9., 9.],\n", + " [9., 9., 9., ..., 9., 9., 9.],\n", + " [9., 9., 9., ..., 9., 9., 9.],\n", + " ...,\n", + " [6., 6., 6., ..., 9., 9., 9.],\n", + " [6., 6., 6., ..., 9., 9., 9.],\n", + " [6., 6., 6., ..., 9., 9., 9.]],\n", + "\n", + " [[9., 9., 8., ..., 4., 7., 8.],\n", + " [4., 4., 4., ..., 4., 3., 4.],\n", + " [4., 4., 4., ..., 4., 3., 7.],\n", + " ...,\n", + " [6., 6., 6., ..., 6., 6., 6.],\n", + " [6., 6., 6., ..., 6., 6., 8.],\n", + " [6., 6., 6., ..., 9., 9., 9.]],\n", + "\n", + " [[9., 9., 8., ..., 9., 9., 9.],\n", + " [9., 9., 9., ..., 9., 9., 9.],\n", + " [9., 9., 9., ..., 9., 9., 9.],\n", + " ...,\n", + " [6., 6., 6., ..., 8., 8., 8.],\n", + " [6., 6., 6., ..., 8., 6., 8.],\n", + " [6., 6., 6., ..., 8., 8., 8.]],\n", + "\n", + " [[4., 4., 4., ..., 4., 4., 4.],\n", + " [4., 4., 4., ..., 4., 4., 4.],\n", + " [4., 4., 4., ..., 4., 5., 4.],\n", + " ...,\n", + " [6., 6., 6., ..., 6., 6., 6.],\n", + " [6., 6., 6., ..., 6., 6., 6.],\n", + " [6., 6., 6., ..., 6., 6., 6.]]], dtype=float32)\n", + "Coordinates:\n", + " * x (x) float64 -2.75 -2.749 -2.748 ... -2.253 -2.252 -2.251\n", + " * y (y) float64 47.75 47.75 47.75 47.75 ... 47.25 47.25 47.25\n", + " temporal_ref int32 0\n", + " * time (time) datetime64[ns] 2020-07-15 2020-07-20 ... 2020-07-30\n", + " spatial_feats (y, x) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0\n", + "Attributes:\n", + " spec: RasterSpec(epsg=4326, bounds=(-2.75, 47.25, -2.25, 47.75),...\n", + " crs: epsg:4326\n", + " transform: | 0.00, 0.00,-2.75|\\n| 0.00,-0.00, 47.75|\\n| 0.00, 0.00, 1...\n", + " resolution: 0.001\n", + " value_type: ordinal\n", + " value_labels: {0: 'mask', 1: 'saturated', 2: 'dark', 3: 'shadow', 4: 've..." + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import warnings \n", + "\n", + "# define datacube\n", + "with open(\"files/layout_stac.json\", \"r\") as file:\n", + " dc = sq.datacube.STACCube(\n", + " json.load(file), \n", + " src = item_coll,\n", + " dtype=\"int8\",\n", + " na_value=0,\n", + " )\n", + "\n", + "# use same extents as for STAC query to set up the context for the datacube \n", + "space = sq.SpatialExtent(gpd.GeoDataFrame(geometry=[aoi], crs = 4326))\n", + "time = sq.TemporalExtent(*t_range)\n", + "extent = parse_extent(space, time, spatial_resolution = [-0.001, 0.001], crs = 4326)\n", + "\n", + "# load the data\n", + "with warnings.catch_warnings():\n", + " warnings.simplefilter(\"ignore\", UserWarning)\n", + " data = dc.retrieve(\"appearance\", \"scl\", extent=extent)\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "f861e35a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABHkAAAEiCAYAAABtHQ5LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e5wlVXUv/i0GELCZ8QFEiCiMVySC4jA9JG2Y5PTFCH64RLu93YnBCIKTmJk40Ee6DWZGMT0JOuPt5s69jj+DvAKj3G5vtzfJNT5CunHwdnSmHaJB4ycIKCo+YsI8eAwy1O+POqtq1aq1d+2qU+f06Z79nc+ZPqdq1967dj323t/9XWsFYRiG8PDw8PDw8PDw8PDw8PDw8PBY1DhqoSvg4eHh4eHh4eHh4eHh4eHh4dE8PMnj4eHh4eHh4eHh4eHh4eHhsQTgSR4PDw8PDw8PDw8PDw8PDw+PJQBP8nh4eHh4eHh4eHh4eHh4eHgsAXiSx8PDw8PDw8PDw8PDw8PDw2MJwJM8Hh4eHh4eHh4eHh4eHh4eHksAnuTx8PDw8PDw8PDw8PDw8PDwWALwJI+Hh4eHh4eHh4eHh4eHh4fHEoAneTw8PDw8PDw8PDw8PDw8PDyWADzJcwRidnYWQRDg8ccfX+iqeHh4VAT/XHt4LD3459rDY+nBP9ceHh6thid5ljhqtRquvfba1LbXv/71eOyxx7BixYqFqVRJ/Pu//zve85734FWvehWOP/54vOxlL8PGjRuxb9++VLrvf//7uPTSS3HCCSfglFNOwfDwMJ599tl4/9TUFH7rt34LJ598MpYvX46enh584QtfyJT3sY99DGeccQaOO+44/Oqv/iq+9rWvOdXx8ssvx/Lly/GCF7wAV199NQ4ePBjvv+GGGxAEQebz/Oc/35rvl7/8ZVx22WU47bTTEAQBPvvZz2bSXHnllZl8L7nkktw6eyw++Od6aTzXN954I9asWYMTTzwRp5xyCt7ylrfgO9/5TirN008/jQ0bNuDFL34xurq68Na3vhU/+clPcuvssfjgn+sj57mu1WqZfN/97nfn1tlj8cE/10vjuf74xz+O1772tVi+fHlc57/7u79LpfH9tUcnwZM8RyCOPfZYvOQlL0EQBAtdlUL40Y9+hB/96Ef46Ec/in/+53/G7bffjs9//vO4+uqr4zSHDx/GpZdeimeeeQb/7//9P9xxxx24/fbb8YEPfCBO8+Uvfxm/9Vu/hc997nOYn59Hb28vLrvsMuzduzdO87/+1/9CvV7HBz/4QXz961/Heeedh4svvhg//elPrXW8/PLL8cADD+BLX/oS/vZv/xZf/vKX8Qd/8Afx/uuuuw6PPfZY6vPqV78aAwMD1nyfeOIJnHfeefjYxz5mTXfJJZek8v70pz9tTe+xdOCf68X3XN97773YsGED/vEf/xFf+tKX8Itf/AJvfOMb8cQTT8RphoaG8Dd/8zeYnJzEvffeix/96Efo7+93bl+PxQ3/XC/N5xoA1q1bl8p769atTm3rsfjhn+vF91y/9KUvxYc//GHMz89jz549+M//+T/jzW9+Mx544IE4je+vPToKoceSxRVXXBECSH0efvjhcGZmJgQQ/sd//EcYhmF42223hStWrAj/5m/+JjzrrLPC448/PnzrW98aPvHEE+Htt98evvzlLw9f8IIXhO95z3vCZ599Ns7/6aefDt/73veGp512WnjCCSeEF1xwQTgzM9PWc5yYmAiPPfbY8Be/+EUYhmH4uc99LjzqqKPCH//4x3Gaj3/84+Hy5cvDQ4cOGfN59atfHX7oQx+Kf19wwQXhhg0b4t+HDx8OTzvttPDGG2805vGtb30rBBDu3r073vZ3f/d3YRAE4Q9/+EP1mPvvvz8EEH75y1/OP9kGAITT09OZ7VdccUX45je/2Tkfj8UJ/1xHWGrPdRiG4U9/+tMQQHjvvfeGYRiGjz/+eHjMMceEk5OTcZpvf/vbIYBwbm6uUN4enQ3/XEc4Ep7rMAzD3/zN3wyvueaaQvl4LD745zrCUnyuwzAMX/jCF4af/OQnwzD0/bVH58EreZYw/vt//+/o6elJrRadfvrpatonn3wS27dvx913343Pf/7zmJ2dRV9fHz73uc/hc5/7HO6880584hOfwGc+85n4mD/+4z/G3Nwc7r77bnzjG9/AwMAALrnkEvzrv/6rsU5vetOb0NXVZfycc845hc5x3759WL58OY4++mgAwNzcHF7zmtfgl37pl+I0F198Mfbv359i2zmee+45HDhwAC960YsAAM888wzm5+fxhje8IU5z1FFH4Q1veAPm5uaMdZmbm8MLXvACdHd3x9ve8IY34KijjsJXv/pV9ZhPfvKTOOuss7B27Vr3k7ZgdnYWp5xyCl71qlfhj/7oj/Dzn/+8knw9Ogf+uY6wFJ9rkrxTnefn5/GLX/wiVeezzz4bL3vZy6x19lh88M91hCPhuSbs3LkTJ510Es4991xcf/31ePLJJwvl69H58M91hKX2XB8+fBh33303nnjiCfT09ADw/bVH5+Hoha6AR+uwYsUKHHvssTjhhBPwkpe8xJr2F7/4BT7+8Y/jFa94BQDgv/7X/4o777wTP/nJT9DV1YVXv/rV6O3txczMDH7nd34H3//+93Hbbbfh+9//Pk477TQAkQTy85//PG677Tb8xV/8hVrOJz/5STz11FPGehxzzDHO5/dv//ZvGB0dTckwf/zjH6c6FgDx7x//+MdqPh/96Edx8OBBDA4OxvkePnxYzedf/uVfjPX58Y9/jFNOOSW17eijj8aLXvQiteynn34aO3fuxJ/8yZ9YztIdl1xyCfr7+3HmmWfiu9/9Lt7//vfjTW96E+bm5rBs2bJKyvBYePjnOsJSe66fe+45XHvttfj1X/91nHvuuXHZxx57LF7wghdk6mw6b4/FCf9cRzgSnmsA+L3f+z28/OUvx2mnnYZvfOMbeN/73ofvfOc7mJqaKpS/R2fDP9cRlspz/c1vfhM9PT14+umn0dXVhenpabz61a+Oy/b9tUcnwZM8HgCAE044Ie5YgOildMYZZ6Crqyu1jWxhv/nNb+Lw4cM466yzUvkcOnQIL37xi43l/PIv/3Il9d2/fz8uvfRSvPrVr8YNN9xQOp9PfepT+NCHPoT/83/+T6ZjsOHd73437rrrrvg3d+rmiunpaRw4cABXXHFFvG3Xrl1405veFP/+xCc+gcsvv9wpv9/93d+Nv7/mNa/Ba1/7WrziFa/A7OwsLrroosL181j88M/14nmuN2zYgH/+53/GfffdV7hMjyML/rle/M81nxS/5jWvwamnnoqLLroI3/3ud1PX1uPIgX+uO/+5ftWrXoX7778f+/btw2c+8xlcccUVuPfee2Oix8Ojk+BJHg8AWeY+CAJ123PPPQcgepkuW7YM8/PzGZUI75Ak3vSmN2HXrl3G/S9/+cuNck7CgQMHcMkll+DEE0/E9PR0qp4veclLMt73ybO9XEW5++678a53vQuTk5MpeeVJJ52EZcuWZTzi/+QnP4nz+LM/+zNcd911qf0veclLMg7hnn32Wfz7v/+7uoLzyU9+Ev/lv/yX1EpFd3c37r///vi3XMUogpUrV+Kkk07Cgw8+6EmeIxT+uV4cz/Uf//Efxw4iX/rSl6bKfuaZZ/D444+nVgd5nT2OPPjnenE/1xp+9Vd/FQDw4IMPepLnCIV/rjv/uT722GPxn/7TfwIArF69Grt378Z//+//HZ/4xCd8f+3RcfAkzxLHsccei8OHD1ee76pVq3D48GH89Kc/LWTH2qxMdP/+/bj44ovxvOc9D3/913+N4447LrW/p6cHf/7nf46f/vSn8YrAl770JSxfvjzFtH/605/GVVddhbvvvhuXXnppKo9jjz0Wq1evxj333IO3vOUtACLJ9T333IM//uM/BgCccsopmRWHnp4ePP7445ifn8fq1asBAP/wD/+A5557Lh7AER5++GHMzMzgr//6r1Pbjz/++LgDaRY/+MEP8POf/xynnnpqJfl5dA78c700nuswDPGe97wH09PTmJ2dxZlnnpnav3r1ahxzzDG455578Na3vhUA8J3vfAff//73Yz8AHksH/rk+Mp5rDTSp9P310oN/rpfGc63hueeew6FDhwD4/tqjA7HQnp89Wot169aFa9asCR9++OHwZz/7WXj48GGjV3+OD37wg+F5552X2iajN11++eXhGWecEf7v//2/w4ceeij86le/Gv7FX/xF+Ld/+7ctOZd9+/aFv/qrvxq+5jWvCR988MHwscceiz8UbeDZZ58Nzz333PCNb3xjeP/994ef//znw5NPPjm8/vrr43x27twZHn300eHHPvaxVB6PP/54nObuu+8On/e854W33357+K1vfSv8gz/4g/AFL3hBKlqAhksuuSRctWpV+NWvfjW87777wle+8pXh2972tky6TZs2haeddloqSoINBw4cCPfu3Rvu3bs3BBCOjY2Fe/fuDb/3ve/F+6+77rpwbm4ufPjhh8O///u/D88///zwla98Zfj00087leGxeOCf66XxXP/RH/1RuGLFinB2djZV5yeffDJO8+53vzt82cteFv7DP/xDuGfPnrCnpyfs6elxyt9jccE/10fGc/3ggw+Gf/Znfxbu2bMnfPjhh8P/83/+T7hy5crwN37jN5zy91hc8M/10niu/+RP/iS89957w4cffjj8xje+Ef7Jn/xJGARB+MUvfjFO4/trj06CJ3mWOL7zne+Ev/ZrvxYef/zxuaEbOVw6l2eeeSb8wAc+EJ5xxhnhMcccE5566qlhX19f+I1vfKMl50L11j4PP/xwnO6RRx4J3/SmN4XHH398eNJJJ4Xvfe9749COYRiFLtXyuOKKK1Ll/Y//8T/Cl73sZeGxxx4bXnDBBeE//uM/5tbx5z//efi2t70t7OrqCpcvXx6+853vDA8cOJBKc/jw4fClL31p+P73v7/pc6c6P/nkk+Eb3/jG8OSTTw6POeaY8OUvf3m4bt263M7QY3HCP9dL47k2nfdtt90Wp3nqqafC9evXhy984QvDE044Iezr6wsfe+wx5zI8Fg/8c31kPNff//73w9/4jd8IX/SiF4XPe97zwv/0n/5TODw8HO7bt8+5DI/FA/9cL43n+qqrrgpf/vKXh8cee2x48sknhxdddFGK4AlD3197dBaCMAzDsiogDw8PDw8PDw8PDw8PDw8PD4/OwFELXQEPDw8PDw8PDw8PDw8PDw8Pj+bhSR4PDw8PDw8PDw8PDw8PDw+PJQBP8nh4eHh4eHh4eHh4eHh4eHgsAXiSx8PDw8PDw8PDw8PDw8PDw2MJwJM8Hh4eHh4eHh4eHh4eHh4eHksAnuTx8PDw8PDw8PDw8PDw8PDwWAI4eqEr0Il47rnn8KMf/QgnnngigiBY6Op4eHgACMMQBw4cwGmnnYajjirOT/vn2sOj8+Cfaw+PpQf/XHt4LD00+1wvVjz99NN45plnctMde+yxOO6449pQIzd4kkfBj370I5x++ukLXQ0PDw8Fjz76KF760pcWPs4/1x4enQv/XHt4LD3459rDY+mh7HO9GPH000/jzBediR8/9ePctMuXL8epp56Ko446Chs2bMCGDRvaUEMzPMmj4MQTTwQQ3cTLly/P7P+b6WkAwNe+9jVccMEFqX2X9fW1voIdDmofCa1tZFt+7WtfA4BMu/K2pjQatt+4Q92+8fr1qd8yf16OBNXLVCdZN20bYfTGG1PtI/N1vX8oj8V+vxU5j/379+P000+Pn8+iiI97FEDjsd4HYPP16+NrNhrfP/sAACuwolAZ+xp/V4htxXIpho3Xr4/v+31inyyX1+Wu6dtxWd+VAPbF57mP/f8309N4e9+VxnL/9OLn496jV+H8174WJ379Dvz5F54wpt2Hfdh8/fWZ5/NPL34+/vwLT6Sez9Ebb8TWi0+z5ucKfj505tq1oHbZ2LgXADTuhxvjNEXvhXT+UR20NnDPg+rhjo3Xr0+dgyv+Zno6fib5d1Mr0HWk7wBw4PwrMmXL8994/Xoc+7Xb8dE9Tzb9XJv6605Gum07E38zPZ3pl13q7HpuvD/k6U3b+f5v/3/pAbR2z3kkaOf91qr+usq+dCH6a1MdZD1MdSlbP9fjbOna2Ta2/q5MX1imfBoTlOmz21HHIrjw0gtx3/+9D0BybmXq+Oh+4PTTUfq5Xox45pln8OOnfoxHf+9RLD/WPMbY/8x+nP6p0ztqLBKEYRgudCU6Dfv378eKFSuwb98+9UJNT05mtvUNDLSjaosGWhsBejtNT05ibm4OANDT04O5uTn09PSox1M6iW1j47l1Gq4PZbbZyqG6bB0bx/TkBPoGBuP9Iywv2s+P43Xlv03lEY7k+2h6chJ9AwOZv4S85zIPdDz2IR40EkJEr8GReh1bx8ZhEoeHALas7cLmXQcLl8/zaFZ8Plwfiu95+l5FvkUwNTmBfvZMaKj11jA7M2tNM1wfwtaxsdS26DqMYaRej89zanICc3Nz2DY2Hj/LtG90bRcAWK9LiDCVn6wDbad7AQCCRotOTU6gb2Ag/l0Eo9r9EuwBwu7CedmusbwnAGD57puxedfB1DkVwfTkJPoHBhEijL8P14fQ09OjXvvRtV04Z+OtAOzvMroOo2u78PSzIf78H59o+rkue3ynQL7vOgEj9TqW7745/n3OxlutdeTnQGOAMudkGj9w8HIe2H6V033n0T60sr92RRV9YqvyaHd/7YJ21anZctradsGeRqHV9tedgLz6qeO3/QBWYNH3t0UQv8uu3JdL8qy4vbPGIp7kUVC0c+rEwVmngA/WTG0kSR4JTrjQXxP4BE6SOjxvmacsb6uFNAqAxpQpNNZdklamc+PQiI2ljiLn2+pB41SDyDN1ekQkEBaK6AkRxmQDn9hTviiYd5m60LPV09OTun5EBBQtl0iEIvc+vVtcyyOSiD/bSfnJcx0AGVKkCLnD7xO6R1wIMRe4XiuNOCuK3t5ezM7MxgQXgSb+pvvflVCi6x3sD5oaNC5GkocTIJ36zudk+wPbrwKQT/Jox7umBbJjBF4HDlM6j85BJ5A8VaGqybrMp0y+zY0dIpQ5vmy5VRA6HOl+enGTKEXTlTmu2TbKED2e5DGn8yTP4kCZzsmkPvBwJ3qAfPKFYCJ78lQzkigy5eOijJAPzkhjhdt2DnzAupD3CZFTzU4Eq6hHp5A8NtR6a7jo2T2Z7XKiO7q2C/cc3Z3qFMsMrHjHKsmnhBAZxEh9KCYtXAcTMi3fxlUnRFZs2nUwta/WW8PMzEystpEwqWXsdaqmGypCMmXrEZFnnNSg54TUQ3nnpRE8PP8y9eMtY7vGRCRVQfAQqSUJG7q2mtopqW+xa1nVc72QAyupYGnFu32pjy0k8fXA9quwf826Be+jlhracR9NT07ioosv7giSp2j/2+xCiTy+alImr35FiAVbPs3A1me1mphZaOLHtb+uopxWEzwqPMljTudJnsWBThg0LiW4kDwyHZBVw+SZcnFIws0k/9bypUmdhK0j10zBCFztsNQH6kWxWEgegmaOwie5NrMhlw53dG0X9q9ZF9+T28bGVRWInGRzdY8sRzUXEnWSZmh0HvvXrIvNNYjg2bh+fer8JTSSJwRik0ZOREhzKDMC9uzld1l5yhvKI2q79HPd25tvYpYHuk/oPVSFiicPZU2yOIi4o3vKFby9p2LTVrfjFzPJ49/n1SNPteNRDKYFyFbfu53QX7caRSfRzSp3XAgEmV5L10oipJXkEeWvEUetLHOxwOXau+YD0/Ge5DGn60CS58iJf+axYHAdSPQNDMQfICJHiHiRf3k6fhwvS5ar1UPmS5ianMDU5ISxUw2QTI5tUxlNyeORoNPbg19fIj7kfSYnwyZCxXa/hIiIQjqWSMfh+pCqNAsa/6YnJ2OFiKn+9xzdjVpvTS2XS5437zqI0bVdTMFzAFvHxrBp1wFs2nUAAHDRs3sy569hanICw/UhRqZE5A6RHfRcTDWIHzn5ACLCIfpexhNOAnneRIhRrvK5np2ZbdQ9IW8liUv1NmHTrgOp95ONMKlqlSWI30pR243U64WOn56cxLaxcYzU6+r5ufhJAaLr7Hq9XPPsVBRZtDBtO5Lg6mtH68893DE9ORl/6Pfc3FxqG21fStD612ber7b+mi+QuJajkTXyO//wY7R8ZJ2AaDHFdmyR+mp1dEGV/XWRvMuc21KCHMs0k8+RTpgtFXgljwKv5Ok8aCZOVaxEyXw1J9DkiFd26rzD5o6YNZOxdq6gLVVUveLvorDIXmv9dUkT6qxpQTGCgpwDS3XZ9h07MuqSxMfMmLEkkw8AUqysWbUqVt1wkzQidUjp4j5sinLX2mOkXsfuvXtTZmim9ucD1sjxb/SMSYWQpgAK5oFwdbo9MnbloqygkYa3h3atSaVkr7u9rXSVTPKGaW6AHLL8g4Y5X765C/fx1Ix5jH4Pps81/f4LsPOO2/H2K69cdEoe/x4vDt9m7cNCm4UvhJInz7wpFH9lGnlsWZRVUdj6axTYZ8u7qrq18libAglwO++FUBR1Un5VI25Pr+Qxp+tAJQ9Cjwz27dsXAgj37du30FXxsGBqYkL93myew0ND4fDQUBiGCMMQuf+Gh4ZS36cmJjIfj+bR7HPJj5+amHC4stE/fg/YriVde4m8PPX9OuTx0X0awXROIfvrcl/L58p0zjx/+h2mytPbiKdLf7K14uWbnj0Jrf68XXlb5F/7dBvI/EYv7ErVw3QPZFsN7D2Tbpcq/oXir61OdD5hTjrTsdo5yvPQ0kXbEO7bh8qe605FXrv6PsKjlZD3VyvGThLV9dfl3n3adtcxXZn3rS3fImWG4rtL3mXPSeZvykv21a71b7bdyuTZzDFF8626jFbVuapywxAhmuyvFyPid9GV+8LwD0LjZ9+VnTcW8SSPgsUwaFwq6CQShCZofCKsdWy2ySFNmDrpvJYKqho03nX77eo1c+n40h08h/4qLdqZuoIfU6vVYrJB5pVXfvoetdchTZbYz4fXx3QG8rmiZ4/+8vxpu6x78qyGKdLEVPfkOiUkC5XF25GeX/ms29rGVDbtdyUWywyiRy/sij+yjUz1L3rPlYF+n6X3VkneLjRsk+c8os3Dw4TFOJ6o6rnGvvJEgEaYFHnfFpn8yrQagWKrR9Hyy5BZtmPKnGPRdir6z5XcshFTnfqvk+um1TWuryd5FhXJ4821FHhzrfZioWXFZB5DdeAmW1rkIk1WyUNKUz6Al6dXiark33fdfjvefsWVuen5dSaHyNzcKETamXAI8j9DJk7l5dEhbK/lIJMvRX4KkZjr2MzRyNSLQCaJ6Tok//OSpXM/wH5+NhOgbGQmc148upUmPTe1mSnyEXcQrYeET2pX640iiuUjUKXkdK+0ygEzd65tiwLG28gUQcuE/HdZgOmG+RyPSqaVwa/7xg3rsX3Hjo4119LO2+bLJM9Pj+8PEvj2WLpot7lWXj9rM8nSjGerhss4wGZWTBhuRNQsY57VahMmrXzb/nbVxQWdbi7VCsh7w+X89+0HVnhzLT1dB5precfLHguOIg4WpycnVYei0qFgEWwdG8s4cianzzSJz7PZ5k6i5+bmCjs9rRLc6eJSc6xYBb79/20AkA53rUFe5+W7b8aaVatS+/sHBtHX8BlD7urk4KXMwIGcKgNpR8QBmx7zfCnEN7/ec3Nzxuk79/cTETDJNJzX38VJp+n8Rtd2YWpyopCPF7N9fVSr4foQhutDxsGrBv5uiZwCBxip17F8980xubNtbBxbx8bFeyiMnUdvXL8+fqZtz9RI7Gw6TPnponulCFxXX+g+prahaGi0jYOcM3OSJbmv7Hdq3jt6uhFVi9pn69hYvBSY5B99Iqf20Rluv3GH45kuDLTzNjkGzmsj0375rC91SKfAHh7NwubDxSVNwD6tgEu+LlEdtwmCx9RPmMqz+bChj22bK6RTau1aVNXWcuyyECjSTlobu6QtA1v+ZRw1r2iuOh7txkJLiToRnST/PlJQRIpcpWxZ5sXNRRKJtFkWmpiVhCmTEjIDWQjfPAiL+9ZYDKhS/k1thBAGUyeTbDVMHVuVnX/e8dJsyGZG5FIenfPohV2pY+l+J9Mffm5aO9nPyQ4Xnzgu7SRNvmIfPnvSJlxafq18TvLq3sw9w82w6Py0a2lrR6plnv8cXlfjue7hJmvptLlnswR88jT7fl+K72uOIqZrHnYslrarur8u2i+Y33vl37tFy2vFv1qtZjwnk3lY0bq30vzKVp+865NnJu5aputxzbZJK9rR5Xxc2qn0+XhzrUVlruVJHgWdMGj0cBvMpMkY+3GmgaY8VvMLYn9Z6kCIDMnTigEaz5OTS0sNVQ4a0xNi3S+PRujxdpX7Ku9MG/84ucL9vtjvw+Tes5eThpZeDio13y9mHwBmlHE2zP3v2MrUfA3Jf3QOVaPMORU7/+x1MD/zbuW0chCc6xuiw0mehVqAWGzwwQY8ONpJ8lT5flsI/zKdlKeWv2s/kpdX1QROleW7pm3XvbRQRCIvl8Z+VfbXixGLmeTx5loeHQsXEy4yOXE5bm5uLmPGRL4jpBkYN60wyUrJPMJkmsX9nnD/J4SqZOrc38jWsbHY/MzDDPJfEkEXs8prvnVsXL2OAIw+ULR8XMCP4XWNpNq6aU2AAFvWnhjv7R8YdDARCti3IJWe+vSZmRlMNcwWgSi8+jkbb83kop0nPVf04WVtY/6uTHLiEIjLJr82AYLYJ4HetkFsliV95Oip802VXMDzKZKblN7LuppMDjbvOoj9a9ZhanJC+BKyHa23hcmMge4Bfv1Nx5Q558XgEJC3a54JbJ4/nqUMm9+ipXLuVZmYLZX26CTY3j9l38dVQsu31lurPE8XSHMhuc9mci77U1vfzb/nmWc1Y94uy5NmypSva96mtNJE3KW/doGLudZC9JVkPriY+muPNLzjZQXe8XLnoahzZunQkX6Tk2XukwRIfJTQJJ58nPT09BgnymHjlUdEkZxoSf8okpDyREwxVO3IMUx1WcWm+SFC9QiT8zruGJd+33N0d8YG33R8yIZdIw3HujJPAvcz0yxC0a2P1Ouxjx26v21Ekoszv3wHjeTxSHdo7VZG9noRCct9BpVxBFsFQRTVkfIrelyYej+mzyFduzzfYq714ttsjp5d0Kwjx8XSXy91J8OSuDgSznUpn2OzaLfj5TIo4mxXS1u1s95WOf+V+TZz3kWPBcoHoGgGrS7P1F+7jnlcji3TX9vyqaI9vONl73jZw6NSEInSzICKJj+S4OFRtOg77ds2No7+gcHMqgD9plXdvHp5gqfzEKlCJmP1RdHOL4lMJLfr2L9mXcbR80XP7kk5zdWOJzUF14lsGxvH1OQE9q9ZlzqWvpOaa7g+pCoweFobqFQOToi4OEx3Hexov5OBCXcSnHW6bFah8HpkCZ6+gYGMU+gyz+XU5ITRiberM0aXlU4TAgTxtYi+k/Nj831ddGVbU+3QNv5uc1nhpX1lHXp6dBaORAf/RYJFeLQGVSgmipIV8neZ97WL8qVqVKG6BNz6a/6b9xP2hZzqzz9PwdtsPfi5uZIxtvvGRg5p40Lbb3nuNmWSKQ8tne+vFx86huT58Ic/jCAIcO211wIAHnnkEQRBoH4mLQMK0zHbtm1r05l4VA1tMmaCHHBK8yxubsPVOxQJh6t5gCRcpQSpCyiSllzJ5uVVSfDY5OJH2kC7LPYh6vD6chQornBJu21sHJt3HYxNX/avWYdzNt6KTbsOZNQy2QFDNFmniETD9SH0DwzG0YsIMpIVme3RMVqdZNkc05MTMdHD762A/Rup1zN5RBGp9PPRBiNSCs6/S6KHm3hJcKLFRpiECBvPYHPrWkQS9g8Mxtd2dG0XRtd2pUg7l1KaXWGja0GkXmSuppdTZvBrgzRt5d9tZA7VZUWFdakSZd6neaZcS/EdzSONmaKOLWbIaJVHIqm1kNjX+GsjaIr210XT2/sT93xgyacsyV+0HhKt6K/lPg0uJARPq51f3jkX7evKL7SkYSpTX8TT9/H65JGTpmPzYOqvbek7tb/20NER5lq7d+/G4OAgli9fjt7eXtx00004fPgwfvazn6XS/eVf/iW2bduGxx57DF1d+srpj3/849Tvv/u7v8PVV1+NBx98ECtXrnSqz2KRfx/JMClotMEXpZO+czihwxU+0u+KZopAplyUP+UtCR2eJ0/fLJa69F9DK+TfrmZTRWWz/HhuVjTdMBEic0BJXmqEoUsZ/DepVEwIEBQ2saHzn1byTkwXdGKBH0/7OXlaVtrM9xcdmCXXpHz3l/cM0juhCrO5dkK7102mCpSmyMp2Ju1+AE3Ivzupv6Z7osj7+Uh8ly8W+GtTHq3or4uauTTbZ8h3XBHlT1nCpgrTGtd3uCuK9NfNllUFFrr8IpDX21R323ZCUWXaQvTXixHxu2h2H9BlOeeD+4HaCpx11llYtmwZNmzYgA0bNrSvogoWnOQ5ePAgzj//fOzYsQNbtmzB6173Otx0001q2lWrVuH888/HLbfc4pz/W97yFhw4cAD33HOP8zGdNGg8UkEmWs34y+D+Q3iektwBsj55CJL8kRM2WrHfOjam+v2ReQBpvxlVDiKX+oC0ep88yeBtpKQfG33yq/vrkTCRMdwUrOxAhfz11HprWLNqlUow8jrWemsx0VXrrcXbOfkliatsvd2RmKAVOUYvg9e96DZJtPEamQigqv32LIYBKbVT3nkAxSdEnU7yuFxvnkb6R6LvHu0BX+hxafel3m8uFFrVXzeDVr5r+XiiWYLGNpmXZVRhKuRSp6LHFiErXLfZtpfFYuh/yyDvvBaqv16MKErydFLbLLi51oYNG3DppZfiDW94gzXd/Pw87r//flx99dXOef/kJz/B//2//zf3mEOHDmH//v2pj0d7YJM+c1VMGXl0T09PSl7NCZytY2MpR8k00evp6YnLlY6ZiQCw+TKh1XsidbS8+KBSTgxMkNG/+Hba5weqaeQ919Sp9fbWAADLd99cKtoFyZ0TEx237rKvEQGK/pH5j0QIZOqVV8/Nuw5idG0XNq5fH5ttyfuDTMdCRGQOmRpd9OwezM7MYnZmNnWvS2mv/BApIqkRbr6UHF/GD1IWo2u7VOJmzapVqW0awQPYo5X19vaCzKD4/qqfs7IDTDLfo7+tBL2/TJG2gLTU3UQGSt9FJl9GNrS7v3a53jxNnrmSKeqUNwFqHrINtd+a2ZVv+4WHa39tMycyoQp1TB7ku88VvG8MxV+ZP5+Qh+w7f/fa6penBCl6bN4xWlnNKoFsC01lsBQJHqDY/eDapgtu9uNRHAsZv/3Tn/50eO6554ZPPfVUGIZh+Ju/+ZvhNddco6b9oz/6o/BXfuVXCuX/kY98JHzhC18Y52/CBz/4QXpfpj6dFOt+KWJqYiLzXf6toozhoaFweGgoDMMwHB4aCqcmJtSytWNlfYaHhiiqcIgQcd6UL//Lt/OPlr+pfNtvmU9Vbdap2LdvX6Hn0vRcYx9C7R+BX+NaraamreLf6IVdxjoQpiYmrHnY9rvdD4jPmc41mwKN/6O/1D6hUmbIPlQ3yoXqk9cuPA/Xf3T/R895ul3kNTXla9qePo8iSM5Dvjds563dE7VaLXO/aNde5uHSjqZ7XLs/89rK9s+Y3z5U8ly3q792fc8eCe/kTobW9rJvxh5/nVqFVvfXzbyLXP61Kt8q6qG91+V733RM3nkVPe+ifXVV7VFVma2oe5F2LtpfL/h9WbC/Xgqgdxlm94XYE5o/s8Xeee3Agil5Hn30UVxzzTXYuXMnjjvuOGvap556Cp/61KcKqXgA4NZbb8Xll1+em//111+Pffv2xZ9HH320UDkeabiuis3NzWUUKlLh0mzZ5LSZlDpS1aDVlerD03EzLA5p3mMKz87r4yonl6Zj1F4SS9HZZRUo8lyHSO6FrWNjkVIm2JMxV+IwqWlG13ZhanIipXigESvfpoU/p3uvyDOk1S0vchYhaJS5e+/eRj7pnBJnvmGcnh/LIVcV+wcGWW5hfH/KMrQ6FV05TCvyovzpGsi2dF1hJIUMOa92R9BQCUTXenpywskM0HTOI/U6ZmdmU/dLiMRxOF1rbbXapR01hRMAbFLuT55vUVD9uQPx0bVd+NOLn18on4Xur4u8Z4u+k72ypFrYnCVvHRvH8M46+le6qWk9Wouyz3UAAMGe6MPQjOqg1YoFqUbiHwmtn82D9n6W/apJNcSPtSmLZL7tUnm4KKaKKFJaoeSR/S4vTyq3ivTXNoWTV9l4aFgwnzyf/exn0dfXh2XLlsXbDh8+jCAIcNRRR+HQoUPxvjvvvBNXX301fvjDH+Lkk092yn/Xrl34jd/4Ddx///0477zzCtXN++RpPfiASvreMaXPGzATCdNqsmN6cjIOrc599fDfkgwiaOQSry/31SPTH+kkTqscOfJOkxwSy+2mQUGIML4fgMQXzrDi40fLW/o6yZOVhyzFiPAnozltzicngsz52FKWsV8PReu1YlDFyTOTn6MQbr6SgHL+eFpzZlmY/BdA2W47xpSOQw7ey5xhrbeGi56NJmCbdh1EgOR6zc3NYdMNN1TyXGvHL/R7c6HLPxLB+1YicKYemkx+r47uYhk8waNaVNVf79sHrDD01zY/OJ3ma6VsfaT/Hdc8mjn/hWq7qsqtoq1biSr7a+3eaNY80Ub8eZ883iePEy666CJ885vfxP333x9/uru7cfnll+P+++9PkT+33HILfvu3f9uZ4KFjVq9eXZjg8Wgv+gYG4oHWSL1uXE1zCT/rQvA0EwKV+/ahSTwROvK3rLtU2tjUN7YIYXy/X3lsDtqA0RRBwqQuCRDEigoieIDE5xNtD5EO/02dKG0LEfk6GakPOdMQ0bFBXI8swaMjmEfsa6a3t5baR/eU5v9pdG1XCYKH8jR5vqkG23fsQP/AYEb9ltQjjP/SPxts7yEO7lOpGbiutEREVfa4AECgrGYXRYDsvW66900rz0B6tZJUSNGzEcYOx7fv2JFL7jcL2W+0653p6u/Fv8OrB+9Xpx6axNRDUZ9NhM9wfQiYD7Ht8tbee4sNVd6LVea1Amn/M/SdK2lNyhUNtvcWT9MspFonz++JrBc/Z5nHYodxbFJR/qYFOlvZdJzLtS97f/D+enpyopL+2vS9SH+t5cs/RY716CwseHQtjlqtlomu9eCDD+Kss87C5z73OVxyySWZY84++2zceOON6Ovri7ft378fp556Kv7bf/tvePe73124Hl7JszCQ0bCKIm/VtGjUDVs+pihdEppKh9dFI2/y6nikrg5XvTLIO1ypVpArhFOTE7Fah8CdxpJ6Z+vYmKIoi3IyEQE8nHmIsPEcjKupownyYJyrCbYw6rweo2u7sH/NulT5PF1RFYdN8ZQQUvpxVaw6FjOryqpv5LWQoGtDplgu14LyBaL3hLyPKkWwBwi71fbkJKQNrZxMUJuS6ixEWOFz3Rn9tStB6NFaTE9OJsTOzqypNeCvCUfV44pW9dcSsr+mbUXRDKGSl75MflCOMSmZXI61lWMqy7SvGbSDrDKVYdsOmFVhrUYzyiOUPLZ0/l7JY07YgUqeBXW8LKE5Xr7++uvD008/PTx8+LB6DIDwtttuS237xCc+ER5//PHh448/XqoeRR3GeTQH7tTY5ASxGceI0vFxu5wsujiR1urmnUDqaPa5pOP/9NeeHzuBLeo0kKelPEYv7GL5pUH3tHQGbMvX9q9Wq6lOfLNOGCVMzhrzMTUxEdZqtcJtZXLQbHN8bNpnOucy55NtGbOjSpm3iwPlvPO0/ZPOifnv6hxNJtdV5ltFGZQvObs3nSPtr+q5Lnq8q2P7IvnZPlWj6iAFSxVa+/t+NkIr26C65zrtpLbq91UZR/+uaV2d/Gt1MDvi149t5nyq/ufqLLpM27Wqrgvu0LhgfRfsn3e8vKgcL3eUkqdT0Gkrg0sdpODhChm5olR2lYlWVcnvj6agWShoK74u/omOVFS1Mvinv/Z8HHd0tDZBygaXlRSTOuKeo7sxMzOLLfH3GZAPmDTMRj0me+rh+hCW774Zm3cdTIUB13z+yPz4Whz3GwQglZdMq4H7DCqzasQVMnlwKUNTViXHN6fmkXUoUvc8NLtKWOZ4qeCR11uef1WqqqnJCczNzcX3bzZtVIelouSRStGF8KvWSf3bQsNVGeuRRlX3UCt88hDK9tdVwcX/iWv5UjVcpSrIlraq9ukEM7Jmzdps11Bu74Tz5aiqv3ZO65U85oQdqORZMJ88Hh4ETmpQ9CuJZggeACkHi5022OP1MZl9eVSP/WvWYbg+FHfkIfsA0eSYTLLIHw030QIikmhmZgZAiE27DjS+m4gGM/kgByg02Ns2Nh5PkDeuXx8vpvBnRrOXTgyjIn8xdI9R/WdmZlPOiu0IGu1UfD2A1224PpRbpmsJ23fsyFwLQhF/EOR7iN8HElURPEDzg8MRETXNpb3o/qH7OV2HbI1scvY88GP7BwZTbcevV5l7aTGBT5TL+oArg07s3xYK2kJRp0O7V1pZb1u0zk4E709kfy3hSrAU66nTecv+2gWmMgPx13RMkUm5De0kKqp+2zd73bVjTH6d5PZmCJVm2qHI+Zbpr/Py6CRiy6MAFlpK1Inw5lqth0lqLn8PDw0xk5fiZXSKpF3Wg9eHzBbkdls+RyJaa9aRlaWSGVatVrPKV/n1s8FmriXL5B+EUK87hHSX5y+l0fQsJPuTXEzmVJq5Da+TLJ+3BzfxSuqvlyPrnCfHr9VqTmZM1GbydxiG4prpx+Zdq1b+S95d2fNw+cfbZ/TCrvj+M59xsX+a2aItTbItiyqf6ypNffP6Jv4u10yztN9lytX2N3NO7TQpawd4/Uk2bzqnxXCura4btVOeGXmzqOq5hmKuZXuDuZoHV/X+K3KMq/lWM3nZ8rb1rTxPl7xd+mvXPr3ouTf7b8FNntr8L+98C5nSeXOtRWWu5UkeBZ7kqQbSx470vaOB0hO5Iz88HeXV6eDnSueWN7ju5EFo1XA91yong9n7Ru/kRi/sEvXT/cMkHaUE4mNCtQS9TDlxzuaZflZkZ206H06ayjppfopCsU+eb5RHscEFHVeUSOF14cQbP4/ED5DZf44GU11dz8f2r4gfH+2fRpDl1U2evwb5XjLly9u7GX8PJrTDJ0+r3qcu7+5OIRZ4P2wjQhYrTEQP328jN5ZSW9igjclMhFgzqJLkcX0XN5OumX95C0Fl6+j63jf5v6uqHs3+WyhSpUy5zfbXraxbmTIq98/kSZ5FRfJ4nzwKOsXGf6mARxvifncAuxkWpSVIXzXNRuNqB7gcmkfikr6HNH9E0ofDYve3IKOLFT2Pqmz8sQ8IG4drElRpBrRp14H4e1TvQUwznzDcb04R8BevtMUP4f5aDhCg1lvDxvXr42eM6ka5jDAfPiGi8J2myFB5/gbCTOqoXR7YfhUAYNOug+L4ENzzSwhzpLEi4G1E0ZrIf07I6tU3MBBHCuOlUjQ0gq1O7bLD18qhSGkBAqsvIgl5fiZwv2XSNE3z52NqB7ufpOR/iVb45JHmUlW8M235aJETNZiiKbrWz+VcXOppMtNZrODnpZ2f3KaZclEkrqmHFnc/K5EX1dPluDJoV39teidV/c6W+TXrCwXQ+v0EZfzu2PprU/Qx7Tw6ze/MYkU77s12+F1KwfvkMSfsQJ88XsmjoN1KHttqSjP5dQqkmURR8yvTimNZM652QK4gyr/yI9U9SwVcNSLPtQimJiYqXxm0qXeojvSdQ6Zt3eqXG7J1jFYWeUSstKIo+m5SiPDzlCZf/Pwpj6Ln1eyqJ69jESWflk8ZRVGr/mn1INWWrDOdO23TlVbFoNWJ50vlUj3LSPC1536homtxFDGl0kyyNMhVPhdzorw8XetvMxHjipel1N9UbcbWSiyVNrehXf219q9dypEypmFSKSL76ObUktWdS6vbqh1lLsZ/RdvJVQVWWVt7Jc+iUvJ4x8sLAG0VjVZNqlg9cllRbBXIcaAWaURTtbjA1CYmJ81anVoNed68XnNzc/F2UxuQuocfuxgcRdowPTmZciQ9NzeH/oFBbB0bj1Uk2jEaWrGqqq2e0fdtrI55aghSyZgcAZevX9BQlyQuGclRME+1edfBuJ2j9gsxMzODjevXs1QRenp6MFIfQoDIMa6+yhPE1yFAFIkLAPoGBlNql6CxjWNqcgIhQquD5TWrVhn3cQwLJ8McVL+tDeWJi3PbMHWlI2wT96J0wGz6zreVcdypQVPB9PbWsGXtialt28bGY3UkgTtXJsjjbJAqJsoniT6XOPuWCrAQIaYb1z36nUC2eX/jHsrex9VA3gcu79AiioUiysqphyZjVQgA9K8cSG2j/p7XuYzDZn4sfe8fGMw9r6WkWCl6zSXoWlBbtKMP7qT+vZPqYoLsr7V3rwyk0CxcnBeb0sj68bGFzIN/IL4XQZljqJ42NYhrPkXTNKsyMbWxqT62a9UpMDmALpJe297s9fVYnPDmWgpaZa612M1t8lBGfu6ar4vcWJpvafXh4dplPq02/5KmagQKm84nblWFkF9oZGXzgxipDzXM0gYbg6QwlZ7aiEgvuiZVyr/RONw26NBIgSRdlJKH1+bpmzFHkiYyUw3TqumG2Y4LyKwMjZpVYR6lgUy/CLJ+NJmnNqJzqyosOTdJcntG3FqCBr2avL0doPbhZAu/L7iJYNi4vtJUDbC3CTdx00xhZV4cWitSPtw8N12HACPiug/Xh7DphhsWRQh1zRTIZg7mMnE2mRbl1UHLP9tHDqaeTS1N0TJdti8UyORKI69cx16tGsO0E1Vclyraod39Nd+/0KZGvP9YTKZQpvZrd53L9L/cNL3M2MLlHKtK0yxs9xeAysZXWv779gMrvLmWjg401/Ikj4IqB40LQezYyIJWYqEHfZLAIZh8EEgfOM3AhXziPoY40cPrp/nlkeeyWKC1iZwocSIiQhCTQBxzc3M477zz8PYrr6xgMgisEIdrg8ew0cWl/dmEjf0BO9Z9IizL4ymkekKCJvkhIoXHzMysE/HDffQ0C5PPgKRuUQp6B8lypyYnYlJT85NTvD5h6vlyIXlGUsRcNhyuNoCqcvJg8sdgA6maiIzp7e3FmlWrUn6IKF0eUa3dD/weJoJHbpcw3d+RsicqQztePjtVTQbvuv12XH7FFS3ph7Q8bX5gyL8LgJSaR6Kojx5bmdn37KA4diJOV2QSr/WdnEyRWKg+ypVUMx2b7pfK+45bSHTSQmJ1vrbS/bV8o/T21jA7Mxvva8UE29WXjeuxpnRV172Mj592oEibmNKZ+uuqib4y/bWWR5HjOppwOoJ98uSdM6U766yzsGzZMmzYsAEbNmxoY02z8CSPgqpInoXscBdiRWqhBxg0IKMJpslpcyvrmef0kso1kU4AVJKnSkKqXZAOtwly9VuasG0bG4+dzfJ9Tz75ZCUkDzALhDXFJCXBlrVduOfobgDARc/uweZdB+M6JUimq+nJddA4//RqikYo0PctQr2jgSbzWfVKoojikxV+z8gJOamDqh54kJlW/8Cg0l5m2Agxk0NfjUAw3XNA8rxLkoHIJtpCZ7llbRf2r1lXyql2HjgRIsEVO7Y2jOpdrvtOEzlZh9TSeTWgvS/ThFmtN3L+3T8waCWbEpVQo9wmB42dECiBq5UAIJgPU4oSGwFhUwFpZEPeIkZatZq8fwJkyUKZt+ncOGnF0WlETxFobbbYSB0bmiGuqmiHypQ8jf7aNJmH5XdZVQdg76+B4hPshVAZNb+I0hy5UbQsgiv5o6XNq2u7iJpmyqoCLu2AnDQqPMnTdLp2wpM8Clqh5AHar6qRqpFWlZ+nNpHkRjvqIU1+qA2KkiVV1lcz1+K/TSoeecxiGYRq1wPQTXrkQIwmiS0hefYhjtbR25usAhJocLh7797Yf0y2/d0NoMqsBEllBRD5n5HmbRxEVtDAlhMEvb29mfMsA5dzIQKDFDsukK0pTY40MsREJMi8hpkSKw9EuHHI6FJRGdnzl2Z29nJC9b6XacpAvrPSZqgB+99ev/wystHZXCN6pa5SG0geFyJDUxy6gPdvwTyA1QEwn7QfJ0I0FU5evSRsKpo4zcBg/C4goocUiVofI5VHGjFlInroGF63Vvf1VcBE8kh08jl0MqpU8sjDNfKEb9feXkVUN5ReToSLqne0OuX9lsc1C1eiZiEJiaIwnZNGxsGQth1opsx21tdWVmafJ3maTtdOeJJHQbMXSlNsLBTBI9EKNQhNQhfCREzWg3xC8BVMMv+JJp20vbrbXg4WpU8KWUceQp1gM+MqQ/LYJhLtHny7PA9ywjvcuGakCgBQqbnWm98cmTtpSA8a0mQDn9jKCX/22OIreVp505MTeGD7Vdi/Zl3sy0i7f7WJ93BjkqcpNeT3qlCWnACSqf9w6pkdU9MAZqWL9CnDFU8aOEFDCi8KBc9N0GRbNbs6O9pQC2nXoJl2jBDE9S/ik0krN/3OSO54XSFmf7dk6lIRyUPmWkXh+j60+abJI0A4+WHKm8AJB07oaGVIsoebaI0w5R9B9kt8IWHb5Qo5t7pxrebD+HuItFJJIusbaOFJElNdXEy8CJ1wHiZ0IqHWSpKHw2TKI9PkkSymPIqqXU310ibS2hiiaJntRh5p1CqyKg8upEi7iBOTCqwd9ZBKtzyCq3BdPMnTdLp2wkfXqgjTk9moUtTx5sm1WwHp06SnpyezrQpMT06mlCgLDU7wTE9OxKuXQKSEmJ6caGyvJrqLvK7UHqYBF7UV91fSNzAYXx9qQx6Ri+cnB+im+4qbDhBG6vU4ve3YqsGfgb6BwcZEJKnb9ORkZpK7bWw8RXxVfe9GBE+IgNVE6+iiNgpSg+je3po6/eb3mpZfILaF4m+UJoj/UvQraodtKeKynposj9TrqXtjanICtd4adu/di97eWqoeW8fGEDbK3dowm5F10jC6tsspgljQaK+i9xc/n21j4+gfGMycM69jiGx0LyC5n0I2zKG20c6Pzomb70WET5giPLaNjaPWW8sMxk0DdxNqvbX4++ZdB+N8ZUSyZpxlT09OMoLKnk/6+utr4PTMRveduX42309JtLjW4LK+vlLHuU6ObWZV4eog8yHkKW+4mmZubg7BPCJFkADlQXnzMpK8oj5venICWxsED70/eTRKKvOB7VfF18yqDmqURffo8M56FC1xZdIv0Weh4fru0VRMQGedSxEUOefFiADp963rpLW3N9tfk8rN9jZy6a+1Y0x1k3lRPYu+EV3761Yhr/0D8SlSR+060d+8fEyEUx55lpevtr9IXUzKolaBkzp516rVdfFYeHiSpyLkDQjaOWDoGxjITJDn5uYqH7hIc6JO9BlD5ABNmNMrnc0TPbxNZQh0iWging7XHJE5kTNartjhqigTwWNCdF7RdKp/YBBzc3OxCoF+2+rZahAZ4jLpCxG2pJ5EpdR6E988cgUESCatD2y/Kg5JzRVAVPvpyYmUj5M8mFZ3Rtd2YcvaE1mdQvT09GDTrgMIEUaTQADLd9+M4foQeIj16J4I4+s+OzOLmZlZzM7MxqHNQzFschlkcmLH1Rypf2AwbjuX50z6yeH/6NwSRU/YUKckzmTpeQgahATpTCg9/eJEHA0AidQhx9HpdkIq/9mZWQSAMUR8yOqX3R79JbM5atepyQnMzMygb2Agvk5au+SBt8Hc3FzjHtNz4INfSU5KJM9rQjSSaaDrhKNVIdObQbMTXt7/8TYeqQ/FbSbDqGuICcjVQUpNQ+RD/8qBFBERzNvfMNJMWev3iXQ/Z+OtsdKnf2AwInMU8ogIXuqvqH/Szk1b+Gj3ogKvR165puvDF+lc8llIuIztOlHt4wrql/k7x0a68G2m/nprBf01/dUm8LZ3o9bvukzIFxvylhjyVD+yTWzXSl+eyC/fdL1CmOtfhphr5rrmkVyuZFYZQstjccObaylwlVwl5hFJE8rIVgvVsUoCpoh/jDLlcLWSi9+bZsOVm0yieMhm7ouDO/KVygjpjLKZa2aThUs/QRxSVk8wRQ2SjjhtJitAco6aImYhTLeAhBQjE7voe9q0iJvKHDp0CNt37Gha/r1x/Xo873nPYxGeEnMWk3yao0hnTZ17EX8taKTftOtATqogrqd5VdP8ejf5ukEjT+mbBkDKIbBLxC5b+Zr5E513cj3SpkZEotjqLo/Lk0671JXKkwSMlp+LU2seSt70HuRtYNpP7zUXMsh1oMmdUefdX66QeXAzwWZDstrMtdrhA47uw8RhdQRJxkhzLZOShKfn4GpIui48uh7vY4r6nOPPCvnxGRFmnVq+sl+LF1VyzNOqhOZPScNC+QrsBCzE+VUdQl17j5ftr0PTvmAPEHYb62R6FxbZLrfZCCS1joZyZPoq3ttVwNjWjse6nr+8H5rJr4o6tfKYsvuqKNubay0uc62jF7oCiw3cpwpNSKeEk2M+iV8ogkerjzb44XUto8TJrhAOYm5uyNoGVA+5utsM6cNNmziJM1wfwnB9CH1jidqGBqIhoutHA1qeT1mY2o9v5+oijm1MXm+7ZrZyaDBHbcsnU3Ig3gmD2p6eHiPBAyTnv21sHPv2A9t3VFf2lrUnAruSyTIAbNl+VUxkaIMl0mhI4sE0GabfRaMz7V+zziFVti4SyeA+OwzuGxiwEiBU51pvDRc9u6dRp4YZ1IDbYCIxn0wUOXTfh2PANpGeiC1ObPCw9aTAovKh1MHUJrYBtyRSOAlNE2uZZmpyAoFCNM3NzaE/59HavOtgQ8lzM0bq9nef9C/Ez82FaCO4DpanJycxheTcbINJl7zVSU3FfqAA3VyrSl9kklind/TwXMPvFY9k1fBZ079yAOHqIFac8byA/FDrRJb0r4ye1YiQmEA4MNggYQbjdxf1va7nQMdMT06knqdtY+PRc8mUDiPQ+wu5jdpkCnrbt4JskObw/De1L7Wt7E81lWynwsXHkebbKe+YxQhN9SIVGS7vrcy+sNv6LjPtMxEMWt+qjRHkO5JvM/XRpjybIVVsyCMWqEzZL+RdF61/gJLWVr5J8WMaj0kUIUbKtGvVx5TZ53pfuJCQHosHXsmjwMTGSRUCTcplWOOFhnSEnOcrp0ozK9tqIq9Xs4NvKofaPCEKkt/8/GWkJrp+HDJ0cFlIlZJ0gswh6yFJnjKEjGYawQmeThnwadeDWp5HiCLMzs5WouSRjhy3MFUFhcsu0rHJu6W3NxuxqyyyjpjT104jM2pK+XzVn7d7HkkgFUV0b0sFQFGYHD6H7H8N2Shc9uskFVS29LxOJkJohL3nZV3y1Fp6nmaVDj+OSIIipE4nQQ4wU23RguhamrqDkwxlyQZdiRjdM9p9lbonGsoeIm0I8ncmj2sjM1FyBE7gd472bAP6AgtF3nKZ8GhlSCTkQ9rpM6ArR6leVTtmthFnJqVPp/SFrsi7vjLtQp5fqxwvaxP5ZvprM/FffnJbhGipUpVhI1Jc69NKlDmfVtXZkxdmtLK/XoxYzEoeT/Io0OTf2uAOQK6cuR3QOnNOqJgiOZlMgaqARnQArRtUmQgkDo0YIlKHBr8u0WHKghNgBM10zBRhixNV2qCVX1e+XaITB7acmKIIUuSriJxUb9ywviKSJ3u8NqnWQkTTpM1EpETnkiUwyg5I6VjTSh3VdW5uLiaoTHnwI00TUgKdIwCsWbVKJS1NBA+f2PL7mSKlcVLcZHblQn7wM0r263UpOsjlbZ4m8BNVhmaSJY+je9d0zbXzlGZskugDFhfZY1OLAWhLCHUTXMxeZXpAmkGPxyZOAXSyj0z4picnMoSODD/O9xPBc87GW43PnI2IkSZJsYqusd9lxZa/15JFh8F4b5o40xyhJ+dOdUnv1xdBbCbKGhZTf9cMWklSVTkebAXJY+pbTUoaguyv+TOT119rZWloBWngmqdLG7S6Dq55cdgINm2/Kc+y16Td17MTUKRN1OvgSZ6m07UTnuRRYLtQmmkJ96WiTbAXYpAhSQ8TOdDKummDt2bLy1uhdTmeQJNO8glThYrHFZzUkP6DAKQmwTafC7KNNbWONvjttIFvdmKbkBc0sXjyyScrCaGOfcDwDWlSVgsFzSfStd7IZInDpPhxmUAV9dFj65hl+G9SJWVVYNkpoi2EOs+LVFaBOM7lPKYMkzsOHjodQMrES6u3SW2gtZF8tmzQ2jkhfoNUmabrwdVnkgjKEnZpAsfmIwmNY139IbUSzUi/JYIOIXlc0sn3LH0Hont2C4vQZgXz1yNJHvoORCQPETxJPQYzE1PKTfrokfctpTWROVo6ec2I0CJMi/udpwOSqJbRft10Ozne3RQpb1zR6oWlhcZCjzHzULVPHkBXqRJcFlJs76MqTVRyie0myymqXCp7bnnvee0dYRoPwSFtmfq1Ko+i+RRFK1VNeQuDrufbiv56McKTPEsM8kLxgSD3yUPoJBMYIBrSSUe7eYOrVjlmrhKJoiVxCmkykytCYLV7sCTvJ+6Lh6OT7qlWgZvVSXDybqRex3nnnVcJyUPH09RnSqh2tIENmXJxcAIEhuO0TtN5ImiAHCQlapVoD5+QStJPI7OofUkJVOutYWZmxlg+z2NUnAsnIIoSptxpehUYXduFe47ubpxLMcOyMoO7vMETITuIStQQRc3fTGVq5Ftkepf2N+WSvyl9kfPVIrTFdWwhyWPqB7TtJlUPJ3aI3JARyWi75gjZaAKoOGbm6BsYQDAPhKtlHSlqXdoxsjR3JUWknGyankrz4L7Y0yBNteQijM3vnQvJo5m2kQKKnD0vtKlSO0Dv7P1r1hUy6zbd+4Sq2q9KkidcbleZuSo+ensTksjlrs4jJFzyqSIPF7i0RZVKn6oJkDyVT9G6lFXx2OpRto55CqW8ujSbXh7jQnYa28+TPE2nayc8yaMgb9AIIGN202kDCs0nDUEjeKp2xtts9Ky8vAnpFf8EnbSKZxpUaaZbroShdAzbaf52TLBNuoBsG/DtVUXX2rdvH7bccIPq6NkGmpSmlRrZiblNHUMd5+jaLuxfs65xDYtN7aWSQ5I8Jmil8HN5YPtV8XdTZK+suVRYgQqOooSFytZ8mAY2/Ho9wBxqm/IouyKoXe+ikw8gHUVsSpAFVSh3TKqrMgNG27E24omQqkdFJI8WXasKSJMnzccdLTxw5aw091TbhfnpyQM3d+TvAH5d+RM0nSJcE2gKOA6p1DFts4G3hQ1llLgxcaWooSTK9ofymndCvyrHbQ9svyomeMr4NCS06tyqJnkIRSf/dIzpfebSX/Pvriodgku0xWYIiaqVJkXrUkaRgoLH5NWhbF3KHNdKdU8z5VfdXxvz8yRP0+naCU/yKNCUPEBWIkzohAGABJE85A+C29PLQWrRsNraimc2Gs1AamVe83VDxxQlhGhSOdUw56FzcLHrzzufqsEnBdJRt2lwViVBpZm3ETrhvqX71MUvxjUbNlRC8thWBjXQhCpR/CSvzOnJSfQPrgQPu2qazJKyZM2qVQAAGb2Jw1Y37iCa4EKwaBNPCZd8ZGjyIuQOhawHgtiJcUISJfWqwiSJkzw0QQagtB3Vrdxgz3VFuFWD9Lw8qB1M6h6C3DfM/MzkwUR00bG8Dtz8CKhuMlgVyWNSnZBShAddANL9Z//KAWB1YFXLxPfbvJ7KFHo8bxwS7dP9RPGw6EA6oiRBqpQ4qcN9Dmm15nk1s/jl6ncnfo/NhwhXJ2esqYiaQScQPNIfpGt/acqrXefTCnMtgut7k6er9TZUPCJMuk0tAWWfdv+XUWnIfe0kcppCo/1aXa+89re1edny2nEt8km09IKPdjyUPPLagpeb119b6+hJnqbTtRNHLXQFFgt4x9g3MJD6tAs2mbPE1rExzM3NYWpyIkXwmMDPJe+c+P65ubmYzAkQYKRex9zcHKYnJ9HT0xNP3mibRIAA28bG1YhQJvT09CBEGNeDzpWrPvJCkBPaMeihtqdJAZmYmcote1+Z2tBE7BS5n1oF2Q6myc305CQuuOCCysp17aiH60PoaxCl/coEStaXOtrNuw6yMNkJLnp2TxSieGy8UYsgRfDYBpOcpODbhsVkTUOAIK5/M4MUTbXkelwSAD0anm0bG4+ff4h66c6Y7b8liODpGxhAiBBbx8awdWxMvS5FCR5eX5syQht4heyvadJcBC4ED5CEba/11hrlh9i06wA27TqgKny2ORI8IfJN7O45uhvD9aEMwVMltBDqZWCqnyR4enp6UmRC/8oBDO+sA/Ohtd2C+TDlx2bqocnUB7D7UZN9Fjdf4vnye6+npwcBIuKGyBv+ncDJGnkOI/WhmDCSaSm/PH9wRfocnpb6ACC7SEVkGa9vXkTRouUvFPLqUPRZMqXvhHMtAttElj6EWm8NIYDZmdnUdp7OleDJq0ceGSTrx9ObyimjkmkmbW4ejCArkn/Zfs7UR1L/WXY8I/PMI42qIrVs91q0P8jZr9cjry34Pq2/zquXx+KEV/Io4GzcPV/4Qrx9oVd0XKFN9rWVO6C6cOZyUsbZ6JD9r9XVpPSRZRDyfCxIdYgNrTQro/yBbJSzViqHKH+uqEoiwbQuolorwOtelU+ePBv/AIgdLevmLaE64eAdJ5ljUd3lPppwb9p1AAGCWOVjigAiFRGk5qGwyrZnLDpe7/41NYr9WUw7H+YhxbW0vO4ceUodFyWP+2qu3i4yopocTLqsiBXZ7zpxqBp0n+lIrmaisjLfL0WgS8PDzPun05Q8BOnbyuQ7jZBRyYmQ6XkmWS7OhKleZFq5edfBtG+f1bzPpfRpcxG6LtwhuvR3R+DqHqnsAaRqJ1I5xr5zGupH7TxN5yXbgDu1lmok2s4VUcM7k/5WK6uceVjnKHmA6kPOLxZzLSeVAdIT9VpvDbOzH0Wtdh1mZ2YjBcP45c5Ehak87V1u2mZSoZSBTT3aDpVJM2VVRZKYlFTN5NdJ/fVCKbecy/VKnqbTtROe5FEgB41FOsNksNQZToy1AROgh1YnNKMiIRMxIJmo2SagAQLnsOXcSTGZeVCZvN4mfzVlz60ZcHMtHgJd1qVVg0lTRBJ+j3bCQFaDNJuoKrrWxvXrsX3HVRge2hmTL9yBMN2vnLyU8lYeSh1AQs40pMzaPZ2QnmHq/LasPVGN1GWSz6b9+SBTz6xZRXri3iqJM4cWkcv12CqRlnan2z35nlZSVdk+ErZoZFVGzaK2TaKVFe2PkqmEK/nlCmmqWl2o5XLHmxwu8/1AQ10mzIOSNESYpP3FuPja0ZQvmnNhZzCix2UyDNgVZZpiJx1Ovbg61Ob4V4I7vKb6mBxga4s7Wh/oOiZYaPNmE8FTdZ/dijFApeZaK/Zg9MJabrCCvP7I1F+n+wk3AkX2z4DeX/PfZckRnncr0Un9dV4aiVbUrd2Ei2nMp6UD7OOVlt03nuRpOl074UkeBZ14oUxwtWEHzBLmZqM6mVbuuIqEwr5uVUwzXEkeXp50SipX6zUH2QtFZGgqI0KrBm2u9elEmByDV0ny1Gq1eEJW663FUm6KfHXOxlszZG0QzEcrgrMfxeiFtVh5Q6uFhDDsxhbF9wgQXf/de/dizapVzGdWMgS0KSi4iREneRq1Y/+nQeoJIlzzBqJF4DIoafcgxESkaJHQmim/SB5a28jIZER+SCfR8lh5fomiKmteZYo+aIN8X20dG7Pel0Xvm1pvDWtWrYrr1S6Sp6z/EumXB0BM9EiSYdvYeCEFj0aQPLD9Kmy+yaS8soPq5UIW02+CzbmyVO6YHP27LIjlpZEkjKYwksjr4138GWnHt1rt0k4UOe8qUDXJI9U3ue/fYA8ApBZz6LiA7Q/Dbquq13V73j6X/Ta0q7+2HYsSZbrk22oFklTqlumvq6pLXjobodhsW5W5hpkyj2CS567bb8cJJ5xgTEdzlLPOOgvLli3Dhg0bsGHDhjbWNAtP8ijQzLXaOQGvUgmUVm6kB0omNU+5c02bcdD/LmGRy0xEOLTBu4lMKZJHFTA7yFx4wqmTQaQEJwCrHjROTTyUMqWiSbdm2sJN33bv3YuN69ejf3AlRi+sAQA23zebJG4MRqXiJs8ROT9v7hzS1OnTajo922UHbxqI+GolXFeqtN+u+dj2mya8LgNADS5tziOhkZke3SNSZZdnMpVdzdNJwiLvV5PKyTa5kPcK/aZ7nOqUVsslrbgQSp4i5joEIniGd9ZVJ8SplncgejTCgcqg9KnFjDx1D1MYpVW0yT3iEiVLOlnmYwYesl1GttRMhTlMfobkcbbAEKZFm7Jm5rIuzeTXCrgQYrb9prTtOL/qnmtgxYpsf5inZiDTrOGhnQCQNdNqkDya6VbhRQDRX/PjtAl6O9U5vA5V5GEajwCtPb+q+usqyBJbOe1U/rigWdIpA0/yGNM1uxDdCnjHyw5op7PavoGBlph60cCIBng0OQSad1IYOVyOBoLk6Jm2J05mdbg6bjXB5GxYDgwJ7SRdOmWgKKG1WSc4Xhyp1zFSr8ftVlTh5YwVswCA/sGVmXtzk0EO3j8wiCCYx9axMczMzGD7jh0Iw9U4Z+OtOGfjrRi9sIYwXI2piYfiCezmXQdTEyp6rum86FxT5awcgIz+ESCaII+u7UIIMjsKY6fV8hwovUQRNr8IwVN0lUAbnGugAcfo2i4ELL02aIvyDWMl4dTkBGsre/5523idKY32MYEfSwocegY37zoYXz/pcD1s/JuanIivP13X6L0ZxqkCpJ9h7mA5uu/0GpKzfPpODuzpO73LQ5jf1Rc9uyf1m+4dbrY7NTmB/WvWxc6wOwHcma8rph6azCim5PXn11sSM/z6BvPR3we2X8UUQkl0raLvvlS5jJyjugVAysm56b7dqqjd6LjouQrR09OD6cmJ+J1NARcAc78nt1HQBjqOf5fp8sDJMFdQG/Njy9wTrQDVQ7sPZD1d7xOeV56iqZOwotFfEymjKbq0e3nb+OUIw+5kDNroU+P3GPWxwR5IaM9HaPieyks5LhB/XVHl6nteX+tSDxNRxcsAS2Pqr13Lk6iqv7YdZyrf5RzkveJyTJk0rscUbXdbW3olyOKFV/Io0Bw5lp2wd8JEXzPZ4iSPRogUc1wcKYTIBwcpDPggP5F3ayFeq78F5TnT+bTS0bLL6uVC3wtANJlrGYFSAeTglVZ3N91wQ7UhWYVcWwuRXga9vb3CfGu1MS33pxMijPzz3Derri5KcPOjKeFcVZI8eb4MyqLsihg/zuanhvYTXM6Dv08iZ8LNSa8lXFcCtZU97mA7RIje3t6U6ZIGUiWSGZeduApQ661hZmYGQPadRKoaee9oJq/8mDx/QdIhcZF3S7vNtaTfGxe/OQRS5WRUfGwVf8varpS5Fc9fU+PkhUznSiDT8fF2JXz7SD1tpqjdv9qVz4Zdz96jpn6W9uWZZGkOlYlkmmbjBo4iqhZ5zV1N2/PK8shH5SHUmfLGpirRQOpCrmZLHceIHmneBVs5FjVQEeSpWssQREVVr65qWRflrCmfVkOSO0Xuk2bq7dLergqoZtqtVeeZOsYreYzpvJJnEaKMTTYd0wkED5BeweFhXwk85Djttw06OWhFL0GiMOD5J05ik7TD9aGmVnVpxVkDX7Gi85mejMK6awoK1/JsKCr/Xyh0ykq6BhdlVlUgGXcQ7EEIPUS6DXJFdXpyElvWnphRNgQWrUf/4MpUupjEUFYXh+tDsbojRJgaiPYLgodCuJN6wqbEcMHo2i7jiqcJofhrzLdoPSzHkRlUOmR7echVQAojTXUgtYztWI5Nuw5izapVMaEyMzOTSzrT+zSP4CEQwQOkiVL+ruRmN4CZaKdj8t5tVMcyCpR2gerl6tS4f+WAOe2eiLjdtOsgRi+sxc9HEOxJm26y8jipJEOmc2h9hKkedDwpgDAfpqJN0YILvTOmGwo3mvgM14cwXB/CSH0ovjtGGr+jvjK6P6J+PnnPaYoX/o52GftQ/vSXQrBTHaSCx3RvmdQ3sg4u96VUuxwJ4NezE8YnJtRq10VfWD9kUpWEiIgd+nBsU0wt5f7UvsZzDfqkCjKrgYrA1keV6b9G6kOF++s8kKIjLw/tmrRLScD7ajn+yFOkaP21a71diBUtb6l4albt5XK8plDzap2lC0/yWHBZXx8A906Q9pPkvdMGCVQfTuoAzU2g5+bmUoodIMD05CRG6vV4AiGVQs2aaBH6Bgaskx4pTZ6bm4tJH7pGRWA7xmYG1on3QafVCYjacNvYeKpuJOFvRX1jCbfieDHv3giC+cjMYmAQ23fsABC16zkbb8WmXQdS6h2637N5NkptDMZiIqVRJ26eE9e30UXn1Y8mdT09Pcy0pzz4ZNaVmMlbQQsB3HN0N/avWWfMY2pyIjaJ27TrQJzWpOipIvS3BhoE0QSBSiFCz/WdFkD6J3OvrwvBEyotztViMq0k5LU05LibyGF5/YfrQ2q7Uz/Af3cCiBihv9H7ZTBlvpxSzwwMxoQPqWZGrz0xk28YdiMMuyOFT/e8Wi73tSMVJ5Iw1o6T3/nxnAianpxAMB9m/O9EfeFEfCfx/do9TMSLZg6lkXou5kDc9xSpe4no4SaCVD69/01Ejmmbi6KIQ55Hp9yvQHrhsOp68evYieMCwuzMrLG/lpPWoJF+zapVmJ39aBRGvbeWShcge8/HRBLLi57rDKFDpA/bp5FNzfS8ZY/lz7VtIYLDNPEvUwfb9WkHuPJEM9dyOZaON+0rcrxGKlZBhmlkVtE8A/HXlGYhlFkezaNjzLU+/OEP4/rrr8c111yDm266CY888gjOPPNMNe3ExAQGLJ3Rt7/9bbzvfe/Dvffei2effRavfvWr8b//9//Gy172Mqe6mGSmSaSozu0IXVBELZGca9A4dih2HJs27RqMXzik1jHJ+9PmW7q/o6raWA4oZf6tMMOzDcLKluVyLBFZCx1NrFmY2rZy+bcBWrh07hy3f2AwE+kKQLxfc2zJw6Qn4Zaj/akJMgvpGiAdec40Wdfqr6lDyhAgzZhjbVHMsBLHw0m+td4aNq5fn3KCzcHJYv2ebhW14wYyAcgzieHps4PH1nbDphaSpm1071ObbxMkQPrdEsTnPcz6Be3dajMRrdpcq+y7eW5uDst33xzluWZd6npOT06kSBSN5CFsvm8WUxMPxSHXOaTlZp7zXw1ENkkighNTqXfGyoHYWXSSd9q8k663DFUO5I0L3JHnD4/31TJEuutClKtp1mKEHB9VOV5qxaJku/pr/r4FzP2V9k6LDkgUL7XadbFZV+Ydrplmif4a8piSqCKPKsurymSsCvOkhWgbtLjMVp2Tdl+aroHrc+TNtRaXuVZHkDy7d+/G4OAgli9fjt7eXtx00004fPgwfvazn6XS/eVf/iW2bduGxx57DF1d+mryd7/7XVxwwQW4+uqr8ba3vQ3Lly/HAw88gF/7tV/DKaec4lQfG8nTKn8u7QIRPDyylslPD5lZcft5OUGlPOVkwOZsGUhMhtoxEEvqP5YazJhs+KuoV5W+eHid8iYwS21gy1FptI6cw2u9tZTZC5CNNsSJHi1cugRNogGo4a5pwEhECJ8UF6UxiOiRE+12Ybg+FE+Y8/zocFKK3rHynWIjQVzJrygfNwJmuD6E3Xv3xk6E895p3Jm2zZ9DdF9FeY40zpuuC52j6Tmm+6doH2S77hrxorVnyP7X4PLuoXrwqFshgGs2rMf2HTvaHl1LgpM8m3cdxOjaLmzadTAy1WiYZ2F14KRk27TrYEL8zYfWKFtaRC3bhF6DNOcy+fCRZE8eRupDhUievP7VZTsfl8iFGZ4GSIdO1xQ8troudrRiUaxKtLO/Btwnyql3OSNuSPEyO/vRFJFjzFcESDClbQfp02wZtol9KwgI1zzz+utWYiHKrBp592MpctKTPMZ0nuRRcPDgQZx//vnYsWMHtmzZgte97nW46aab1LSrVq3C+eefj1tuucWY3+/+7u/imGOOwZ133lm6TlrntBQm0FLpoUWt4ESP/E2KnQjJbUOT35HUinvav4lJvZMc37q25cQWECmMaFW6TLka2cdVXlUSPK5YCvdnHipbGcQsgEaUIuFkMQkNDACheq2nJyfxwParAOjh1vOgEQGja7uw+b5ZjF5YYwRPNnx1WbRzwMLLIhUUdxzMJfLcN0ziCyFkxEdCurg4J5Yqq1Y4nJZtSeQMXdeEwB40DlC5I+P0QCutrOFlUP6URpI3w4I0KnMOBFmWDRFZE8bkkKsqKSaTmhw0VkXyEPg7/IHtV6V97OxZjdFrT4xJIAIndbiKbbg+hG2Xj6kKG02Jw8EJIc1cynaciVCi9OFqt7fBdBMO+rU+KY+YsKl9+D7T2EUesxig3QuAfq9Ioquss/N2oBX9NSltOIqSO7XeWiowQpJRQtjUehNHzTDl70jylEHRfMqkBwoqOArUw1afVhFheXVqJv1CjZ9M21xUwkWJNGd4kseYzpM8Cq644gq86EUvwvj4OGq1mpHkmZ+fR3d3N77yla/g9a9/vZrXc889hxUrVmBkZAT33Xcf9u7dizPPPBPXX3893vKWtzjXqdnOabFAropxSKUPl+QD2UkBEUgc3KyLjm+1EkqeE1ci0XkRmhm8yuMlkSTRrEmYacDM23yxq8zy0IpBY4zGYI0mbmRywZ2Gc2xZm5hrFCF66DqqE3G2qsiVOCaVSl5UqqIoMrgZXduFczbealB8RMfQyujMzIy6ym5TiwTzkWlLWv1kv7+1NpWkCX8fuYC/szQlCpVhIkXyCJcQiaKHE1X2Y0KkCaBqJO+297sNzRDMI/U6Dh061HIlj3yXps1aBxvbE3Up3a/cMTph9MJaypyLQOSOxOabDjhF0ALsBA0nc1IRtRhkJC+Zj0bwaBM9Alfy5JlWuyhOXdQ1tmO5fz2OxUzwEPoGBuN7UIsqZkKnnmvL+muFjAEABHtQq12HmZnZfPWH4pQ4bOTrPMGvKLJWURQlUPLyQsFj8spzVcseqegkEzWXeymTxpM8xnSdSPIsqOPlu+++G1//+tdx44035qa95ZZb8Cu/8itGggcAfvrTn+LgwYP48Ic/jEsuuQRf/OIX0dfXh/7+ftx7773G4w4dOoT9+/enPkVRxhleEGSdM7YLpoESfeQgQ5orSL8+NHGSJhZVOXguAx4RZOvYWMYBdFkHhnxQa/JvpKUvW44tj61jY/HHI41Cz3VjwLZ518F45V4jeKYnoyhFRK4UVfLQdVQn0bHzxjD3WSkalcoF1KGHYpsJ8v0xurYrFaVndmYWG9evB5C9f/sGEqfpWVokAFYHKSIj7/6m53B0bRfIWfBwfSjlsJRgI3iImNKIpanJCQzXhzLnwlVH0jFqnkPmgNWHnCBPTU5ganJCvUeoDJ5vmcGfdgypUIqs+ri8/0wo+/4t01/LayYJnoB919JLbLuc3Y/zYcP5dETobL7pAM7ZeGsU2e6mAxi99kT0D65EMJ8N4sAjeEmCJy8KmE2pY/ptIniA9HXnzo/pOef1lmiHepXnyccqvI7aghVHJzlTBqSj6kQ1JRXV3CmydJTcCmfMCwHn55pFuZqdmY1/Dw/txOzMbHzvaqSlDQH096JGYkRfsuROlSvmprykooO/s8soVpohD2zHmvblmZ1pf/NQtN15m7Vb5VBVfw241V1L43JcIP56LE4smJLn0UcfRXd3N770pS/hta99LQAYlTxPPfUUTj31VGzevBnvfe97jXn+6Ec/wi//8i/jbW97Gz71qU/F23/7t38bz3/+8/HpT39aPe6GG27Ahz70ocz2VrJxC21eY1vZlL56CGSGZXOszJ1ztkvBQyvghLR52YDVlIrSJyHe868LVwtxcxOtjE5dZasK7byPi64Mmp5rVckjEIaro0kYreSz6BmpTm8+zDhTdUMQOXPNqFnk6zhg/yv1FKoOV1S5miTNryQh7KIK0UzYKO/de/dizapVmXeJNKULEMQKI7d7MttypPThPpN4/YnUMPndmWIr8S6mU2QemLvyXAFs109r+zy/adxMt4yzd+p3zjvvvEKrX0X6a1flSJRmEFtIocYUPFMTDwFoqHoa5lrnbLw12sYibgFQFTsuE3CpupF+ekxppbrHdix3wJyYQI7Hk+K0z73B1PYR0b9VZZZctP+Q6WUdFlvgAe3e6BN9gjSZWyy+htrZX2dg6q8BVcUDREoeF5OYzHGO6Vyw0Hm5mPvkqT9QoNwidWymbVpt/tYKtEsJ5c218rGYlTwLRvJ89rOfRV9fH5YtWxZvO3z4MIIgwFFHHYVDhw7F++68805cffXV+OEPf4iTTz7ZmOczzzyD5z//+fjgBz+ITZs2xdvf97734b777sNXvvIV9bhDhw7h0KFD8e/9+/fj9NNPr+RC2aTH/YMrU6GWOwGmQROdg1y55RFI0j55BlJpqyB5TOSJadBpi6gl0xQdMHFizCSt7vRBWDOgCV6yWtb610jRQaPpuXYleYDkOR29sAYgccjKI2ppsE1eyIeJjQCgNrWZayXtHjRMfhRnzsoxRQZxeQMAblZGPneofYqa/sj2IFUNEK3Ypv3YpPOU5IspkpOpvCTqV9q8SzNLNYUj186B560hUuZMMKK5GGVHx3NfRFSWRt4UubYErS35u53M1IoTvlHpO++4vdDAqEh/bSPcNSfB3EG/NNWK3wEN8ytA94eTRyjlmVnJfE2KHZ5OM/PSfmuOl4nw4Qs7ROxIEkgSegu1oOGqXClLPJU9tgy0BTcAqbZfjFFd29lfI+xOkzcs4hUtFADQffHQ8aasUS0RUTY/W3+NnDzz+oK8sl325ymAy5ITZfqsInm289ii+drO3fVeA9Kqtmbrvm8/sMKTPCo8ycNw4MABfO9730tte+c734mzzz4b73vf+3DuuefG22u1Gk466SR85jOfyc339a9/PV7xilekHC/39fXh+OOPT6l7bGiHT56FWo3h0Wu0CWrWX0G2ftzBqCR/tLDo7XCqDCT+d6jeGplD4AqfZogent9SVvDo90vSdWikl82fUBm01CePRCPK1f416+KIO4TN981mBpVTEw+lzjEI5lNOnV1sn/OQNwgomqctTZ7zYiJ1t46Nxf5zent7MxHJgERhI0kUDTwtodabjXRmQ57TYOnIlCv9ZD4AUmSV7vcn2450DvwvYG5L03Wo9SY+J/KuKW83Oo6O4RMek7mayyCdJv48jVQxyfc/J06S/YmSbWMLo2vZnNmaQPeG5o8He1bHyj3pTwdICBnZ3xAJt3nXwTjalqlcCanMMZlxaQQP/0umWtzvC6ATCKb2sUXi1CJhNaPScU1bZCy10ApqF5h8CALmxa1OPKe29deCoKF333B9CNvGL3cv0CWiVs4+vr/IpLpqckg7ltclHWDCnSxwSSuP00iKTiNZihAoZcZrVRBcpn1tVx15JY8xnSd5cqCZaz344IM466yz8LnPfQ6XXHJJ5pizzz4bN954I/r6+gAA09PT+J3f+R187GMfQ29vLz7/+c/j2muvxezsLC688EKnerTL8XI7O2dOhkjZNa+P9KFjGvxFkuLsKndR06eikGWY0miQq2W0cl5ktUyXV2cl7J046CoLeW6a09Io3URm33SOyUcRtHLQGIarMz6ypiYeakyOkm3BPIDu+aw5F5AQP212xOiKrBlVBD4gBdtmIno4gTDiaIqpqWI0cKUMlX/P0d3YuH59mkRzzC+vVolKIet7iUcIzBuwS2JKU++UXUmzDbC1gV5WjZRfJpncmUzmyF+PbA/uu0UqPEx9jIzEODs721LHyxohYAJX7WXKWbMO2y4fS70PSJnDFTyyD9DUOyZ1jonoydRTMdnK8+nD/fGMMOUOmWnJ+vcPDMYLOXLBhCaII0IB1Gxgg7LEUDGzvOJOn1sN01gsG9108Ywr2roowyFVPXnpKu6vW2WCJMkjjqKkU1FVSDMLUXwfLPtdjjG1QbMkR5EFtLw8ivbXVaBMXVG2Dp7kMabzJE8ONJLn/e9/P+666y488sgjOOqorJ/oIAhw22234corr4y33Xrrrbjxxhvxgx/8AK961avwoQ99CG9+85ud67HUomtJEys+oZET97wBhWmglB0EjrVlwGRS7mjbsnUJMsSEnq64w8bFNBhzhfRFlI7GE4FW+l3btQhaNWgkgmdq4qEUaZNnSsknQ0VgikxVFrbBm9wvtxOZc8/R3SnlB5CYcFBYbBnWnPLt7SXSp/muhKKWcYKEKwZJ6VMmdL0GUiEZ9pZeiePKHZNPMtmeJuRFBEtfj/wpgO2cbIO/YWa2w+81fgy9E2zmclIN1az82/W9YDLrJTyw/arMNlJhkZ+nPJ8wkgznDpptZlfNQvoG0kAkDyfYCPJdzYkcOkbz00eQap5O7P8WwwKMtqACQG1XV/+BC3W+C0bycBCB0yB9yO+OpmxsRhVbJH0eQVGkHi6kgQv5QOlGlIUgSQaZjjehSkLDlZyq6pq1WjVkGru1ss2KHKMe60keYzpP8iwSmDqnonJiwOwHoIrOlzscJrMDbUWahxPX6tk/MJhyHJxnvgAkgw6uqmnW/KkMtHa0+e6JJqz6CqTNwahUOGl+eIqQYksBaVVXujOQDrirIHuqHDROTfwUfQMDCIJ5lczRIt9xPz2cdAD0ztBkGkNkiMnZsAvKyonpZa+Fegay5kSa7xu+8s/fH8363XJV55hMTU3I848EIKVY0K7tlrVd2LTroJMixrVuJu87rqt9zUrATRMcG02kqcH4xID3IwTe55E6hO6ZbWPjLTXX0pAlZqL315a1Xdh83yxGL6w1TAv5Me6KRGnGxckdmwPdogsJGmy+fEwLIbxsGYABQEq1Q9C2AeWVPO0mIzrVxEmCPzu2sOqdeC4LTvI0/PL09tYSXzwFfe+0SnnhiioUK0UJDEkGtercm1KTOOTLkVdGq+oiy6jq+mmEUB6JB1R0np7kMabzJM8iQRVKnnYNIkyEDNWBUKQuROZovnvkYINW+U1lL8TgQ3P4LCNwEVzs+qVKCUiiCNnavhMHXlVAU3+ZzDw0lCUDqho08uNN1ylliqUMDM0EjsuAInle5ES/aEdtWhWyHWcieIA0yRMq36L8gxQp0j8wWNhvDge9U2x+dCSKEj06sjSLZnbFYTPJsqlXsu+XdNncWfWUEnWtXeDRvsocyxV+3JmvjLbG26MVz7UL5Hud+96Sz0EwH92XRJyUNevV0hUleaRD5SJwqbdU8ZjA/TNxh8wu5ZjKbofy17Tw1mmQ94bJ512nomUkT9gdmQybnCg30nDUehPfZqlk0NUTrhPydvTXpjQmlY0tT1P+/JiyxFLRNmuV2RJHUdWP6ZpUVc+FIgslipI9KbLzCCZ5Nq5fj+c973nGdIcOHcL2HTtw1llnYdmyZdiwYQM2bNjQxppm4UkeBc10Ti5KnSoHFZyQKbIvHxSxJ32sVA9VeS6t8uGTR+Rojg4pjaZe4uj0gVYrwdtNTu74pG5YrPQD5e7JVgwapcNkjiCYTw8Wyc6fScBrtesyg0ebc9tWwTY4kds5cbFp1wEjkbt898245+joXDmBQ/RErbcGALGTS/drGhgHeFS3qsyxJOh9QIqkPJJHA0VrmZmZVdo7ZOUkfssSVVBy1pryi8N2D5lWmLmyRppXyWPpO6lUACCJmBeyWttBZVKdp4R/l4TAQ2NbmgzbeccdTa1+ufjkic5NqDpXDgDdkWJv9MIaNt/UuOe652M1D9C4J246gOGd9dj8SkbRcjFjdoXNpMwWTYv2m5RDEloZCYEQ3QfRtdQJR1KDAeUUPJ2ocl0IRREhr1zbWKTqsVgeXMpqJckj32G9vQbSR/TfWn/dahWHlr+JkClKgMj0EkVMrUxkR56aqQhxZTrGRIDJvJq5VmVIKJdj89qlDHnokn+roRFmnuRxI3k6qW2yTm48VExPTsYmHNOTk7mDN1sHWGVHvHVsLNPhT09OZvzwFEUAndSgFSQ6hyLy9Tz0DwyWlqybjuP14/WWaWQklABBKmJYuyfthCok/K0GKTC2jo3FSoDh+hCG60NxxB36DaSjoC0E9u1bhamJhwBEjlb5c52g0a0Ge5IPkBo0Dg/tzAwYR9d2Fb5XQugDNNf9Mi1HgOwAkCav9FeSM30DA6ltFz27B0HjHxDE13F2ZhZrVq2Kr70bEuKAJolp0ulgTCyVh31IND05manv6NquFMEzurYLIftH9YzOdRyzjODJqo8C9i3I/E5vSbB8983x+9xkliFLkPkESMghChtMJI4cvNLgcW5uDnNzc+hvOEQmgoeb4kxNTsTP89TkRHzOw/UhTE9OoKenB1vHxlQl1tbG+yEI9sR14c/aZY2gCa0EJ05M756phyajz8RDOGfjrQCi8ztn460IV0f9wPDOOrA6QP/KgXgcwPPTxga8z+HmVP0rB+KPrd6yjnSs5mBZkj5affg2InDm5ubQNzCIrWPjMXEfgvrCCCP1odQ9ESK617Txhw1UvuyP+fVZqP6h3YSTyziK2oPamdQ83IS83e21oMRcsAdBsCf1pplRVDoESqcRPACM72MbbH2y3Cfzt/XlvL82EQem9HJbUeJF5kvH8r5Glm+qjwnUNlpegfiu5WPa7jJGMimVQvaX6qb1qzaYCDZ5ri5to+XjUp5LGlqY09LF6Rvj3UB8EOxBAGCfQ9kenQOv5FHgsgJhWskgB662TpCbO7QKXN5bthzpi8Z1Iid9LwDaRCh7DMD9ADRripFfRy2aBZCsRlN9eDSyTncu2WrwyYEWmYj8zJCyg6b03HSj7D3ZKrMOrrLg5xcAyETpEKuINnDnuzaFiIs82nV1qeiqj+255CoMgJsjJUoUfrzryrxJH8LbqBknzvL9OlKvN6IiBTGxpBFxPNz5pl0H4U6tmZU6eat4+U6ko5xrvTWsWbUKW8fGM84xbeDnajMDo7px9U9eOTZzVQAxeTo8tFM1/SUshLmWVPLIPluapMpzVFx2qeoaVT1kADcFsymDNF8/riZcUmFF15n/JfDtyTt9POXPjivGAN1BsCs0VUunmlItJPL8KvFt7QavQ7P+KWIlzz4AK/RoWdKRsuyvw8aijKuCo4jSg6D1wdo+TXXpWre8+pj6mLzftrzyjnFVGjU7RnFFEaWSaXsR1Y2tvLL9tQ1VtSWNA2q9ZvWblWwKZgHUOkqt0mosZiWPJ3kUNDvodJnstHLwkvjpyYY5L1I2DcqrqGvi9Lj47dZqWbckeAhTwtmmH3BGMA0yuSkfTY7IwSqQNeUoiiong/d84QvZiRuZZ5nCrzYGjLbBwpYGUaARCdTxu3T4zUiLbZCmWmWQJjR0SF9hJvMoCcrTHvUqqQd3Yk1Egmzf4gNdl3dUMhQ0kVY0mDKROwAaDn7zCXBJrpmQVeuELI80MUvvZC0PfeKi19NkEmsyk5LPXTtJHu4UWZIqef6UNBDhEq5OCBgT2WIieEymV9Jsy2bGRftN9bYTWMk9IIkevm2EEYBpE78BSDPuPLgob5c6XEz7XY6n70BnkDuE/lMuBmptcrys9dsO/TUM+/JgUkW6HKOVWYQAquJ8qiJabPmo+xoh67nCxaUtWkEKmVCkvCrq1ix5U4qYC/bEBGle3pB5eXMtY7pOJHm8uVYLYDILkmlaKbEl0mJ6cjI1CSlSJq26VjVwKLs6L6XJHM1Iu/mxNEAlswS+OsnTLQbzqWYxUq+nTBFspn/83uCD/K1jY+gbGMBUw5Sjp6cHIcKOGMSvWLE3VY8gmM/632EYHtqZ2meS/QaIJu1TkxOx6Qo3b5mZmYm3m5xSU762gRP/W3aAked3RoLMF0fqdYQOT3J0/SOzxwABtuUQPMOxmVAESfDwdxjdnyHIT0XQIJCCXIIH0K9fCKTMkPIQTXJDOwHAos5xmTRXLNnuA0JClOWnJam5fi5hbFYFBCmCR05A6D1IoLKj8023KNWPrhFXPSbHpNO2AzYiIY9Qkf1K/8Cg2geRiRflAWRNsrS0HCZiSFObUjmyHV0cKstzkiHRR8T1pqvMCR7ax+tApkTa9bZBmlLzerYaVZuFN1OPsmNBF1P0dqJ/ZVQHuuf3rWpxgWE3UiHSG995fy3f8Rz0rjRmb9nHjzURNDIvW3laH+Wa1nRMXk9W1eq+KR/ePnEaQcbJvpiTPzxNiOy1NJUbOqTR0ss6uaS3qbhcoZWXl6+tDqZtcntRgserQdqH7373u9i0aRPe9ra34ac//SkA4O/+7u/wwAMPFM7LK3kUNButo29gENPC+SQPU87DjstjCc102NysiAbyWojgTkSzq1suebukk+jkNmsX5GphIvlvrWkdoW0hWWmw2DA5k2ZLcTKYO2OaFOWbpuWrM5K8Q6P6git07jm6O+V7QDPTKUK4aualPLy4qfvXIofRFqrv/jXrcu8fUuyoIefFyiAvC8hv1yIRsjhIuVA0CpZJwWN/N7k5QJaISLDEITb3MUYgs1r6rkE61Y6uR/Yel4pIMl2TjpYlWhU1j0PrU7T3mYSmptEgjzX5zHEBqYI08POwmXTxcsPV+t3DVTs0kTIpeQgJkT+YiajF6+iKqgjAIn17p/XlVY79Ognt7q8BxFG06K/xEJiVJK2CbbzQTF3y+jpXpUdVChpr2ypKntRulzwM5Zl+Vw2ef7vun5YorxgxWgheyWNMV4WS595778Wb3vQm/Pqv/zq+/OUv49vf/jZWrlyJD3/4w9izZw8+85nPFMrPkzwKynRO6bDdiZxZmxxqIWZNjjabtW0v4uOmmrDE5VHlAKwK+XInDgg7Ce2WiLdt0Ag0bPnNpIo2iJSdv8vaB02YXQdcWloZ5hsAztl4a2xGQcoNsg1vxt8N1YLMf0znSISM+TyK1UFrJyJoTAMgTqjwsm2QxIg+FKXtxQdeRLiZopEFCGLfJ1SuSm4p9ab6EFElqSHKd3pyIu6XppjZDZmWSR8Csq7ymRhmk30yK5tmiwoEjUyZm5tremBkei+4mAS5EDvStEtCmmkVJXU4pJ8duU2rqwbp/8dE9GhwIXrIxIuPc2ifrV5aPaswOVqsJE8e8biY0e7+2naH13prmWiIef2BSS2R11+XJW6amcjnmuc4lKHV23a87Zw5aNuWnP5aU46UPSeTCqVI+9quc147upBAzZJozSIEIofKRYkeT/IY01VB8vT09GBgYAD1eh0nnngi/umf/gkrV67E1772NfT39+MHP/hBofw8yaOALuhdt9+Ot195brw9ZDYE8WrZ4MpIHgqkCBsug5aDIlL6yIERAJXwaYboyXN0y1dfCWWIHr5KnKfu4EojQtXkTtX5HumQvjZsK8mtQjsHjQBSnV/ZQYJ5yJNMwfNWHWWeeUQHd+arTSLKXC/pUJvXX4bMJoKBk0/SPKwKkif+zQYqNJjUsGnXwdxBPe3nfqT4/qQ++nE2uBBcXDWmrXbmDRi1unAih5ztAkldNDKIq3Oy90ugOundNjaeuRbTzK9ZNq+o3Gs2rG85yeOifNG2968ciEOn01+TqZc0u3Ihe8gfj7bNRO7kkSJUlyLEjg0jjBzkdUiUnOOpNK5K3FaZ8ZnK7lQCRY7VgOJqqE47J2Dx9deprGAmO4ooYwhVqT34WKGMyqWVkG1FiwqZdhPEguzn5Pe88lzrVfS4oijSX3cMlGsR72LbUufhSR5juipInq6uLnzzm9/EmWeemSJ5HnnkEZx99tl4+umnC+XnffJYcFlfH8JwNaYmHsLUxEMIgvnIxw0LrUEED5CsZkkCo79B6gAh5ubmELC0HHl+Z4rYbZONNvlGccG2sfFSXuDJJp/Q09NjrSvVh+pY5QCF5yfb80jwp1MV+D1Hg/m5ubl4QDlSrxvv1yUBsboRwNxhU/htJRMAiV+sQFnnCoHUoC19pPm3LJ+ogxBhyqFyRChPZiY4VJ88n0tUf3ovSIIHoDDLQXyfSIKnKhhXFNm12iKIpf1r1mHTrgPYfNMBAGFcrxBmqTigvwsD6PdBAKihSTlqvbX4ON72HKSO4iQML5fqbQIRU9LPD3/f9vT0xKoMHgY9BGL/UdvGxlX12ki9Ht/F25ifFj75pzoON3y6JIsbmmIhxEh9CBdccIHlrJoD7w9sE3/6LvvaqYeSvm3b5frCBVfNuIRF59DS8bw0BPP5hMXwTvszbYIMkw6E8T1D73teJid/JAlkg82/UFnIhQgNnUiGANFzwt83RcZ7nXpO7URo6K+197zL8kIR9UqmLiKdzMt0jAv4YhBfkHA9xyJLK6HhY4I8z20awYPstZL7ZV68Lvx7WQLFlRjSvtvSy/5aUzWZ8uwEpQUn1lzGGx6twQte8AI89thjme179+7FL//yLxfOzyt5FMgVCAqLLsFVPASp5pEqGlqRBnSfBoCu5gHsq5F5kINsHo1GVx6VGzi4KIhoUtkK0zBOQvDwrq1QDS1VcHUXj5ZFg9C80MmtQltXBgtIWGl1TZoHcXCTFiDt/4SHJjetnrgMakz+ZMwrvZJ20rqCcv5ggGx48HTUv6TMvJVoIj9cVlSpXCDr74feO8t334z9a9ap5mR0vE1WntTc7RrxVjVFKpLXvyhCgJnjmdsoCZFuISwsURADGTuc+VeYaqhT+buBXzuTidpChVDXIBU0pEqVfm6kyqYZEy0NXOEjQ7JrYwBp9mRT8gTBnkZY+zSJqamzTGODtApnEFyxVQRVqVA6Vc2iQTOn19BMOPpOQCf0166qG7lPi45pSitVJ0UVKS71kukIqfQOpjd5557J07LPlNdwPWvumaqmoU4ageZ67fLauUj9TYs/Wj2rgMuYJu84K3jUOX5/lL1fvJLHmK4KJc91112Hr371q5icnMRZZ52Fr3/96/jJT36Cd7zjHXjHO96BD37wg4Xy8ySPAhlqGTCHIAWyjiclQcP94sgJNE145ICqCpMtCdPgUJpXuU26mvN1Q2jFAMZkgtapcu1OgWw3bZC5kIPptgwaHckdbdBAJAuFCycCA8g6tZVKl027DqqTfV6Opo6haF4PbL+qREj0IP7fRHZQGQTtvCMy5yC2rO3C/jXrANiJYk5085rwQRQRFi6DbaoXX9ncOjaG3t5ezMzM5B7bDLlCkOoZXmfu+JqTzkScDjPih8vbpTPtmZkZkM+eoopLvrCghZrnvoIAMwnEy+fnzK/VVMMkWZIGdG2l4uOaDRtaYq5lgkaI5JlIEcg8KZiPWnTqocR0VSN6NHOsPHDfPnn1AaI2lNwbgJjk0UwI5D2nQSq0TGZupv02HKl9sclHlVwYBMqbb1VZ12bKXQjHy8Ykjb95qpq8fsCFTChC6JSd1GvH0WJTXp0kOQVDHbR0tvQabESKRuBo5RRtK410M5Wl5St/29pVliNRBRlUhChMF17SsXIePMljTFcFyfPMM89gw4YNuP3223H48GEcffTROHz4MH7v934Pt99+O5YtW1YoP2+uZcGKFXuN+0j6Ls2heKdM27eOjcVmDtwnAg2EufNC3sFraMbkiOrEJelk0iXTNVuui7lWmXyLgsJ3y3KPJBSRfW8dG4vbTJPSL9k25KFYHZDIcZOunT/vENtDJKZCMqLT/jXrYoKnKN1Ak3NXgoebjnFZrlbq5l0HVVWSTLu54etm866D2L13b67Ki8gBLmuW+RMBkUdmcCKEWnzb2Di2rD0xk5bCrWe3Z+XuUQjyfIk6YffeqK+Q71JJnnAzMP43QFreDiTk2uZdB2OyihRhWp046ULfebj76cmJhnJoMpOeSCiqv+k+DBGZ75BZF5D0efSb8qLzkdL1ubm5lBnX6I071LKK4m+mp61mLqZ9nODRwp/3rxyI6yxNtvpXMlXL6iCjnimj8CFzL+7sWXsXU97Tk+nQ7PSdiCg5mUsTfmnlDv/0GcLGu5gS5e2v2kx7sUCOfXg79Q8MpsYqcuGtarhco45FwcmrfAfxbSrxYxkHUD6U1nWVXCNVeJ20vsZExGhvZy0QhJbW9DuvrzP11zbYiBxTG2r1k+lkPvy7rGNeffPax+QvUSunTBtJaAtgVRI82jV23ebRehx77LG4+eab8d3vfhd/+7d/i7vuugv/8i//gjvvvLMwwQN4JY8K7nj58iuucDqmyKqH7FzlQKrZsKSuaJUqg5uAlTHJcq2XaQUM6PABSpux0FHTqkInKXk0cEeDmgkWERLnbLzVorwJUqY80ZaowyWlDFeluUTP489TXqQm06rXtAjDbkqXHjCHmfKTs3QbtthM4GQ6aWJFih7uDNpUXypnU6McTuBpbSaPpfpRmbws6YDSFbXeGtasWuUUYj5d1ljqmScTLBtMplSypAj6kEFr37Qj3qzJ3XB9qPLoWnn+WKSSR4KijBG4osVG2pRR7Zjy4dAWRaQpl0ZSaeZa8gpyk/HkXTJuNNWywfe5ZtD9P62Y1Loom4uOLzvhWnRCf62pNAB90mxTiuRNkjgRoalPXBRAMj8XmPKV58LVlyYzZVmPKlQoJlD5vD4cedenTHqbWqcKtCLPUmWL4AeA2z2o5ace45U8xnRVKHk4iJ4JgvJ3llfyWPD2K89IrbbYVghdQQ5rbYMnvr8VK15cxdMKkLopb1Cogeol23SkXo/rHSDIRPMCqlEglUGnO3R2JXg6/TxajoZ/kbIg5cLo2q7YGTF/NW/adQCbdh1A38Ag7jm6W3V4TIoOroKgDnfzroNMBTiQUhMC2eunXU/+TNrkxbXeWmqbnPhqq2s0aKMVOnpO++K24BqifEjzNF4nvr/WW8PmXQdjZ79c0cPfJ1SvqcmJ2BFyrbeWKietbor+aaRYdlAdxioXanfaRsou3jYu5z47M1vILIsTNURu2RykD9eHGoql0OkdQW1j6g+H60Pxh+5ZctZOdZAD4W1j49hekZKH6qQpX+R36kuko+T+lQOYmpxIVmTnw5gg4wSKixlVWci6S2fQUm3E6x421ESc4HFZCeaLJET89Ali0OY/RpJmmtrH1ZmwLc1i6aPoXEfqdYzU6+hvqLblPu04DUXUz60keBZL+xM0lYbpWTA+I0zVI5Ua2ncTsUTfXcx6XMchpvOhvo1ARIpGqGj1qIKsMJXDCQROOGkqGK6mDcR3KOk5TASP3GdTF7n21wtJ8IDKDvZkFDzynnSto0v7erQOt9xyC84991wcd9xxOO6443Duuefik5/8ZKm8PMmTg/7BlegfXBk7nNQ6uSJEjAyXLreTqYxGkFTVwbZLKt2M82Y+aJyenDSuKtLg1BTRq5PPs9OwVM7DGcoqYBUdGqk6aIBAZjHJoD7EzMxMSpETiO6UDzR4nWx+MiLzz3pcVn8jslb03ESERf/AYExqcEJEQpMomwZKfPvy3Tejt7cWb5MmSGWweddBjK7twppVqzA1ORETCbR94/r1CVExH7U6nZdUsJAZCj8/Mkvbv2YdQoSpkOMatDbbsvbElJ8RzXGxNOPLO2cXcMJsGzPFisi1gXi7jLw1NTlRmPyltqEIapwsoXKIdORqtP5GxDC7Dqg6mPyeJHWNasLVMOHqKG2shpmPSDmKUiXvI43wqcr5Ml+EMb2Tpx6ajD+8Dhy2iY2GvGiJLmbPJmKNfrv0MTaVVbMBIdoJIuF7enri565/YBD9A4N4YPtVsVnpA9uvij/0zs6DJFpdCbRm0XFjBMWsymb+ZII2oY9JkrDb+OzYzIg02PrCAFH/5DKxdjkv2YebJvtlVUR59dDGF3JcoxFicjHJhUgrAq0MXif+vSgpUrY+ZY5RjxNjWkmKeXQ+PvCBD+Caa67BZZddhsnJSUxOTuKyyy7D0NAQPvCBDxTOz5trKdBkolp0rTIdHjcx0hQrGjquYy0Bed5ljgd0YoxvXwpmSVVAKrU6RcLdDFoh/6boeNvGL08Sso6yrJPbEWa2EyIytTpn460A7M+zzaSIfrsMC0wOek3Om/MQIjHZchk0kAlTnrmVS15ZwiQAj+YjzRFtJmm8TeicSLEQIDGzo+sm295UV1tkM66CKjJADZFEHjM5qqX7ZSplFjWQaQNTtCwTsuaAlJc5Gpp2HXiIbU0NBqBp+Tc3rz7hhBNS+zTTGEnGpEia1UGDKGyg8Xv02sjHU3wfM8fLmqmU9jsuowRktC1TWSYTLe3qk0kWkFXtcJIu+T6mEmhVQ7vXi/ZfC93fyXOQ4zxylq2Z5rn4M9Ty42VrpontRiv661rtOszOfjSdkEX4s5nomGBLZyIjtHQEW59hy6fWa3ecXGiy3iC/KFx5VZN8t/5aJ5FM16XU+Sll8jLKHJ93D7ikXTAIBY/Lc6C1mZZWXp99+4EVTfTXixHtNNc6+eSTsX37drztbW9Lbf/0pz+N97znPfi3f/u3Qvl5JU8ewm4g7I5WYBqqnv7BlU1lyZ01L/aJtwuI4KHzNg1iNPkyHQ+kV8Yor7SzWw/CEeMwuSwaz/W2sfEUwUOkD4FPlGu9NZUk0RApWKLuMkDkh8dlJVtGaeITtGR1yc3kKVZwBHswurbLue6Z+gR7nAmeWm8Nw/UhbNp1ACFCo/NmQjl1R2j1MWQj5fi+AGiY1SFFRPDrZkO80gvz80Xbi8qeI9OzINVPSL9C/Dupa+bm5mKfaGSKVZTgofdw/+DK+H1Lznj5OeUhUlcSGZcQaUDU3uTcel+h2rmhyPuOmzylCB72e/NNB7D5pgPGZ8hG8PA0NuUNgMR5s+LAmQgcyoc+JoKHfsl3CgV70II8cHKHO2UmpWw7xi10rzerTGm1skWqZ7TybAob7ljbhD5hKmhSeUmTvuT49gW5aCka/XWGBBEkhjZBbQZavlqeUnFC6WxqOmkaNDszG/UpQp1kK1s9v2AParXrMm2joWj7uPTX2jnbCAfTtePQytMUP1qavGOLkjZaWj4W0FBEUUZ/ZR2LgI8bTeemtZnL87OiYF08iuEXv/gFuruzVgarV6/Gs88+Wzg/r+RRwFcG/+mf/klNUzZik2lFVu4nHGmTc9PKk8vq1EKv3nUallp7VLYyuA/A8mKdO3Xia1atwu69e7Fm1Srn0N5bGhNDCoMNAME8EK7OpudOcvPqZ1KP0FH8WD45JefNQKK+GKnXsXvv3ngQzcueEkoM19VR+pa9D+0UFaltaGVTU/Lwb2VW8YqqkThRJVdcSXEDmJU2tjJN9c9bQaTfXJ3E/fI0s6JP9+EUU0zl5WHar6mieP2bXRmUSh45sVXVM0yxo4UsbybsuWm/KVS7PGZ4Zz0TxQtIkzgjjLjZdvkYwtVBEk1LUfNw1Y4MUkARPzX1DlB+rNMMmlWi5o2zmq2bhKa2cx2z0DGk7KG8pKN7iobGo6Jxx9m8bFnPhRgHtKu/Nr1buEoThmPl8a6KnCpg7tWKpUkniAiiWu26Rt/pXu9mz1FrR94/m3675JuXtogSxxUmhZFrf11VPWx1ySAnqlYV9/SRrOSxOoEHABwEUMNZZ52FZcuWYcOGDdiwYUOhst7znvfgmGOOwZgQLlx33XV46qmn8LGPfaxQfl7JY8Hb+64EkA17S9+b6TjJIZ8JS2FyXmbliEwNpGPCvPZYaoRGFfDtYYar7JgwOzOLi56NBlAXPbsnJiGkrxMJKmPTrgMxwQOYCZ65ubl4Yk0TeFP+pohJtpW/TbsOpEgAMsHYOjaGmZmZVNnkyI/CR5sG0xqSSWKAvoafCU2BpB1P79cZheCJVqsTnzllVyhcr306RHu0lQgecjAMRCvufUwFZMtXG7jzo4brQ6pixLTqtnz3zXF6qWiUSgN6t/JtRqVBg0R0VW/I/VTWcEM5Ilcp6f7efP16a75FYVI1cHC/SyZHxioUAsXluDxihyND8CjKHlLa9PT0YHhnHSMN/0FE9owo7wsK6GALiCDVOzxtO5Ugrn1XXp0058/NwuTU27TdJb/pycnU/dE3kPiFIoKHrsW2BtETNL5vHRvPmNtp9VnMsPXXJnVJP1MP2hQogfhOnzwywqTe4GocqdaR5dr6UwokkFf/JMNEATRjIHi0/qfIIolJGUPH83c7V+jkkWiyLrJeeXWz7Xcds2iwnWuR9LZjXCDVTq73gYRGuGn3py1/r+TJx+7du/Gtb32rMMFDIMfL73rXu/Cud70Lr3nNa3DzzTfjqKOOQr1ejz8u8EoeBXwFYeoL0WBQ8yfTDLGQt7IDuK2eLkVw866qzv9IbMelhqpXBm2wrZzw0NoAUvepnOQP14dic7BQY3YUkC8TqdJwqS99R+N37BPnvtmGfb75dU/P3bbxyzE18VBklioijvEyyihnXFZNs8ekUzqtaDEM14ewfPfNzs6MtePp3R+pUpL6kO8jbeJsIuFcVuWkWojqIe8FSmdWdWlI6584aaaZyWh+bVwUPVwlxsP3AuLcK/bJE5vIzeumU1WEOnchbGzqHpMvHxUNgmeYKTiAtBP2rO+kBCOG+5MfR8dSnhoZ1Ak+bqgeLvcgR5U+ajSFjvzbbP5RnbN+kqL30GDcN5juh07wx9eq/lojJYoqObT3a2q7RRExXB8yql7L+PDjecR50UTdJUQ8n9RX1F+bypL5GuuklGkaA2jjlmZhIrhshI/Lwk+Re8x1W155ha8du3ekosqV7LSWeQSHUHdV8jTTNr29vU7pgiDAP/zDP+Sn8yRPFlrnUmwQ3TxaKTdeTNAGUQCMAyvu4JnSHUlYymRWO0keG8g8Z/uOHVZHiYTRhtPlotdlpF6PyQlO1pgwPLRTdbTMj3Elmug5MxEVKRgGxNLMqQx4HtIsKutcOD2YyRvIcNDgXF479/e+WcND9RgRZmh5oEhWu/fuxczMjNWhdFROua7c9s6Q/RARN+Zj0i3P05GvoIw5YoUkz9vPvaISEkdC86HjTNI45s8dK1P+6J5PnMOz8McacdM/uFINEKFBRtIykUCd0pdUQfIU6RuLmjraTLiaWQiM8hmEfKa0stLHtO66uZ5TO/pr14m3jUBQ83AkWXLrZFFVkElVBlrEMBbhy5inQ11jUqjAeRUlJmBIL/u9Ir1VEXKlCGzEz0hJws61f9fKzCPB8tohRRIWvHfz2rKq/noxop0kT9XwJI+CTiB5PNKQ5A5BrljJFchW2uT7+6G96CSSRwNN82WHy01vNu064FwOpw14Hpvvm8124JbBJBCRO+4Tjqj20i9EKj8UH/jx3F2RHuQk/n1I7WTLTxvkT7PoWTQY0yKASYJKRq/KIsgorzRptK2+6brrRElSUhpF+ieulKTaUDS4vOPk/SDvdV4Pra2ibYPxMSP1oaYjUkglj/R9YyNhmiVpCilyXMEjfHXPp8sjhR37bYKJ9CEfPAAyZl2t7jvLQlvccUlP0Hzm5B3v4mdHluGapiiKOlRu9bVzuQad0l+XBb2fykTXpL5g9969UTSwRn8d9w85/XXxynbHZQPlFCSmRZKy/bUtb20/L6tZFUwZNNNfa3mVUuFY8pOQbZW6Xx1JHtf7gpfpffK0luS57bbb8Lu/+7s4/vjjSx0v4UkeBc12TlVgKSky5IAJKGZzn2cu0C5yx2Nh0YpBY97qyBYRChxAHAod0GXxNJEFkolv5LS4+KuWmwf19vbiomf3MGWLXneT6sdVxcPL1lCM4EmGShShi4OTKSYHxzR4IRO2InWwrdQRAVdUbTRsIURcHS2bBoDJvvS9EiDIOEGmd17/wGDss0maFOuISuVh6Dmxx01lufNlunZTqePQyIvu+ZD9pv3JkJnM2/i1rMrxMmb3AV3LW6LkcUFeGHXTNnKULOXyBEnEpMwpGXhkwOW7b8b+NeuMdSXzuZ6eno4zzQLs/b4LWeNKfLg6eLaRPrb8bfUrow7KK6eTxo0L0V/Dsr8wHCbKee9y1/rUemvZ0PBxRqwOwZ44LLpr3q51c1GNWNM06qaRD1XVtRnSxFmpYthW9PiqSSnX/E1qLe14ONRRHudJntaSPL/0S7+Ep556CgMDA7j66qvx+te/vlQ+BO942RFVOx20OQTspI66CpQleExptW1ykNpOJ5EeixdbGqHFTY5uiQDgf8mhpbwPabJMYblpctY/MFh65S5Eci+vWbUK52y8FUlY7Oj/UXYO2nmE4WpB8GQdIMv3jw1SHWNPm5SlqUDuOToaiMT1DvZEJEKwJxr0NtpNEjwcJqfXvK5yG23npmAy3PhUI8w35R8ixNTkRKyA4W04Uq9n2tQ0eArYX3kuFFpcAznOpdDq28bG4zbt6enB1rGxXD9viePqKAx9/8Bg7FuK0lG4bDpnKptCnpOpT4AA3MHxSCPsO4VyTxDGbSQJHqB6R47tJni06Fymemjb4qhY7BPvQ9YZMgCV4OHpOMGjOVPmfqTk4kieSqQdMPmGorFRmTpq7zj9Ha7Xh/6aVDq0zcUZdJ55pCxL+23Ln3+WEmwT0iBnfyj+5qKAuYucPNsm4Lz8Wm8NAIzmPaGsQ4NEoY9bH5yUzbfJ+pnIFdPv6KA9yQdI+Qfi/Vxvby3eXmPftfddpgiRV1m4tpc8xvX4vPZ0hakMfh2NZFiwJ0XwyLxobMGdeudBpqm6v/ZI44c//CHuuOMO/Nu//RtqtRrOPvtsfOQjH8GPf/zjUvl5JY8CbQUiLXGvBnmdfRFZ8ZEEKd2mAS+Xph9pbXIkoKqVwX37gBXLkSFEbIqOZBoWqKYteVGVSM0zurYLm3YdhOtww7Z6TUqLbHj08XiwJdU7pAzKi3JVdHXHtj3eZiG6piYeSp2nnMSmM+y2rpIVUedEJFrW1Im3D/fXAyRKmzwfOc1CmmyRYkdOyu0EenqIT4SONCmTA9jpyYnY3IfM40glRKodacpAxxO5SWoRelZMz8jGDesrMdciJU/T4OZSjtBUPEDiVweIJmxBTr5c1aORl+TEPX1Qd3yPTglnzLZIWhKd2GeWUQHbFDCtHi81Y0rWKtPyMvlWUZ+q++siqoqqQGrSGMEe1GrXAUCsvDH61hGgOvPnOia8tb7RQjK5qltMSiMXNWllJmWsv85Tj9jq5bLflF5+t6VrFapQJOUpqaId3Wo7VXaO3iePJWW1Pnl+8pOf4K677sIdd9yBf/mXf8Ell1yCq6++GpdddhmOOspNo+NJHgWycypD8Cxk53qkQA6WuA8C34ZLD62y8R9d2xWTI5pJESFE2ncJN6Wy+SuRZjZFTLdoUq6Z4dC+5btvxj1HdzdMm8IMCWrzi8LrKQdigC7vBewDRHlcclD+oJGTUkEwb0nXrZa9paD5lcn0iggccn6skTllBk2m6CtaXi5+djj5ooOikaXvU7pOEcGV3As0AeGRlgg82o+2Okykjxb1RyOFYlTkeLkSkqcEwWPMB+x5UFZXU5MeUvOsDjLXgqOnp0clQLmpFk9bBJ3YZ2okD0F7r/F97fRV4/30ZdFunzwu7+OiE31T+lpvDWtWrYpIV/ZcaxNqmYeq3jH0jUQgaSSJi+KDb7PlUba/dgX1185lw218UaQPtl3fouSRa/5yP5Bfd1u75F0vOS7KknvpLaXO2ZM8lpTVO17+6le/iltvvRV33HEHTj31VPzHf/wHXvjCF+K2225DrVbLPd6TPApMnVPZ6AytxJFKCplWwzzRs3TRykGj5gPFBCIGaMJc661hZmYWWxpkEflJIUWJHgLc/trl5A7BNKnpH1yZVezMA9IFT3oiEmQGiraBoDaotJFE6mDKMGg0+QrSSJ4w7EZg8EugOVAmYo5HzqJB9ppVq5iiJX12PIx9Qu6Nlx4AZs6DfZ9uEEkAMiRI2YhZEnTtJWFlGuAlxGSW8DQRgSGScyGSiMgdq5PsVpI8kmypgsBxAClyqMzUb0rDfoesbsM7G2orNoEcrg/pKh4GSfS0i+RpxxjERcnjYpqU7xS8nLLaVcFzJI1JFjq6lgkuKhFA78tMihRT3ygRP8ecGMojUxQljFaWqR+2EUPGSX7VjqEREVYzM7Pq+w/KNlubmhaitHyrULDY2tSWvkjeTYGpeGh8M9MgEW2kX29vLb4mzvXwJI8lZTUkz09+8hPceeeduO222/DQQw/hLW95C66++mq84Q1vwBNPPIE/+7M/w913343vfe97uXl5kkdBs52T20r6kdPZVwUicYpFCqq2fMCTRwuFqgeN6UhIidKBO00mmDpATuSkHS8n9wiFnUYjV5r8Jjnr4CRHEafJtuO42Q8NNp0GmkAmLREtpoFBrdfiTJJnq9XRZq6FhOzREPknSdQ5I/V6FOWErZwSUUdknqaakUSfKcy6Wj+43T9yHxFKVTnCJRVqVG8zkSUH9cNDOzMmahq4+ZhGCOUp4wKgs5Q8FSM228q5nwlxuPQcQsd0XFFih6OT+7UijpQ1M7U08ag7TXYlcjRnzab6uOzvBLRC9dQqkoe/L2u9tZTSRUtjQlOT64IkSK12nVNfKEHKDBeS16UOnGTJlAXHcUAJ2PrrKEGyaJNHwjmVJ347LUKJY137a5m/C+i+pfvIZvLnRMIVDJfO8zWpi43wJI8lZfMkz2WXXYYvfOELOOuss/Cud70L73jHO/CiF70oleanP/0pXvKSl+C5557Lzc+TPApaGV3LEzyLC4thgHakoEob/y03pENd29QgJoyu7cI9R3djZmYmZQIlJ9NpE61EyUPmXiZz0CCYzyU0eRogmUwmSpekLimTshYM5jKRNQqWQefhOiG25UOQz29vbxKhLDHVimrtIrV2Scf3FxlAkZnTSIo4MU8+ubkgR0zsNCYFUxMPxUohusdif0LBHoxeWEtFbONnk+drKqrInkabBynFE5kbSYItyb1ikmcfgH+tfjhTVZh1GQ69DKRaZ/num7H5vtkMOcSjb9F3W7h1oHVKnmbGPLaoVibny0Q2EqFDzwOQNXs19e9H0jiN2uCB7Vdh064D8bZOInlqb0584/CJdTxZrhBOk/UWhEDPkFcs9Hor++u4PVtE8BSCIHsIZdVaU5ZFBp7O9NulDP5d26aCKW+s21yOcylPQWkyzZM8lpTNkzxXX3013vWud1kXbMIwxPe//328/OUvz83PkzwKqlLyAJ4c8GgtjqTBaJWDxnA5VMexkuwhSNKHDyKKmXBmVUJUHg2wXSHNmcJwdbStMQCYEpOcWIXSpsEcX70j4oXqXEa9Yy9Lz09OdvOulROpUQCS6Kj1Rr4cuBNjAg1GNefKRcDvM5roku+eVJuE3SmzLG5WhZiEtJtzUZ3pvpIrktLJaGLONZYQo+0mearyu8PAfenEmA/NBM+e1ck2/t0CUlcBWX89dG1jdZ3yjJtIHlskK/peFs3mUbR/S8obtKp2XMpotm8to/BZKIWyLSpf2fq02lwrT3Eh09rUG3JbnvlVFcqauEzFv1xKobQA/XVHQvF91JJiGn9NBIhpnxMUksaYp0Wt0wwBRsdrYdad4EkeS8rmSZ6/+qu/wu/8zu/gec97Xmr7M888g7vvvhvveMc7CuXXMSTPhz/8YVx//fW45pprcNNNN+GRRx7BmWeeqaadmJjAgKHjufLKK3HHHXektl188cX4/Oc/71yXZjonT/B4eLQGVQ8atc51dG0XNt83i9ELazhn4614YPtV8T76HZln0WAwysXmIJlDmzgnZkDur2JOisSDxJxOOyXPrWiAWgREQkmypWqCx+awWUufOtZhyFRkkEmT8ei+GMxcd8AcHj5LQtrvD5qsBQgyDqXTJoOJ2ocjT3FEpY+wc0qcOCfmjnzllFZSuRlaZmW1A8218tQ7PApWvM3w22miZiB6hod2Ytv45YlSRyF5enp6Ep9OynPtouDJc1pchmi0lVcGZSJXuZR/JC2UtBOtIHlU5Y7DZLWI0kJOoE3pXM2RNcTmWw79dStUPIsZGilmTY+suRZgvrau90Ve+gz4dRSEVdXEVbMkkBWe5LGkbJ7kWbZsGR577DGccsopqe0///nPccopp+Dw4cOF8ju6aAWuuOIKXH311fiN3/iNoocasXv3bnziE5/Aa1/72njb6aefjsceeyyV7i//8i+xbds2vOlNb7Lmd8kll+C2226Lf0tGrJUwRXXoZDQ7oPPwWEzYh31YjhVx56dFUNp83yymNj7UUNdQykFs31FDiNk4HZnM2CbUHFr4ctrOYSIqaMI2NzcHhGKybAot3hgE00Rzm5pz60GmZUCaZClK8MSKJZYvV+y41IPy4RO86clJwOHVV2SAlyhWBiCv8nRPRIjQ9ZAED4GUPSNzdSMZSP51picnMIUJ9I0NYnqyJ/ZPIu9HOmfyVaINdOX5xqRTTDQAU5gAhAnNFHO+jIGBuL5bxyjvJPx8q1dlgYiwIWWHBhn6vH/lQGpbuDqInCIL58l5q/3Rxj1u50cET9gdPa97VscOmE2+r3p6ephKKHvva+SOZrYl+39t/OKq9sgb+zQ7trCNVUxlczVjT09Pps5FiKOyEVObOf5Ixz4AKxrfJcETAlaiRD4zgWWfazoibWdRDomZlMGnXaOfbvV7cbGCxjFc2aiB+hZqR1cyxbTf1EeWJXjksXmEk63ucp92rry/6u2tpRwzFzkX/jx6VI8wDBEE2Svxgx/8oEE0FUNhJc9b3vIWfO5zn8PLX/5yvPOd78QVV1yBX/7lXy5cMOHgwYM4//zzsWPHDmzZsgWve93rcNNNN6lpV61ahfPPPx+33HKLMb8rr7wSjz/+OD772c+WrlMrffJ0MpYq2SOVAi5mG351r/NQpU+e5ctZ+GiDaYNNwh/fUw2TF1Pkq/T2INv5Fl2lo0kg/y3z5FjgVUBqxzx1TVFw8y9pCuZ6LD9G+jrJRrlyH2ABiTpLc+4N6D5FiGjkx7iovPgElpOV3FF0lpIgpClHUt5MKRG/yNQMQMpnEK8D7ZOTfu35iBU9FZtrxSqbBlmionte3UeOkgFYfTkAZtOOuOwiEM91GHbHRN+28cuBPavT50Wgc2iQRC5kp81si2AjTFxRZjxhC1Qh8zP5GdK2P7D9qjjyoYuTZa1e/DyaPb7oftcyqhyzdJq5ViXKloLmKRmyu4L+NHaAzMiK3Xv3llYFHemQJHgZkyor+WOMCpqjKBLjtHYsaHBIxVJvb0LscNiCI/C84rp7JY8lZXklz6pVqxAEAf7pn/4J55xzDo4+OtHgHD58GA8//DAuueQSTEzoi1UmlDLX+tnPfoY777wTd9xxB771rW/hDW94A66++mq8+c1vxjHHHFMoryuuuAIvetGLMD4+jlqtZiR55ufn0d3dja985St4/etfb8zvyiuvxGc/+1kce+yxeOELX4j//J//M7Zs2YIXv/jFxmMOHTqEQ4cOxb/379+P008/vaU3cVX27lXZzvM6EZYaySGjY3inyosLRQeNtuf6ni98weqE2DWaleZjJjvYNhgBNTlgNPrf4M4aJSnURpjMqIqobvLAybgyRBKvy+iFtdQ+k/PtNHGTNaviIMfa/F7jdZaRGPsHV6YiJaX912Qn4TxqkFSjaXXOkkXREJBHXaOJcOycWZyLy7szcSY+DjSUO9LpczxwLDhoND3XGd8dzfrd6Z5POSd1XmVt1XOtQRJVBt8+RHq4+qeqwtyqiohNLsogUxoie6TJbTP1aQWmJyP1GKnIIuXZwtcrD3mkUlX9NfnQq+r5Aoqb/DRjmpXKp2SULQ87bNfTVQ2jQhDvgD7eShFLOZGvqiJ7XPMxL+9k0+RtA+BJnhaRPB/60Ifiv+9973vR1ZWUc+yxx+KMM87AW9/6Vhx77LGF8m3aJ8/Xv/513HbbbfjkJz+Jrq4uvP3tb8f69evxyle+MvfYu+++G3/+53+O3bt347jjjrOSPOvXr8fs7Cy+9a1v5eZ5wgkn4Mwzz8R3v/tdvP/970dXVxfm5uawbNky9ZgbbrghbmCOqm/iqkkUV7OwonbspoHTYhh4uMDLpxcnig4abc/1ihX/aj22SMhyzadMrGBRfPDEMK4QVRNlqhOgqWbKkjxNkUNNkl1xBCpLHjzs+HTs0Dghc7jCQJpJkRqME1W2iXg6mptdZTTNnCujYS6Y+MpJd/80cePmX0T+SJOv9CTPpGlJ0iZOmtPr40UdL5uea2efPFzFw50f898G5D7XC0GoGtRKUw+l7zlO8GgwKUyIeODQ1DJyAUWqZ01lmGDKw4QyCqZW9v8uUceA9LsgjPe5OfSvQr3TKtVyVf11/sSqGpiIgqoIHo/2gXyZWWFSdbmGJw/22J1VO6rGWq3wMfmjIhQu+wgmecgKwJwOWLECOOuss7Bs2TJs2LABGzZscC7n8OHDuOuuu/DGN74Rp556agU1b5Lkeeyxx/BXf/VXuO222/CDH/wAb33rW/HDH/4Q9957L7Zu3YqhoSHjsY8++ii6u7vxpS99KfbFYyJ5nnrqKZx66qnYvHkz3vve9xaq40MPPYRXvOIV+Pu//3tcdNFFapqqlTy28J4SzXTkJhlzkTLyHC4WrWsnwiYB91g8qGxl0HHQmCIo5hFPADUCyETKUPhqilpkGhDIidhSQ9nzc4mORYRH7Ni3EWWoHZFCuDkaj24mTaTS79lBo/qHK2nyUDQSmDTBypoZBrEiiINMyDh49C8yFdNUkgBiUoTqwMscqdex7YbxapQ8RRwvNxnOPCEtGtHy2knumEzQGCQpk4e8CFBAliSSBJJUqJkIGtcxD4HuL5cw8EVIoXabRZnGITxCHcDp0tBJMUeoajxT1dio3f11VRge2pnbX3s0h45SNGlhzJX9JrWLUUldpipw9x1EGLYoiXmeVWFfg8jwJI+Wrvm2Oe644/Dtb3/bGHiqKAqTPL/4xS/w13/917jtttvwxS9+Ea997Wvxrne9C7/3e78Xn9T09DSuuuoq/Md//Icxn89+9rPo6+tLqWsOHz6MIAhw1FFH4dChQ/G+O++8E1dffTV++MMf4uSTTy58kieffDK2bNmCP/zDP3RKX0V0rTy7a44yjv+kzL9MvrZyTAMqT4x4LBQqs/F3GDSaCIUgmG/4x8gek6e+IT8bCxHZajHBpNixqaukaVF8DMoP1OWklTtw1RxrcxWO5tQ5+q5TM9yHjyvJw4duWp5ycEcEi3kSF6W2EVBbx8YbodaTEOhUGplkUT8i7fw130ABgup88mAW2POb7gc2SfQQCplXVQUHogdwJ3tcF6VM7zeTbxwtjV2dlh7fpP08RfcTkbmm+mmEMi+7iKKayFv+bi+i8nQBf16mmHNw7meLn28rF6zkuLKZfNvZX7cCHR9SfLHBIZJYM/21jTiq1a6L/cm5jr80ZVcZEqYTUcZvUQyv5LGka57k6e7uxkc+8hGjKKUoCpM8J510Ep577jm87W1vw7p16/C6170uk+bxxx/HqlWr8PDDDxvzOXDgAL73ve+ltr3zne/E2Wefjfe9730499xz4+21Wg0nnXQSPvOZzxSpKoDII/XLXvYyfPazn8Vv//ZvOx0jO6c8JQ19B6AM6t0jU5hQFYnjglZHx+gkeDXP4kK7B42mwXw5Z7/RgNEPHPNBJI9mtqZdE1dFy+jaLtxzdLc6EOSTwMRnTBib5fDw31PCUeEUOfAGMk6TaUV4pPHdZvOuOfCW50mmTtxcqyhMTpzJRIvypPqTg/J0XYrnT23JiZ4AATZuWI/tO3ZU/1xzIsTgaDneVxIL/jxrPnnENo3o0UywTAtGFGlMM9mSKOL4WRJLCYmSOFJNmy9lnYMaI6YZTNM0MstGaMgFNhk50WTW7kokaeNGLT/a98D2q2K/Qq0a/1VB8ACLn+TxqBbyubb1hYXJnoKOjW3BEkxETlPESIF6lMkDFeXjRGB5kseSrnmS5/Of/zyuv/56jI6OYvXq1Xj+85+f2l8038Ikz5133omBgQEcd9xxhQpygWau9eCDD+Kss87C5z73OVxyySWZY84++2zceOON6Ovrw8GDB/GhD30Ib33rW/GSl7wE3/3udzEyMoIDBw7gm9/8pnMo9VZE16rCH4/Jd07Vqzh5WChixJMyRzYWYtCokgoVR4ryyEK2u2b+EfmUsTvEldspYhGZfwCRvx0ZeUeqUDiRo9Y3rmeaqEmbKWWPH2aqGKPPGrW8hIAqKuseTilx+EJEun6xn6DG1rzBpImkonMj/0Dcj08AtI7kMaEFZM+Cw1HZw+Gq8pEh5jP7CrSbZrbFn235XCf3jDn6Cyd6TE7UJTGS53PQtrCmLe7xfaa02Xrr5lt5RE4z4yDX+rguQNrgSR4PQq12HWZnZgv31yaiJwy742hRrs6HW03YtAvtqruR9PEkjyVd8yTPUUcdFX/nodQptPrhw4cL5Xd0fpI0fv/3f7/oIU3h1ltvxUtf+lK88Y1vVPd/5zvfwb59+wAAy5Ytwze+8Q3ccccdePzxx3HaaafhjW98I0ZHR50Jnqpg8pfjqtrR0sn88kiZooMB6VPBtLLX7ACg7CDFtApXRd4eHhrk/eQJntZCM5OL2pxNAgdXNsLX6wMd0+AnAIDYDGk8Hi2dE08ix2MSCI0qxGocC8EzXB8CSAEjFD6UjxaiNESIEdQRIMDw3BCG56Kyg7FApFMUCwPFCJ4QITAGbMUYRlBX08i8ZJ3zyqL0mpPmhLiazJjWbb9xB7Aj7wwqhCQliCBxdL7ckZAOpBtIhYRfWaxfJLUPRX0yYs/q2Mlzbp6MzInNlFYOAI25XD9WZ0LTawTPSGzWOJj4RQIQ0jthbUQKUIS8ENFYZqQe3fvS3EsSMiaChurssuCWp4qxbWtG+V32OL7fxdejh4crIvVsYv6kkS6yfwkAo4lXAACNcOAuDoXVvDsYtr69SN2bUQp1ehstVczMzFSaX9PRtZYiyq5A5DkxdpXs0jaeh2mwwfdVsfpiq18eipTbKjKmqjbwZFFzqHpVEFjYlUEtSpRHtbBFk9L93eSbK/EJY29vDbONgSHHMFP3yHuWExdGnz8oPpji/nFix7LKZJZLyMkpcuIXZ1wtk/z6zM3NYffevVizalXGxIScPwPA1rGxlF5Inqvt3GyrimHjyESJkQ4nH5dTpU+eMiv+i5ncMaFxTjaSp6hzZsrDdFwZVU/qGFZn/izQ/TelmGaRzx75LHBH4dvGL48j32k+r2xkjqbOkSii3nFBK8dGLvkulONl0/FeybM04BK2vlB/GuwxkkB5x3eqT52qzLfK5pHX1weAV/K0WMlTNTzJo6AV5lqA7qfHtNrjEjXBVVJcVd0JZUOjlp3sB8G8UzmemOkcaPczOawdqdeNzmVt13ChB41x9CSPlkI6LQZyiDWHaBa13izBwyePMpx4+v07CKIzbGSIBlOaxF9PmviQkD54EmIm7TtHlpE1jUpg8mEkV0SpbbjJVrNIlxGd20I/10sKTMlDChwiZTQ1jo3ooWNNKh6+Ly6jQPQ8m/8eHr0sUfWEYrw0GBOfRJIOK88HYXRtFzbvOhiTRa6qmzzfPaaxmssYrpUwKYu0fa2Af649VDD/OZryplXmSC7kh9V0rKLytH62aB58XxXtVej8PMljSVcNyfP444/jlltuwbe//W0AwDnnnIOrrrqq8T4sBk/yKCjSOdk6Ur6NUIQM4chbQeJpqlazLLSvHprg5UW18CRPZ4ITPNpg2vW6+UGjhxEOK3q8oyN1iYkIAZBxskrbiFAJ2TDLRoJQqpS6oKEq4OqCubm52OGzBleixXQ8gaugTIM7ORG2EVE0ebZh2KA8Gq4PYdMNN/jnuioovnnyzK3yiJ48SLVQqrwKQtVzc62ReuLMXIMpMtxow3yLfN0Abupo23a+37a93QqaToHvrz2MaBA9gE7umMyuChVR4liNMCmr1nUpyzXfsmralsCTPJZ0zZM8e/bswcUXX4zjjz8eF1xwAQBg9+7deOqpp/DFL34R559/fqH8jspP4lEE1EkTMcEJl7IdOCdaTDbhtK0qO2pbPkVW64qWo5U7NfFQyoZfruq3ykzNo3nQtenp6UkNYklmDyRRSzyOTHDyVgvF7ATFQSMfRA3XhxA0fgdIzLD6BwYRIMi8dzjBw8kVTvBE71s9uo8E+anp6enB1rGxmOCZmpyI/YNsHRtzInimJific6LzpN+Rgmcyc070fEmyxjQw7B8YbDyjaeWSZjKTR/AA5AMlObepyQlMTU5g29g4VqD46pSHAoPz5TyiphAB1D2fIm7kfvpNvnywZ3XW55GpLPbsU58vET2TZhJza8O0kUDfN+86iE27DmJubg5zc3O5PnK0BTTT+CJvu+u4xNVfY1l4HzseHYNgT9wXS0KHkxacAJJPvbYtVUSZainHBeJvWcj3UpF8tYUqvq8TTc88ymFoaAi//du/jUceeQRTU1OYmprCww8/jP/yX/4Lrr322sL5eSWPgip88gDlIiPk+fWRebuqforC5vPHhGYcMVPI5CL7aH+rfBC1izRaait4tnuWJs8mxZutHfzKoIcN5HdDWyEs4qBYOgbOpknyy4u6pZtSpbvcAEEmMhUPl66BkzVanTnBNS1CvheFqb4S8QKH0hqmeoQI/XNdJQyOl2WELFvELEKG/NFUOcyPjmmckKvuUXwiZUOfJ/dNXrQtANiyNn0fEBHJ/W8RyNzLhk7tn20+G+V52czQWgH/XHvkIWQKXK2/bpWKphWoqo6dcK62OuzrQL8zrUY7lTzHH3889u7di7PPPju1/Vvf+ha6u7vx5JNPFsrPK3kqBK320KeIssbkfNmWvt0rM3xlSlPzlK1T38BAisTR8pDKKH5s1e3Q7gFdpw4gmwFX7PDnwTaYXuh2CMPVqclFGK5OfUqrTDzagm3jl6vS5SIDJpd3CR+AJkSLvspmI3iorOH6kBqy3Ya+gYGUcofyDhFianIi9t3DVUtlETT+RWqghJDikY34s8vN0pI89HpU5evHowFBoPSvHDD64onVNgbk7decOxP4/cDVPfFx/CPLtRA8QFoFCiiR5xg27zqYUprR80j3IuVFCh95DpK4WohxVx5MqiRuajo3N4eRel1VLWrotHP0WJrQ1CwufXeeigfK/pD9dTm+KGxqmzL5cFRdVy0/VxM5r7ttLZYvX47vf//7me2PPvooTjzxxML5eSWPglY6Xgbc7L2lo+MyE8wyk2YXR9CtLF8ri86fFD3ePKvzQc6V+WqizXFlJ/rkoWhPQTDvnS4vFjg4YSZozpjJCfNUw6Er+cjhfmysxbPv3A9P2o+PDlLnSFWPBKl2snkFsSNa7vNHO78ykAQVOYImB9ISzgTOQkfXWqqwmEeZyBuT2sPmfNl0vHRYrMEW8Ys7WDY5GJUrzpRmiwihLsGjbPG6EdFjCgwgz6tTkBfIw5Re287RzDl6JY9HLgr01/EhaM6HDe/3NVOxdvoAaua4siimbFbSep88lnTNK3k2btyI6elpfPSjH8XrX/96AMBXvvIVDA8P461vfStuuummQvl5JU/FKKve4cof2QFrUShc/OLweth8+diOI7TTdAlIn18Yrk6pfZoln6rEQpffieD3NRE8NHjO84Wg5bNQ6B9cGRM7i53gyXNavthBPjyKrNDxgR75m6EIPZycHKnXG7578sHTkL+dnp4eDNeHGn6BgjhPCe4naHpyMuVHJ8o7+kfEDSdRovRDsYNzrgSKFD/Rv2be41wFIP36UF14XW0IxV+P9sJE2mjvXJsSiKD5rOHjGqly5vmkymL9PplqB8Ee1QSTm3JofjyAyOEy/xDoGZJjMHpebWjGv2IroZn6SwWSy0Kj3NfJKiaPxY0yihrZs5j81JiwZtUqY7pmyBbpX8gFrSB4bG1atDyXtvaoFh/96EfR39+Pd7zjHTjjjDNwxhln4Morr8R//a//FR/5yEcK5+eVPApapeSxga/AAHb1Dg2Eiqh75IqVq18gnta2OqQpj5oZCLnWtd2ocqVrqSLPj1RZ+JVBM3jY8cVOSBUFvWtIPZYXOYojhB6RxyU8ukwPcMVOouQhH1QUpt2kBCBihPzXEPLCqwO6ukfbJh0vVznI1PKS25Jw9Wy7V/JUjxwnxxp4yHUaL+QpbZpBasyg+OsJLav8Lvfs6Fr9Xti06yAoqp6J9GhlNKw8lXSzCmhtvGbrk13Oo0wdfX/toSEMu1U1XjsULXEZwZ7Yh19L8m9RPpq/oqryzisXtM8reSzpqvNX9OSTT+K73/0uAOAVr3gFTjjhhFL5eJJHQZUkT5GBAK1cAeWizJQ16+IwSavLRH4oM3DS8jRJwJtBGSIi7xgt5PKRBrrOpEKQq6LSfKsI/KBRh6bSMRE9mipwSaARkpUTNnLAUuutYaah3ilidsWhmYYESE8oN+86mCKJuLPXvPdLnilVqHzjBBIRXdxXkBYmPk9pM1wfwu69ezE7MxufGzd9mWLOb23mMxKkMEoRPZ7kaR0Kkj2u4darXNzImIQJokeaammqHohttF0+m/vXrMv0P2XHFM2MRfIWzKpeIKuqvCJpfX/tYUSDwJXPtda/Qtmet5hg2ibLNFYvZ/9CIO98YNhfefme5LGk6zyn1J7kUdAOJY/JXr0MyWObtGn5tMrHT9UrYER6yUlss4MgygNISAdXO3YguWb8WI8Esm0JvN1MEbZsqHLQODXx0yVBdmjPhst5LSmyhw0Y8wZuHHJgyVcUAcTOiwE0/M6kQf5ogtSx6VK4eZPNH0+6Vm7RRSg/UuwQmcSfrUQdlD17l0GuSdFEhBqdfxHIc/nTnufjz//xCT8ZbBUMRE8eoaOlB6pXr9pMgIgMBLKkzjRThUGk4ZB+es7ZeGsmTVk/cZ0CrgSXfr1cxzWAOSKsbb8JnuTxUGHor11JHi19UT89nUjiLCRc2yMEEHiSx5KuHMnT39/vnHZqaso5LeBJHhXtInmqIHj4cRKUD89XEjxFCZ+qBj55q2A0WS1i9uW6siZlzLY62IgKT/DooPYBYFTtcCLIVf3kB41uIOJnKZttaaFXc49p/CVywkZSyAFm3u88Z8lyEmYjfJqJOBWy/5vPTVcCReHd6XtEIDVVilfytA45Sh5XoqdKMy0g398a9a/Uj0RmhwDd21z1Ruow7hhdPp/D9SEs331zvO2cjbc6OVnuJBRZHAPSC4itND8zwffXHhzUZzfj9FcuesiFGZ6/JHXkfi2NphrsBDIoBNDbmw0UsSA4gkke7ANgO+VG25x11llYtmwZNmzYgA0bNuTm/853vtO5LrfddptzWsCTPCpaQfK4+LPhUaQAO9kj07pC5smP54SK5sSvnQMhl8GJRpRxlJEnm1QoXH2SVy+PCPL6aG1WxMTNDxo9MigQnUMbxNF2qcqR+yG2aXlnU6ffJwBEtC79HeJKmGiRsoYb5zHdMKdqxmafq3kIW8fGMs+si5mZFZ7kaQ1K+OWxgXz1NAtTf03+gAg8pDknY6XKjJM8BFX10yCzuCKpGZ88nQzXhSwtLVDOdE0e4/trjwxK9tfNLlTYyCLATPx0AmzmZXnnYTquKXiSx5IQHdc2PrpWC+Dq00ZGK8gjbfoHV8afMtDyl6SPFkGhFREVeMQGDXmDEtPxvH20vJOoNgH7JPnOzc3Fg8UkItQgenp64v20fXqSIuAExvPQ2rMVGKnX1Yg9Lqj6msuBIo/YIcvik0Wqv3YezekRPJYsgj0YXdtVwBAqInRG6kMs4k6IbULRo60GcvMtIPLxw9NPT04gQICRej2+z+fm5rB9xw5sGxtPOUG2vd9C8S+9L/k7NzeX2U/n0S/CTtsQIiKMtEHh1OREXHd6ViUpG9XDY6mBImjJSFpVoH/lQEy60HdSFdH2np4ebB0bjwkeilAHRPesNKEMxF/6Ts/t1EOTCFen+yP6Ts9r1QRPq/t+W/58n2s9yp77YifFPNqEYA+AdD9mTCr+5sGUF/WDvEwt76J9mGvfWiQ/LT3NUkz7QsiZTPo4j8WJn/3sZ7jvvvtw33334Wc/+1npfLySR0HZFQjXFRGtw80jX7Q0ZVE2apcpUkMZpY8pWoNru3EzszxztSSv6JWomWEBpNYZjweF9F2LmMNB/jDor6uPn04Br+dCOI82qackLrr4Yr8y6JFBrXYdLnp2T+wY2GbrLyPu7F+zzhphw7QaVutNS6dJQUNpeZkUYassOMFJ+SZRqpIablnbhc27DsbKJJMDag5e76Q8U7oxRIR2opygd2VTUUq8kqc1YEoeHjkrzzyLCB2urGkV8aHWpeF4WZpkaqYZAFL9Nfnd2b9mXcY8C7D73mnWkXLZY8uWZUKnjD28ksdDg4yuldkPc3+bp7Ix9dcL5Y8nT42UZ2ZmypPSN+OXqDQ6UK3SarRTyfPEE0/gPe95D/7qr/4Kzz33HABg2bJleMc73oH/8T/+R+EoW57kUdAMycNhkwCbiB5OXOSRMc1AI0ik0idLkujgZjlFbMYJNpMriWbN06L6BepgkYct1soMw+44TeLccDA2jQCSCVhaaj7WyD/xVaOZPWho5WBN1qfV5dkgo3FpvpD8oNHDhOGhnXFUqWFhesVNsUbXdmHzfbPRQWF3RglTxvSICBcZRj2uW0UkDx+g1XprmJmZSaXRzLdsyGqEkuEfHwjWemtYs2pVyncJOXsGkvMrrbbzJE9rUDKMOgcPqd4sMqpbC8FDIKJnRCEjCdTnAlFfPXphDZvvm8Xw0E4s332zkeChOlVlqlTWQXEZ2EzVPcnj0fEQZltWPzgN9Q+Q79enLInRCuKnDLGkLVBBOdZmpmXKqzJ4kseSEE23zR/+4R/i7//+7/E//+f/xK//+q8DAO677z5s3LgRv/Vbv4WPf/zjhfLzJI+CZjonF7LChdRwdcLsSnqYCBx3FYwZRQdHmmPAIihDcmnnG4bdGROMbeOX55rNadckccQ8GK+iS8WPHKSOMNWPBm0AyuHqc8gln3b6YKK8I5JrPEWu0XatXfygcfHD9N5xIZ1t4FHG+PslRZA0Bot2Z+4B+18pJ5WqUc/G/cvfAemBmnsXm1bthPE280pgMtwjoift4Nk+0DMpeeRxJsfSVF9OZNnInhCIFUeEfU2GHfXPNcOe1RFRYiF4OJHD/dTYlD5VKHpyFTxAhuThGB7aGX+nfsOm6NWe81YRMbYFvnZAjqny/PG0gwTy/bVHHriqJ6V6CfZE+xjBYzoeMJBDKOerZiGUPkWP0dCKOmukUyeGCW812knynHTSSfjMZz6DWq2W2j4zM4PBwcHCplue5FFQpnMyKXXyHPxy5BEuGooQHpqqhTt9NqV3UfLI/PKOs62g2YifqsM+RwPBxqQsp0PRjgWgRJLKqnuAdOeSTJqivZLwkW3KlS38u6vDSN6mMnKJVMy0C1zJ5LIa6geNHnlwDSkv0wGIo5END+1MqXG4aZZpUEZmmgROsHDixeX5yir80sSTpsCZbqgHXc2mhutD2L13Ly56dg827TrotBJICkUy20rXKamVJHmk+VgGXslTLXIIniJh0/lxQPn+wUnFA1hJHiDqc3n/Z4oWaorM2SpyYyGVM3nm8+00JePw/bWHK1ImXAXH4dL8y0XlUhYuplQmoqmZulRhblYZeeWVPJaEaLptTjjhBMzPz+NXfuVXUtsfeOABXHDBBXjiiScK5edJHgXNKnnyyB5Xnzya8obS2qJkafnkhSIPgnmnFTFK56LCyTtnSiOJplaaqVUFGY7eFL7VBJ6Wh3QGEEfxIiUCpbH5q7GBTEn4JCuJSKJHU5No9eCYm46ZSCc/aFz8KBsRMP2sDajkjc3UNa3gS6t++HsnlSeTlEtTrFpvDQCwZtUqAFoY5sAy8Azjsul8TKDngj+7ZQdrUyzi1ijz38PNXQBYTb5MA2f5PpHqI9Pgd3pyAv0XD3qSpyooBI+rHx5TGmnCVcR8m6MssWODHBe57NcIXo5OMHUqA02Ny3+3G76/9mgXNKIHcCdkNMVKUTKnirQc3Oxc+gBsBYGVh/g8PMljSYim2+aiiy7Ci1/8YvzVX/0VjjvuOADAU089hSuuuAL//u//jr//+78vlJ8neRQU6ZzyBgTafulA2AbTpChvcCPT5tXRlBcdS+SOqxkZoJtjaW1h8z9kqtdCQ04oTeGK5cNlY/lpNZ4rdgCkHDprod3l/rxjAO5TSF/1I+TJvqsCmW5F36MJtZw4+0Fj56MMiVMENEELgnmE4epYfZOXno7RtgPp9xDVnxQ9XKWTIqUbZEgo1uq4LyBJrJJ6b7rhP4eTI9z0id/70vFytE2cp7LNhsRMK6k7fwa1gWVR8DpJkpl+hwCCDlfyZO5pTqQ0QVC0BAYVjxYdy0bqyH3cnAsoqFBmeWXyrqD9tLGQ7T20VEkeQFdFFzGjr/K8fX/t0U4Q0VOEAEmZiJUt13JsWTJGElCmPFxUxmVgzcuTPJaEaLptvvnNb+KSSy7BoUOHcN555wEA/umf/gnPe97z8MUvfhHnnHNOofx8CPUmIENU0m850OHb5T4+QCkaUctE/lA+UxMPIQxXWwdksmPXVsD55MiF3CHw4/oGBoxkFxFJWpoy5bYTVC/TC3GkPoSgsT9ANjIX30fRvfoGBlOOm4GItKFtfB9NPmn/trFx9PT0YGpyIt5HE0betsP1ofi3LEvb3upBb+SIeshu1uHR8WgHGTs9OZmaqGnvUP4edMmvb2AgflfScbv37gWA+JnsHxhMTaKG60OKv53ES470dRORQkH8fbg+hP5GvpzI0fxRhY2c6X0i9xUd3MlnbHpysvG+COO8miF4gISsDZFti8RnWYh92NdUOa2G9Z7es7qUg+N2w+Rnh0gb/l1Ly8OdA3p47jyCx5R3FTCpnrV3gGt0qsWIZky0Fiux5eEBJD73aDxtQ9VKGJufHNvCrgmB+G6qJ++jW30uHu3Ba17zGvzrv/4rbrzxRrzuda/D6173Onz4wx/Ggw8+WJjgAbySR4XrCkTRgYC2usIVMnnOkE2QChtuzpCn4jFBEjtylZvvMyFvtc90zmXbIQ+21b0yZeaFgiwCW6czxRQ+2l8AqtLAZDbYqSuVFGFLhqIn+JXBIwdytV0qdvJW4zWQ+scGzTyKVC/TzPkw+c3JPku642ZucqmZQw0z9RqQP+HiDqV5eUUjbHE1H5HMaZ9h6fLKIDbLiiOfpSMLXrNhA7bv2LG4nus8YocUKjJdK5U/DmQTV+I4m1M5QFMK8TynHtJ9YzULbeykR9Rc+ijqF7LV8P21Rztg88mT58emKbKn4Ry69PGLFV7JY0mIptvmxhtvxC/90i/hqquuSm2/9dZb8bOf/Qzve9/7CuV3dKlaHOEos8qjTa6nJycxNZEQCzRAKWrywNNGeUyKPN0iLORNgqJVbnPoTpvZlYlYMPnPKKLccTFdk4NBU1mSMDPlNzy0s1LnZ6TyGQYyE0z0IKXK0ZQ8JmfMBL6tUwe9dG5S7eRxZIHMsMoQOUDabxhgdr5M4D5EIsVOox4Io21jEWlC5AknKhIzSBpW6sPGAADGxgFkVWohgGBsvFAULv4ecZWbazWLCaGB6LMNDS3SgDw2LEX0xD5/kJznNowDYwDqjXfdjQB2FM6686GRLrStSrLHIZKWK4FTJL00vVKjc9F5TqAl4OMcjk7t41oJec5HYht4HFmo1a7L9EqB+Cu/a2mLIO5rK1zkNZUDNFnHCupwRBFYHYBPfOIT+NSnPpXZfs455+B3f/d3C5M8XsmjgFi7u26/HSeccIKTA2Eg3/GfS/qisKlsTOmBrMqjSCh2gvTPYyNnpIxYC5XcjJJJ1knWy5TeBlM9arXrMk7QTKsERV6QUyxCDic6ZNQe7iSVsNgHdPK5SsJReyXPYkUz/nk0Xzqu5I/JT0++OkiuCEZPsMk8Kvmb7kJH6vXE34yhjqZVRheipyjZ4rKiSfumDaHSXUqWfnekXyJt0DpcH8J5552Ht195Zeuf61b40rGpZ0xqnirr4GgqJkOka2HUncDCs2fyMJxPGK4uNMZoBmWVy0sRXsnjseTBgiNU5a9OLYblYfJVV9TZc9FyEexJna9rnq7tQhE3c820vZLHkhBNt81xxx2Hb3/72zjzzDNT2x966CG8+tWvxtNPP10oP++TxwHNRCnoH1wZf6oGkRWa350wXB1/ivin4PlqkOdDEznT+ZnIJKoT96Ehyy9Kxsg6UL3K+OkwpQ/D7vglGPnkyHrlJxTtWLhChyZGXKlDKhfpK8dGQi4W3wL8PPoGBuLzXiz198iC+7cpiiCYjz9A+l1gc7Zs22e7lzTTy8BAaowwAlYjXLeOjTXImuhtoNE2JlK46P1exr4fiKJrZfMJc/o38/kAWT8/AaL3V9hojenJicx5bxsbx9v7rrSUWREWwm9OO/z1WIgizc8O/0ufwmV1z2PqIaHMtdQjCOYrHf90qn++ToPND6KHx6KHIDxMvmvKOD3mf2UeM4IEqdq/D0cqT4Xg0co11V/221pf3KwfPo/mcfrpp+MrX/lKZvtXvvIVnHbaaYXz8ySPBZf19aU6SnJUbDMJ0oiBMiZYLiASg0+GCNOTk/F2ScLw86H9tMpNhBGRQy51sP3m9QHsq/tyUFLWZI3KkSRS0fY3kVchEIdQnp6cSKluNOfKLpianMDWsfFYxcMjY0nHyK5mWfz3YiF/ONFD6NS6ethR9eQOsPviIYfMlIa/v8JwdepdqZFBRMuMru1Sn+Faby0VactlUEe0iEaMjK7tit8jlJ/Nn85IvZ6hnWyqHBs27zqYyScw0lrIpM26m9ZBTqXzzm3Rohk1TlUEUPe8cz048VMYjLTqXzmgqnJbDZdoo3mgcZzNYfRiQFm3AS75LtY28TgyEIbdUd8Z7Ik+CnjfWjh/6P2chiLkjmlxp0pzGs1827YYbUMzbehRDuvWrcO1116L2267Dd/73vfwve99D7feeiuGhoawbt26wvl5cy0FNplpxlmhxUTJNBgxRYLopDDheaYNLrCFNjX5yNFQJMx8Xpj3ov5+XK7J8NBObBu/HMNDOwEkjoNtUaK0kMKmcOc8LDp3iNqpDpSrgpSbe/n3kQnuTJ5g8zHmYhrC3xOmUOzDQztTSrq0KVLo9PxxZ+LJsRFs8mkydSKHzwDQNzDInCIPOg8uuWpn/5p1sfNnUtdQ3lQexLmR7yEe5t1U71Lo8BDqTnBxxOxi2uValkwv8i5tjuUKV1JJMZ9qhemWa1j0LWtPxP4167Bt/HLVdN2jOvj+2qOdCMPuOMJWu4KiyDRknuxqIm3aX6RPLdv/lu63vbmWJSGabpswDPEnf/In2L59O5555hkAkQnX+973PnzgAx8onJ8neRRInzxloPmr4b9luk4EHzi5rtrx81MjeCi+d/hgy2UFKS/SVxFfQab86fgy12d4aKdK9JiIHxlZh1a8uSmIdKy81AkeAj9PP2g8cqFN4vL88+T55uG+frRj5PuEP9cA4uhQZgSxsi+P8AWy5k5xPRix20yUK5kX0JhwC4UNqY94BC9X586l0E6Sp4TjYz55sOZpQx7J41KnAv53CK0KWQ4gfU6GumskT5kFIxNMPnjkeEWOBY6EvnOh4ftrjyqQ+/41HqibN7USIYDeXt1nT7P5dowDZE/yWBKisrY5ePAgvv3tb+P444/HK1/5Sjzvec8rlY+PruWAIiQBj5Dlkpaj01Q96cFY8fpohI3me0dLX1QFpR2n5WGKsMXz4/tJpeMCStvT0wMEl2MbgGGZhiZ0bCVxDnMpxQAG0mHTAWScEB8pg9Qj5Tw9zIiek6zTZenQ1UTWAMDohTVs2nUg/h0pbC6P8yYykfKM7rvVsQlYhNXYijEE4/MN1Z5Z0B0giJ71BnFT661h4/r1ANAIVT4Wkyi08rcV+uoffwbKr9o16tnIKiZ3lMcrYP/zb7JcijKmEU+ja7syJmEqgj3Yt++VWIEV+WmrQAnzqtwJhi1cOm1zIWhIoaM5iJbbLPnxsOWZaFdVghE8tqAJRUkd2+JKlqDRF6KmGusjoxfWsPm+2Y4YT3l4eBRD2AxRw97bWqjzWm8Ns7MfVUOwy7S0XQ+WkO4ja2hOXaOV3TEEj0fb0NXVhTVr1jSdj1fyKOArEPd84Qvxdleyx+QHReZT1NSr0yFJqry2sil3iiiGih5nSzM18VDGZIqnJ5MsAEbyJzbbYiZcHHScyQzlSFHpFIVfGVw8aIUPMtcVeHp++ORyeGhnHPYcSFQ48lnr7e3FzMxMJk8Kyw6k323cpGnr2HhMCND5h+FqBAhidUyULipbKmUAs+rHNGgkMsVFLaQpj6YnJzOmaHmQUcXonHheriHXpyYn8OSTT7YnulZJOK0ka6RLXnStFsJE7lRO+nQnjtHlM1cWtmiZpuc/JngGBlOTu9ELa/H3TbsOYnpywqt5SqDMmMT31x5loZpbsec6jnBreS/XatdhdvajjQwjHz4zM7PpaFWpQtORukzED58wj9SzESXzfOE0o4p1dfJcxFysKC5ceyHuu+++I1LJ86e/9nwcd7S5NZ9+NsSf/+MTOOuss7Bs2TJs2LABGzZsaGNNs/COlwtAs+HWIhjwfQSbHx6pPmk3wROG3SoZUQR5KpuikR40EqeKqBqSsKFzp490cjw3Nxe3DZVPJA0/jj6aRHT33r3x956enpTSiwZPR6JKx6O1CMPuBYtEU9U7jD8r/YMrnZyC9g0MgoY19Hwv330zAgTYOjaGrWPjGKnXMVKvx86YR+p1BME81qxapeZPDukpYtjc3FzqOY0IlDBzDBARGdOTE5l8KeoUHzLQgFE6fpYrkEBaLcPNyEzQzqt/YDAmZbRIYen6JgPG4fpQ5Li/UTOedxhTWlGe1Cpa/foGBvG1r33NWu5Co7CpACd32kTwkGrH1bEypZF/VZBjZ+3TAD1HVYBH8JyaeCh+jmz9Iu0bXduF0QtrqcAR52y8FedsvDX2P+UJnuLw7dV6hGE3arXrFroabUcYdsfnTmNy6u9qvbU40AlX9RDBo425w7AbCLuxZtWqeD/vmePAKXKszpw4jzSCn3CnyEHjOIriFSDbX5sUOLzv1NK5KC3oeBfChogkSfa4lmXDff/3viZzWPrYvXs3vvWtby04wQN0kJLnwx/+MK6//npcc801uOmmm/DII49k4sQTJiYmMODQ6bz73e/GJz7xCYyPj+Paa691rovJJ4/N+adp4sGP0fzyaCZbmt+aVqG0vasFmo+dvBU4Da5RNMq0kSYD5avpHNwh8vYdO7Bm1ap4H6l1lu++GZt3HcxMlEy+dLSVsU5V8HRKvfzKoDta8Vy3Elz5IqH53pG+cxKTrW51pUwqWbiipre3Fxc9G7XVPUd3Y+P69an7naflIPVOul57MHphDfvXRFEQyBRry9ou3HN0NPCU9YhMMd0dKRNkzC56lxJRTXUzrSzqMb/oeR+MjyXTUS0/Wz4JoisyUq/riqHF5nhZ+qGpiMghlY0Me553jETecc7lFDRta8WYRY4ltL7TNIagvveB7VfFppp54xGPajA9OYmLLr7Y99cOiE2JFlF/XRVM/TXQMKdq+LaRKpzhRpCAkfoQdu/dizWrVmHb2HhyDG9LodABL6tBFO3euzflR4enG64PRQu7DbKorBLH1YFzlaqblvjyOYJ98rgqeTqpbTpCybN792584hOfwGtf+9p42+mnn47HHnss9fnQhz6Erq4uvOlNb8rNc3p6Gv/4j/9YKq68hEm5ow0u8gYPpvDqhHYSPEC1HYvmi8jWXlUNuMqqFTKseLBHna6QCcLc3FyK4AES06z9a9ZhuD6khjvnbSAHqxyupijthh8QLz50woCR3gd8Vd0Ek3knv995+HMKlU4KG+3dE6IRWSrYg21j4+jt7Y33caJlZmYGm3YdwKZdB7Bm1arMBNLkYJkiX/GVPSAyC9k2No7lu2+O027edRAXPbsnRQpRfeidkafE4eelgd4zW8fG0NPTgxElPyJtbOgbGMBIfSglTY+I6rDkgDGM83A9x44GqVi4UsdGiBQgSyTxYlPocNOr/pUDzmZYVRE82tiFL2S5PPeUh/b8SuW01mdqSlgCLa6cs/HWeJtNee1RHXwbuyMI9nREf70QkAsQIRATNES6hI3vvb21zLHbxsYxOzOLbeOXp9U6DXUQwu7UuN7Uf0mCh6tfto2NxwSPrIMLeL3yFDyaiZhr3hq8Lx+PBVfyHDx4EOeffz527NiBLVu24HWvex1uuukmNe2qVatw/vnn45ZbbrHm+cMf/hC/+qu/ii984Qu49NJLce211zal5NFWjYp0YnkT88Xof0eDbUBnC3kstxWBS9tJPzs8moxma0t2tsTgxw6SWShzIDtZkquMcuVRkjt595BMT+dwpA6gvJJn8YEcGQP5zyqFMufRr2QkLJ6WIwjmUatdF5OwXDFS661lFDQmuKjW4ro0VghNq2V81a+3N1qJnG5Et9LKIWfNef5xQvDQ5+a65vnbsal6eP24b528lcFE9ZO0dSq0vYjkBWDxKXk4pLNk+q45UM5R/JhUORohYzKvciV6cn3zlHBQncq/gE8ubj7FfV9l7+0AW9Z2pUibPLj6uOsUteriQxC/0yR8f+3BQT5yYl85hv6T1Di0nRwkR4ntjpgz/u2430xHJ8683+Y+d0x+eYr4x3Etuwhc/fRUBq/kMabzSh4FGzZswKWXXoo3vOEN1nTz8/O4//77cfXVV1vTPffcc/j93/99DA8P45xzzmmqbpf19QFIEw9+Jcgd1FYuPovkNpc2dnGyzP3szM3NZZQ2fAV+pD4UM/W04kzHS4KHr0j3DQxgbm7OarJH0NLkHSeVQB4eiwVBMO/sZ4zIE1Lr8G2c1OH+w8iRsolgHq4P4aJn96QcqWvQiVdDZ04rhDA7aKSjI981E5iZmcFIfahBcmTznZ6cxNTkBLaOjWV8AfDvvJQ+hTAZqdfZuQxi69hYhsCRg0K+l3weUT2l8+T0uYaNuoZxGaQk4qA25e/e0bVLZNImyRtbNK0c4sTkKJl/N/nc6bR+ocjCFfnzmZ6cjJ8rqdqh7+SDynUcthDK1yMLofoe8vAgkKJmdmYWCLsxMzNrjZoVEzpIVDy8z7WB90+79+5N1DzKsdl+NUJvby3OSy6QcJ86fO4g++oiJJCWf14dNQWQKW0VWBIK3CMUCxpC/e6778bXv/517N69OzftLbfcgl/5lV/B61//emu6j3zkIzj66KOxceNG53ocOnQIhw4din/v378//t7qwdNSUfEAus+hMsgjNFwGbqTekdg6No5tluOkORYHJ3gipU+yT/O7I+tvUjO5Im+i6pGG7bn2WDyg1f2piYi4iEyJouHQMIYwUq9j+e6bsWbNuoY5VBiFOkeAbWPjGF3bhQe2X+XkuDVVLoCpxrM8Uq9j9969ceQt6QTR5BQxemc0BopjSb6j269ivnPGUnWInvNkcClJpDh6GCIDKr6SHuUVYKQ+hJ6eCfQZQ6TL342tA0k5/K82UA0QAGPAVkSRtUJLV0m+h4brUZs4hVc3oOOfa5OvnpK+ezSFKG3nv4G0uRdX60jljtVkS5BRXJXTiqh5QDQR3LK2C6Pbu9C/azBWyZJ/qL6B9D1o6zdN7WSDq9L4SAJXVXFk26SaqWXHP9cehaFFycr7XatdB/TWEDATqtxylHzIh4/Wh9kUM7OiXBd1jcmhslZPLZ1puyk/2/bc+gZ73FRNLF2R6JsenYUFM9d69NFH0d3djS996UuxL55araaaaz311FM49dRTsXnzZrz3ve815jk/P49LL70UX//612NfPGeccUauudYNN9yAD33oQ5ntPIR6VZ09H5yYnC4vNpgGAq0cJGkmILTCT46S6TtBqnHi4xhLHZtpsWg1Mj8ZYp3/5hO3Mj6bPMwoKv82Pdde/r24EDumlNvFtqmM2UAQO2bUwqIjlTLA1OREbE40xcyhiOC56Nk9MTkxXB+KTSeNDoW1c2F1ztY3gTRt0hRDckAXsv/lu9dWRzL/0p3ED6K3t5Y6d7VOjQEhvTO3jo3FRBw/T9Vkq6D8u+Oeaxt50z2f7tctaW0KHVeTIwlO8vDftC2P4InTCj+BVYxVaALIVV3nbLw1c3+EiByXA5GSh/fLJrR6/HEkQHNwXaQ9fX99ZMLUXzsdi6gv0sx6NfJC9oMZh8lNkBNlnRZX4uzYlYgRZeb5/5H9dSl4cy1juk4011owkuezn/0s+vr6sGzZsnjb4cOHEQQBjjrqKBw6dCjed+edd+Lqq6/GD3/4Q5x88snGPG+66SbU63UcdVRihXb48GEcddRROP300/HII4+ox2krCKeffnpM8lQ5UDCRPKaoUYuF+DHb0VcP2Yam8O98whIgMK9KNxy9DQ/tRE9PT6aD4aSPnAQRJPFDaGV72CJ1LUUUHTSanms/aFwcGB7aia1j404DJhoc6s+BHP4kSFQxkT8cHmUjZISJ9DMT5RpkJpymwSmA2BHytrFxK8GTrrd9wEjvpjw/PdOTk3hg+1XxJJn7GUiOG0SaJEp+R/Wvq/4JeCh3Wz2N17LgoLHjnmtB3KTIE4svHkmy2MKYF32/p/pIptqh31ZYzMp49M9yUS1XZ6K3AQnRs2nXQdX8MUVoiv7ahjKqniMVRdvINu6YnpzEk08+ibdfeeXifa49CqMowZMhHtDw3eOg4jGRKa5+7Ux1zPOxZ8uTUKWfnrzjsws92TpU6rfHkzzGdJ7kYThw4AC+973vpba9853vxNlnn433ve99OPfcc+PttVoNJ510Ej7zmc9Y8/z5z3+Oxx57LLXt4osvxu///u/jne98J171qlc51Y07Xr78iisczygfpqhKQHYwshiIHYIWUavVkASLBj4AJDMP/vI3dQbadhmCmdeDCB7pGLlq8uVIIXNM8I4cjxA4rjDx55QTsED0vEcTQ1v3FqQULKTKASj0ub1rpLRAovDjJIhJOp0elNnLkD5xXEGqHhNBpb0/ieDmdTK/c4J4wp03KOcKIzpylDnQnZ2dxfYdOxb1cz018ZCz02MAGdJFhjXnKOKs3wSbykdFDtEDFBujRM6VB8HpVu3OnjKs4gO6H6dNuw6mosiZAhMc6X1nHorcX1pUUK19fX99hKCsIgRArbcGoJiJVF6fmociiiAUyNdWjgtBVKT+pevVjIKH4EkeY7pOJHkWzPHyiSeeiHPPPTf1ef7zn48Xv/jFKYLnwQcfxJe//GW8613vUvM5++yzMT09DQDxsfxzzDHH4CUveYkzwSNBjig1J4CmkOAmSH8tNsfEWkjRhYRLXTrBKXVPT0/8ARJny5oTNW6SZdo+NTmBEKHR/IrK5Eoeul842TM9OZmaFJbBQreth0fLIQYgNgpEqkro/dPfmEwCEaEwUq/Hf+l70DDlIoKD3s307uAqHhO2jo3F4cq5w2FytmxyVhgov3gfQ++J2O9QIx+bY0XNESMRPNp5yHf1trFxzM3NYWpyAtOTkwgQqIsSmXcYOdTMgdaPUh1Gb7wx9/iOxp7VRoImBUacuIY815zvlwU/3jkKlxIK3dWROmF4aGdM8ABmfxSAroSjNJt3HUwpxjYz1Q89hyaYFtc8IuTdX9pz2zcwgP7Blb5dj1CEikPjooqB2ZlZtf+g55pIIMpbM1sG8gmUUEmrETn8r+Zjz7X/zauTS1pTWVSvUuqMZgkej0WHBQ+hzqH55Hn/+9+Pu+66C4888kjKDIsQBAFuu+02XHnllWqeLj55JPgKBPfJY1rBoO9loNk9S5A8mr4vJEwybRdzraol01JFw6EN+GilnRQAtGpomozZQi6bVsKlXwtK2z8w6Gii4WGCXxlcmhi9sObsiJcGedxMKRnwRL9Mq2ch0iZTYUPp4uLrRKr0OMhsS3tfNKvEkfUg07Li+Zm7eRkiHYjayfT+M4ZCd4D2Dlz0z3VJh8pA1ldOs355TDBNxPPUPM2MO7QIOrYVdG2/a1ryoQX4xZCyqNr8e9E/1x5mFAxHXnXavPRyfJB3vGvZrTLzqsSMql3wSh5juk5U8nQUydMpMHVOLiGyi8BGGnGYBljcPt6WrmpIooev8pkIq1YMvGRbac6W5T4gGwY9z7GyNvDhq+S8TBth5wefzcEPGpcetOgbRQeG5ItHOhfO2qqHKYLCnXSNppakYpFkT+TvK8k7FOWY6x6m3iPpuruRMnlIJsbmdUF9YJo3LAhi81fX62Uiwhb1c12S4CHzrHA1M9E2+OdpRdAHiRTZo0TXitO5jjEMK/xyFb1Zx6b0XT7LrR57HGkoQ/ws6ufaQ8Xw0M6MIr4qksJGuqhlVGF61CFwOl+H49tCGHmSx5iuE0meBTPXWmywDZBc5arG1bSG/DkI5uPfHDTIIhMu+nCCp1WQZZocRANZgoPLerlUvwp5rwvBow1KojC+QzHTT+m5iRefxGnEG52bll7CZpLn4XGkYnhoJ6AQPEAxgmekPhQ/W5Lg6e2tpSaTI/V6rNwrpqqLciHzrCi/xAyMSugbGIjJERPBQ+afRPAA0ftD+gojaBSMSXmogZutyZaN6p93ZD5GRH0kQRTCTPB0OirrXwVxQuZdMvw5fTg0U3FXaGZyvA4cJnMz6t9dCJ4w7FYVPBLN+Lmgv6Nru6Kw68JXD1cM+363Gvh29EDYrfqwdDVpsmadc6xmYkUEjzxmMakWTGR3s+S3FQ0H1x5HBo5e6Ap0Mv5mehonnHBCg0xpXTlyIBlFoEjUOZJc4YMtTvS0IhIXD5kqy5b1N62ecRlwKx0gagSP/Mu/b8UYMJBepdLOQdbXRPzI46uGdx7psRhQq10HAJid/Wgq2kattxbb32+Tx/z/7b1/cB3Vef//XuPy05iGJBQS6BSHlLSQFlcyqTM43Ft3kjKfoanckZpiZkKhtI09QyIVKXW/9oTGJu1IjETdD/STuIVkiDsZ3Y4Ek7RNp3V1U5soqeS6hIbQQAwpv9qQdmJjzI8x7PePvc/eZ88+5+zZvb+vnhcjrLt79uzZ1T17zr7P84Ptk1b9pVWqAMA40kIIiT/VBXtmrsXFRe++NDE2hsnpmVjMmBRjeZnCRpg4lgI8L2Ix9Syar1SSwsg0XV+Q+JenJ5/EtHDlbgL2/xDAlKC50D2msqbbWP0ZFGJqOiplTvzN1OkBAmB6BlOYibdH105C2LEcV9F6KAMUYBE2MlKmY3kAc0frY55NTHElYZC28zGmSIBc7hImtSnetjyQFqVG1sVWd2YsCylYKYfvl15E8rhU7DEEHQreTeKtZFGrNIbLzV7nJP1DqXQ7FmpjcJZVSNpKtrF+bSZFsVm1+CwK9ZLrk+89yxJwcl1zn1g/KX6oJY8HWat5voOcZE5MVjx8MjlfqSS2maKOCS/nsrgpColHPgISt9zh2/i/ja5MSrisaVzHmwIUb6ftWF4HF5YoyDOhwR6VlUh1oRpNFtlkIkQ6gwZnw/r1cTnT5sQ1wbOtLPLg6SHC2JKEgqhHok12IPT5SiU+x9T0DKZYGvCsNK0AagHbZ5mgUSey9glSVj9kJUSQ5Q+3JKI9kWVQEp+VzPoEO0wJVmTpFMav5XX4szHbpQs1ASvJluGRODh2AOA8nOfR4vaR+5ltZqIaPIyh4ZF6PSyNumktY3txlrbZFh18kayESNhJxeYxhCxunWO+gEmE7Ic+5+nX0rno910HT+CK2+7DzoMvRW2v9Z/JWn+0ZdtUiiHN23z2Kb1BqXQ7wnAwFniAfDFqgMb7Nbn9ZpW1tUE6No9FT6utf0LL7/yz6543w1oqk2A5Eeha6Q80Jo+AFHgZsA9oRSZdqVU2h4DCrWg6FX9HOq8UbJkLJY36xWdZBpnnM4/1nUCb+LbVDL4sxQJqVSwiKcBzv6M+/l2OZYVImggW8TnnZB1bD7xoH954DB0bLlsZyeUr+cwi8SaK5xMJ0SNxDKGkbU0dag/F+smiseDOssXUfA53tkYCMQNo2Me/2f06Svc9jOAw5FTikiWPI+W4Wd6WLt21KJD3Ge/jnuWEXQ+3xuOYFj2ubbYVa+nb7fo287qoj3MLHsI2J1Hah47XPYAwZkuWevS7VE4a1/OO10UtWHzL+NDMeDZFRTJf66eOojF5rOU0Jk+P8eX5+dRkodkrFj4WMub+dgg8piWQ2U6bpRD3gzfj0Zj3z3U/eUwf+mw7X1ZdNqR25pkI8vK0ws5TMrcCSeDRVTSlKxB8vfkK/vjYqHNFy1k1+7EdWyqX4lW9yVr2PNdzwZYpK9l+02GJH18XNuYrUdrxoZqVSuSmFIklQBALPED0jJDi4UT3p36mEKGXgMNTrCfbDnE7QffTnGgGiKwjzGe12RayNuKxiExCAAiWc8UR6jRxfDybcMO3O8Qd2xhps56xLR4VsZYwxzZAtuSxIghZZt81+2Pel0NeNkvYkVbryZKO+hb9cFTgURQ3tn49kTFeS/02MPa5xuus8and+FjL+LbV9jwzLWX4GJzl9to2gUcteqx8bfV6HFg9aP352urIIn3Dhg342Z/9Wdxzzz0dbrGKPE6uHxoCkBYrssSLPORxq+Kxd1qNK9iiLZtWFq7MU3y7a5/5uy02jisQsutz1nnNNppm9FmBn/OeS9onr1r6DwG2e9YMVHBa4dQmCFL8DXop4y9/NlNrG9KLY6lcQqlcwsJClQkryRdcKfAw1Uf7eAwc+h5TenSpd/GAw2TJMl+ZjQWNuqVPGLsnUewBuhfm/eGBnFOxeixMTk9jrjKLcrmU2M4n3GZwWn7fbU+OqM3Rf4uLi4k01XRes06zzHxlFraAnd2ImeRA2j83ezQtliwPRLF4DHdp21hNgsuWdcPxjw3X+OOiYWGjdk1BsIygJuCa/VpaXeYvKr6WOj7WAvyc5KYYAnHfivp9mIp5pQKPolio9W2pX5tjFB+vXW6a0r/mWG+z+DPrtz0PpOMbRRKxJAGsEWwu6/z55no+toVw0Olar2SztLSExx57DNu3b+90U9RdS0IyM7UF5+XkmUyI5tQeFjqF0pl61OkTYNk8ptHJk7Ry6ev3bXOPMo+h4/phouf6DkrXFwV9zZ/Rhuqme9wt907Nv3sLWxwPr2M9jzEnkQAXeUZSE7UJw7WDyhAk0EhpYim2znxlNhZ1+OrbRKaLWF3CSbp61d22QuPfOXYuah/v0+YzQboefi1ztWvw/XvM1QJGk1tM1vPE/qx12CR1mbtWGEZWLBQbj8NdlHlQ5dAwfDH/Lol6BCuZLAsbOl8j4xofM7xdtwRLpUb6tQ+2FzjzmSBZDlH/7pYxayWj43XvYXPNzDzO4xjffs3LBhn7zfpsZZ1tY6nYTWsa2/lXNCvYXeuaa67B6tX2fFWnTp3CoUOHuureqCWPJ9LqUCMTCfPYvAKP9LkoWYGdW0XWPTSDOPOAir4CD6cXLFZcWVVc94rK8ICtrntkQseRO1i3CTxK70EWALRSaOJaDZSEF9pHx+3etCZh7kzH8MC+QNJ0fGp6puZOlSxDTE3PYO3Svti1LERYs04hC4Ew8Rzi556quYhZ7oa4NbLKmMXE2GjiOslKaMvwCOYqs5irWQiZIgvvn9QuHoxZtqBJB1u2sWV4JA5o62ONQ9Y/JvPW+9J9iM/2mlULkHSFmjtaAQYPIzgsuyMnjuf/OigaS86FeTyJStyFy9eVK+7XiPqgzU3Q/F36zLebVjumQGsTeIDoGcEF3Fa41ivZ6D3vbYqM14A7jozZh239Wirnqpu2l8slZ/syBRpBtObHmFbDqcORvs68lhNqaaG0CrXkEZACL/u69RR10ckjrkjxctqFafXTTBFAWqn0RRKATGuf5Ip3b4gXrnsgWTPRffBxG7OJZ3nqaCe6Mth/mGlbvY8rl7D51DJ2HTzhLMctbMzttnOOO6wBzCDDVD+JL+azhQse0jn9LZb8hmlbEGRu0WM7p2n1w9m9aQ12HTzhbAdda2hM1+cF66FSuVQ3Ce8ySx6AW+yMxAKVGZNuaHg4it1jHGdapLrSsPNU66a1TjPHKW51FLdVSKUeQxnBXAGlHbTC2sd0J6G6SbB0BV9W2gd990+ePIkbb7qpq/q10jhFrH3yWOb6WARJgm9RSyLf82bV2zFrH2aJRCTG1ybQzPG6F1FLnj7G9YJsrhY1OwaLDR4vp4jA00hsH/N8edrvslLhn+nH935SLBwu7piWKKYlVi9hWo65UsTyeB8+mHVJwlGv3S+ld6hW70rE/LAFETbZfGoZB1YPxum+uQUNt1IJEAVhlmIE2CZla5f21fpFukQ63XnSwsXsK9yqZkKI7WOuakrw68mK2TVkuHYR1MbxsdFE3CAiRPSSHAs0wTJ4wORdB084rX8odlG6TXKWrmr1rq4O7khjaxAsi+NsHJzZAT2zU+Ps8kAqCHKrxymyOgoHkvGAOIk2URsLWgubVnxSLA0zThSEMrb9vB9NTc9gcnomHvc1hXpnGaoFnlf6EzNGl9cxjrKS26W0j5cxP7ssicxyWQKPz/PH1ibTosfnWJ976CwjZEhrdkydbh+vFTsq8njQjgxGvpMpW0DIPFBK9EYsgGjFku5NnkCQvHyRQMhSffQ7iT15XJW6Gen+TE5Pi/dpcXExfun1dSmcnJ5J3Cuy5OmX+6f0EMFyLMj4rIptPhWV59/zyKWpLrpQ0GTTpSsSX6KpU1grt3vTGpTKJew8+FLt+5+eWoXxf37YYv5wbBNEEq/ISijK3uX3fAwhu1dN1e5XOrZOmBjn5maPIgwHMDk9HV9vPTB0kHDvpCtIiEQ16sGbzdP1d3DHVOy0WlDmMBxAONAcl++ibQJYTJ6apQ6JO6bw0wwrYf5CyL8HkhWe7YXLjJXBP5vHqJtxp4n+SpS4ROlTcgg9Zn91uWu54uvAKGsKQvxzqVzymkdI7mKuz+Z4LbU/69is8rY2ZtEyIabPx+t+Rt21BMg064uf/zzOPvtsq9l+s12VAL+AxxLtdNmidjTj+n0sobKCXrtcvPoptgx3r5ICoE6MjeW6VulemRQJ3Nwq1F1rZWAzB6eV/10HT2D3pjXYefClxP6JsbFa4ON6kGRAjgdD3/WlI0dw27ZtiUDKWVOudJr1KC7AhvXrASBuQ16zc6lOPrGai68p2T4p4DKHm1pLcX0oDtfGjRtFVy8f5iwWOwm3JVvdXeiuxZEWRFyLJJLLFtCdyQDieYdg1cNpxvzC1q+z3B34C6Ip1hKmy1Y33NuVjo7XKwOX+1bWGOe7zxREsoQg27PC9QxphEZFK7Oujrl++aDuWtZy6q7Vo2QJC52kqMtWEZqdup1b89heEHisAgluScSDBhP9aJFiE158BB66TzxAMz+e/3STwKOsHGjlH0iuzu2srfxTfBjzmUCpxCfGRmvPgOjouivMSCz8kItHdaGKoeGR+DwTY6Ni3yCk51AAYGGhiqmaVdxcZdZp/k2WQ66J3J5Na7D51HKivK09UgBpYvemNaguVBNZw8zrI8ueVri5cIsVe1Dq7sYl5rjISirQDUjt4K5czWyn2a8T+1zHsfJZK5LqqqUo7cXWr10CTF7LApu1jXRe6TjbZ/N437bZXMrMgM22AM6uOrta4FF6DrXkETAteQiXxUizrVo45F7lotVCD61c2trRrOvPCjrpEty4JYtkIdSqoJadJitVupl6HnALQnn+Du28h7oyuHIIBT9zo0QcB8b+XQ4SL4iyBUH6dZMyW61d2ocDq6N2ZJkq8wmtLeghCS1mXzWDM5vtJHGEMm25rHZC9tvE2BiWjhzBhvXrE4GhCemeBQjENvgGcixiCdXtljwmma7ORgYtKfZON2BLqS5l2Wra/CIczHwhkwQgmyhEwuzk9IymT+8ydLxeOey+phQvwnBsVnvmPpcgxMu6LHykzxJFLWzyli1Cs+r3Ha8LoZY81nLdaMmjIo+ATeSx0YpJRZ4YQHkzc+UxPedl6Fym0GNmBWkG5suIdD98xK8sWtH21kBZauSXWVeGH74tb6DwTog5NnTSuHIYH92fiK0DmC4b5nTR7sLkmjiNj43GLluSWFw/gyx++FB3HxtGgCBh0UKiq5n5qlQuYWFhIVFPPXsVfZavh+7bnprFE3el8hVwi7ptRe0Lc9X9/208B3d+4+X+6Nc9LvAkGDycGPebgSTemq5YQLpHS58T9QIq8nQZOl6vLMy+7erXrn+d52D10Oe8Ak0RtylftzCpnC1uj++5XedvBnkFoWs2XdN1Qkar6WWRR921ciBNHlo1obDVy92zeCpzH6RyPNOW+cO3522vTaTyEa983eOa4T5G52p1YO3GCa33eL4yW3NLi4YB198ib8DPvN9vyRVMykSnrEzCcCC7EICpma1xFo9yuRRvr0+kgtr/SfqofwYC7L33XuzZtAa7N61JHG+uaEzFLlvD8XdXCmweZhhyl8qlRNDDEMkQzVQfCS7kVjo5PR0HLKZzhAhRXaimLV7YPUjsYebyUXDk5H5bH7ZZ8jQi8CBYjttte46bwZnv/PuXi5+vy9mybtguorQZc6zzaVez3cHJtcN08TBFHNfLkLozKEr3wbNuAfZ+7RO7x+aeyce2PKIQHcv/lcryHx9Xq6w6aR9/nvF75EvLnnnBcm6Ln0N/c6g1bVFaglryCOSx5Gm2yCNZXEiTLMl9yhU7gO/Lcr3KYyFjWsJkBUnmx0k0klLebLOZJcr015fi9XRqFdDXmoheQovc21a1yTzGl7x168pgb0MCjy31dBgOOPbVVwmzVs4oQPPOgyecLlTJFTafYTBITVp5/UDSrYvXT+IOf7673SBHWC31feSyBdQDGVOMIhv+ucDqVyVOKoNlSOla5SqWMwW9+Cw95q7lZFm+Zk9ts23MV4wU6oPudPCtwOXiYVsRN8vx7XZLV6UT6Hi9cimVbseCMd66rGhcLtWSqON2wZYFI749y6LGZZFjcyf1tkrKM456tKsp5GmTumtZy6klT49x400/5VzJasWEQnJNclnZSOXMbSTamMduGVnntJDh150lykhuPdxiJE9dPkh/E2nb4uIitgyPNLY63UXweB7cKoff62ZZzDT6/c4KgqmWPf0NPUfCcCB+4Z+vVOqppI0fXpY+Ux3S6hdNeHZvWpOYeO06eAK7Dp7AnprYMz42itu2bUsF/k2u1EVrhNwSjdKD0/d0Ymw0PiefLIaIxJ3Np5YxPjaKucpsHH+H/h0aHsHE2Fj8r416Pw6ZhVL93/GxUWwZHon7Vqlccgo89evww2Y9RJPAEPYg0AnCwfg6zTq5/RUA4Lyqd/t6jbmjFTHGTTdA7Zo7Wkm7meWwDs4qa9u/61A1V7/m/Y5/o6Jg6R7fSUVR2kK1eldqm9SvXaKMTdSl303Bhu+zPTdCY1tWfDATLrLYnkeu40vlUmGBx1Vvw4SDqfTr5ueYPh6v+xG15BFwWfLYrFw6HZfHhWnF44rJkBWzxWaCnxW7he+XLH+aca38OsNwMPbR31LLnmNOBLklTzfG5nG1J29snXbAUzET9JkHfObkabuuDPYmvi5aEmnLl7o1TdaEpx7oeAbzldmae1QUrybLZJwHdI6s5+rHmeXq8XSkoTRIlK3HGfIfdq3CSwFC9v8ozlDaUsgGF8m2DI/E94g+uzCtjRKfgyqAUn/0a8GSZ+5od40rBFnz8GxaANpu1bP7mlL8O7e+A9z9nFvs0VhPfXy+9l3txvu+UtDxWgnDwdSY6bKiyYppw7eZdbgs/WwWuFmxb2yWOUXiCZntb2RUb2WMHkC2fI5pcLzuRXrZkkdFHgE+uMzN/sDrGDPzViOTCx/BI2/QYZsQkyW++LarldnFsrC5sy0uLmJqegZztRc8ji21ejvFnm4TlYpi+7uZAg9Qv++0T0We/qcRkYfDXZkC1AWWUrmE27Ztw7f33oxdB0+kJnvzCVepkXg1kTiwehC3bdsWi8F0DIfcp2wTVn6eZFuHYZ/O+pK06fHBNQnkwhRl6/Ktn4IqZwlmzkkiaiLPIdp/An0h8lhctQA/occci4lWjRHO2DyG0NNIAGafxA5c6JHgAiHvOXs2rYmFIVu/r3/uj/G2V9DxWiE3a+qffKF17dI+a792CSihpcxEYhFFLmPuE9sslJPaklesKrLd1b5mijxZLt8J1F3LWk5Fnh5BsuTJG+S4VSIPF3ekGA8ui5pGJ46tjLeS16ooK2YRULfmAaJAruOj+63iDj+P7TrNFzgKnNrttFO0kpBEHhuuduqksT/xEYFEi56aq8f46H5MzWyt1TWYaQnABR4A4uSGjiNBRJpY8rJAcvIXALUMWdX4GcQnoBM5rHpMS54Q9cxZXLDJy3gtI59vNq26JVLS+seV0t3EnEzOVWaxZeQC9IXIA1iFHknkybKKNbe3gswgzCzDFpAt8hQVg0yR54rb7ouvOQgOp14W6XduHcct5oB6f5tgFmcq8rQPHa8VgAk9tfG6VLo9dueiLJpmv274nKwuX2sd6XepPa222mmmlU7WtRdCRR5rORV5eoS8KdQ5zbZocVnstHqVyseVyieYaJ7zSfWa+ziuySRZ8xBTM1sbysgl3YtWThqb9TftxAomv0/cooesd6S/p826h9qvk8b+Jp/FT4A9m9bgwOpBVBeqNbFgXST4WEQPeiGcqAkjc2Kg1rqkMsfSnpuTRvo9dQ1AnM1rw/r1ABCLRFw0Sh4TOsV5M317qVzC5lPLOLB6EBvWr8fU9Iy32EMC166DJ2ILKMDtbmVr88TYWGGBiTKCzc0excmTJ3HjTTf1R7/2EHmKWqy2cnx3Zdqi2D1Fs2z5WPIAyVX/3ZvW4Irb7ovPSyIQt9rJWp03LQdU6GkvOl4rQLJfxxaePAuXIeBKVrI+ogwcZcw6zHI+gk6WQOJbNq/VTtNFmiLwwMwrWOQ5BsB1xbVbg5/+6Z/Gaaedhu3bt2P79u3taaQFFXkEJJEnT9yYVrtqNeM8RcmycmnmeXzdxVxZxcgVga/mccwYMr6YgkQeIcVHFGumMNNtZuo+oqH0u04a+588Qk9sgRIsxy+Su68p4fiGW2PxgQsiALD5VDS53HnwpVRd3CJFEnXoMxC9hB5YPRhnEDEniruZpc3k9AzK5WhyazM1j/5ND8UuSxkSoSjAMQmp/NrJZapULgFALAqZ9VDWLluWRO7SxS0lbMKVef4EtQnj+Ngo1i7tw6unQtz5jZf7p19b4vIAssWMLTAzleX7mzkmSOey0oY4PWYGPXoRlAQe0zXD7KeSuAOowNNOdLxWAHu/JvjCTDLGnTvmDiALOZJgY3PBMsuJ7Yd9HuAqnxc+XrrOVaR+n2PEMvS34sGiVeSxl0Mk8nTTvdHsWp7kEV+anTXIFDH45Jv/tAtzotTKFUYze5dJ1grhfGUW85XZVGwYoojAw4+T2pj1t6D75bpvrn15/9ZF/z7N/F55xZlalxRSTbHny/PzTWmL0h7yWs35lw9i4SFEUhiiOC8hIqGFrGmq1buwYf16HN9wa2whYFoO0kTOnPxJk6ydB08kBB7+Lx0/V5mtuXOGWFhYqIk4IeYrs4kJVf3f6L+JsbH49y0OVyjq15PT05icnsHQ8DAmp6cxV5lFWDsnCTIb1q9HdaGKyZoFU4gQ42OjCBFiaHg4/tfWT21B66l+M3MZgNSKbewmFw5i96Y1WLu0D1fcdh8m/v55yxX2D1vWDaeEFMq8Rftov1mWfzbH/LzPZzrGdq4Ug4ejH0e8IYkiFrN7DDdKhIMpNy7qW5PTM9izaU38s7v2L+8rGzdujBdimp15UlGUgoSDGB/dDyBy3ZqsWbqGiPr1+NhoSggiAuN313idZb3Ay8k/YWqctlkD2dqYB74gEsB+vizhi7ab+0LL74l62X0vlUuRuNNANjCl86jIkwGfINBnX/JMwlwihjlhMl9OzDYWOY8vpgVKK1bGeN3NOM/i4mIs8GwZWVfY7JzqGqqlMLalCDcFKokifweXS4fPca0+xgVZHEjfXWJ8/5h4T3Vi3juY8Tt8LHN4jDFfhoZHMF+ZjcUH/pykuDHHN9wax+qJtk+Lq/rzlUrCJYpPrlyrffRSyieGVO7A6kHr84EjTcb4SqYL3i94+/h9nJyeTqyOBqjHyLLFEzNTyA8ND2Pjxo2YqKWHp4yFQa2tvJ6U2MMmiDwWz/ENt2LnwZdWnGUFT1suCSwuwcUmyLjGGkkQEjNq2VgeqAs8/PcMzDE2j+hDog1Zw+06VMWuQ9WUiLOzto/Ydagav6Twfk7XvtK+a4rSTfC+S+NRtXpXYrwNguWEVWgIxH3aFFt8x2vTQoWLQ25BJsDE2GhijM6yJsoas5vhNuNjUWRu5/fMdRwfr12JE5TeQd21BEx3Lcm1phWuW93iq+/CFBraESRSOoePUGPG5CGKWu8QUiBhKfi1RJF7w90xWv23lmIO+YhLafeOZNkoDfW0NaaRLXA4rTrPHa30V+wOxQoXhoIgchOJXC+T3ymKnlMqlyI3pDj48gBogkaxdwD5+0txZfL42/vsC5HO7mO2PKtOOPaPe1wbPxtPCe8iFgJqKdIBOLNoEdQOyro14YgRFItOwTLCcKD/3DqWBzLds7wEFg9MVy5xrGSiDj+32A7JLYuEHZvL1vJAU9y5yL2au0QSuw5VU0HVbav9YTgInh3PNTar8NM6+q5fK4XgMXcSBMtyDD1LvybrH9t45BOHx8eVK9VMoX4fWhE/x9ftivA5v6/bWoy6a9nLQd21ehLThaRoXJpmWiTYLHgSq7vBYXF7K+m2SVOjgg7BRSUaZCanZ2KLnuTqt0zRezO1tVgGr7yWZI20PcvabXJ6Or5HJJKZx5j9bGIssuwZ3z/WtJcipbO4VvRpXxAcjn/CcABhOCAGSAaiCcrCQhUbN26My0bfo7BmBh7WnpNyYOGpma2xmEFwyxx+ttDYD7gniHvvvVfcTtZHfFLF21D/XYrSk7SW2TI8UrOqidbqSPgiqzn6TO5ckjuk+blu6TOTsACiuD5SW6gd9GzcuHGjpfX1VVyatPcrtmcWiS1FsR3LLXUkFzDz3N7PVHLZytmePJgiLhd4rrjtPszNHk26DFpeBAHEWXzoe8zdqPm8qdvmKoqykqDMWuOWfj03ezQxX5ia2Yqpma0p1+EsC5qsfaaFkM09i/9OY6E0V5DK255XpXJJPNbWZpc4Zc5XfEWbPGWV3kMteQRs2bV8AwHz8j6WLmYgXpeIZLq7mHVINNtU2VcMyHtem8VIKkikp7sVHyBMix6X+EOuHzwoM9/GoZeaeSEmBafR+1/UVStv/dI5XPsaPRevk29fXFzE1NZpjO8fi+Mp/fzP/7xa8nQ5UiYdEl7iTD61viT1Y7LioXIStpVB7kEf1KxE6LwkGJlQemaaOLqCPprWN65tHLKiiaxcplG3QRKujdrFrocElupCNWEFI/nK84xgdO6pma1xWcrkRe6TZF2X7NfRsfNMwBk37o/U7nqb68TBseNrC6PFh1rg5cnp6a5d8S+aDhxA7hg2TisZB1ywkax1cuNrkcPb1TQrnuj5QGMsz8QYfT+ZBZzw0rT7mhJ2HapmuoZlJT1QmkO39mulvVgtecDGu2A5stRziLec8dH9WDpyRExmYFLUEseHLCsYOieN31mUyqUovXyOODh8HgKk5ySuYwrtV0seezl0nyWPijwCPoOTj9DhEi1srl80ofT1YbfV064JjPnSxidr1A7zd6ltLhHDdn+yJt+SKONj2cPje/BrGx/dLx5P8UGA7GxdRUWwRv+2jYhEeY/1vS6a0POYHtyagKddX1xcxGuvvYa9996rk8YeQXK7MveZ2+n5YW5PHjuYmoCQe1QUByjprsGfGbxubj3ARSUzpWt8Dc6rtbttAUnBRCprpncH0oINEFk4HN9wq5EOOoiu3ZEG3YQyatVdspLWgubCAxem/perwAAAMRVJREFUSGiia5uoiTWS13/ksjaSEIAicWkmLtuXL4PNEnlqzM0eFQM3AxaLHJfbFe13tTGPcFNzT+Mibl7qFngRfBzl30PpuUDBmSmgugsVdtpHX/ZrJTfmeM2FnXi/kVLdJfaUSrcng/qHgymhg2Mbk2378rg4UR2Niio+5wsy/pVoVpsSo7qKPPZyUJGnJ/AdnLIsElyWNbTfZulji0PDg5RmvUy3yvrDjL9iIu2z+cP7ur7ljctTJLuHhCS6ccGHi0j0klb/V35xsn024fFoiEb+lkXEGo7ruImxsVRQ2zxiD5COdcQn+iryKEDUD7+992YAyUC+uzetSQRhNRkf3Y+pma0Jccm07AmCwyiVbsfCQtVpFm1bkXQFe/SBm63zeDtbhkdECxmOaYnjM7mj1UVu3SNTr4+7ivF07fx6zZTqc6nYREnBaOcdd/TVy2C8QEDiS5bgIpQRrYiMY3KLPC2iqMUTLZ6YAg+JgvU4UiNA7TvKz2Fm3jKteHwtqW202nq231GRR5HG0xiyRnVY5UnEVjzVu7zGayCfmOOyzpHi/lBZW51ZFja5Y+JYjs9qh9SWQudVkcdeDiry9ATcXWvrRz8ab3dZoUgBZLPK2o6VjrHR6QlIlvtYHhHLR7Di2CaVpiBj22fWZU5WXUKRZLEzNDyCidrE1IbvPaKyPi6BLnysqLKOzTqfr9ui7dolcVSqUwMv9w5mjA2XZY4v/KXOJeikqE0kuZWhmfmL2kdiEFBfgbS5Y5XKUcDntUv7AEQZtYBkVgrJlBpAnDlozrDAIcEFqD9jfIRhElnpBdllHp4IaHvwhDV2DgWlrgd3HklNpqVJJYk63FULQOyeZU4rgwYnjWK/zgoWnIMiIobV0pS3q4lttJ4jJz4WsrbjsizwzPIm3957cyzUuFw689bLyZpjSJbRnZ5jFaGdVt22Z5KKPAq5QvMsl82kvniTtL6VrHBtn21jmqucRB7RpJmuY0Xal+eY1P1RkcdeDiryWPmTP/kT7NixAx//+Mdx99134+mnn8all14qlp2dncWwZeC644478KUvfQnPPPMMTj/9dAwMDODOO+/E+973Pu+22GLyEM12kZImE+Y2UxDo1olH1os6YbPsMeux4WPF4+POxetzTRCz9ruwiRmu8qZljFlPHiubRr6jPtZHedrSCDpp7H54HByTIDhc+CUSiEQenhY9DAfEl0qbKxiQfImV4v/E2T5qq4x8MmRa2oQAyuUSAETZvSigMIvBY4thA7gDQs4zocS/P9WlKJ55zCb2ZGXcIpGGu3aRkDSfKeTURSKCu58lJo+tEHmaTF4Rw4tWiTxtQhoPfbNemuNpbJ1XE29Nt29XvXzV32eM7ta5Uy/imo/qeL2yyRNjp2gdpiWPj3Bj7s9sg3B83jrM+mzHN1v8aUldKvLYy0FFHpGlpSWMjIxg7dq1KJfLuPvuu/HGG2/gxRdfTJT73Oc+h6mpKbzwwgtYs0Z+6P/VX/0VLrjgAqxbtw6vvPIKZmZmUKlU8OSTT+Ltb3+7V3tsljytQnoJ9xF1fNzC2rWKYxMuGhFHbNgmfORCJa0CmvF5mpV1C7DH4bFt5ylseSabCeMlctxhFeSyfunE90H6HjQ7ho9OGnsHM95NIy/IYTiIPTV3LC7gkOvWFbfd52XRZgZSp3aS+yUxOT2DcrmEzaeWEy5hAOKsGptP1SeeB1YPYmFhIXU+EkZMoUdaHdtTs+wh4YjOPS64fWZRj3U1A57GnbLbTdWyjmUxMTaGpSNHcNu2bYnYQLZJMxeNpGcRnZ+C1cfxh3pA5MkNpRVvYnrxouJoI+cE5PHWtIrLezxQj301X5mNRR4gGVvHHLO3jKxLiDo26z5TJOL4jo+9srDWDoqM6zper0xiqxpBnAnDQZTLteDCDkql2+sLJ0I95ngNuF2lJBoRWXyEI5uYY263xdcpEk9Hao/N4lb6zLGWVZHHXg7dJ/J0PIX6iRMnsHXrVuzbtw9vectb4u2nnXYaLrzwwsTP/Pw8RkZGrAIPANxwww345V/+Zaxbtw5XXHEFpmvZO771rW81ve1ZFhm+DA0nU3pSvbz++Uo6xTU/xqetUnsbuQbXyzm1LUvgyZq4mvtdAg/fz8uNj+73Eni2jKzDlpF1qWDNWYhCTu38lGKd1zl3tILx/WPxsRs3bky4eW3cuDER+4Lj+ze3fV9ahTShnq9U4lTOvE3mz0qePPcrW0bWxWnQAdmqZvc1pcw02jRhNN2zKK36zoMvwZYeXcL8rlE/pfSsUzNbsWfTmljEIdcmbsWzYf16HFg9iJ0HT+DA6kFsWL8eQXA48T0fGh5GiDDVl6XJWQDEAg/VT+fMK/AAAbYMj2DpyBFMjI0m+iXVZXu2SGxYvz5xz8wJI/0A9WxIE2NjqefUfKUST8YjS6PmCu2tJgwH8i1WNNk6hxYumr1g4oL+fuY5TVdMzu5rSnE7Xc91Emf2GKnSj2+4NT5uaHgYk9PT8RhJ8GeB5LYp3SNzfpUVS9DsyysdPkeV5qXNmgsrvQ25ONusbwJE7syl0u0Iw8F4fDdZWKim06szJqdn4vEaiBZGSrUfoDZeB8uJMapcLiEA6oupwTJK5VLqHKHwuySAuEQcyTWKHxsY5cx5gU0YMvfz410Cj1mnbR5ijum29ii9Q8cteT760Y/i/PPPx8zMDEqlEq666ircfffdqXKHDx/G4OAgHn74Ybz//e/3qvv111/H3r17sWfPHjz55JN429veJpZ77bXX8Nprr8Wfjx8/jksuuSRhydOIpUIWPgMkz1zVjPNlxQHKW58PzbbqkeLt8G2l0u0AohcVHsAXQMJHWFolbUY7zQxRW4ZHgMNhIpAybxPhyuCVlb0reUzrJ6c2K7SstrRjZdDWr3VlsHPQKrwt4wbBJ4m8f5JFXn7xI+kuxoO92oRjehElIYeCPY6P7s91/ugZGwlR5mSpVC7F5ub1AMj12F6+fYOHWqY6yVKGW+1wiyZ+H23WCpRm3TwHkLWamJ5WRG5aYVwnuW0dPw6cl2NlsFP9Wsog2W7rmnZi6yM8+QNBlms8+1t9f/QtMV/8uCuGLWDy4uJiHPMqj6CTNa/xmfdIsbuUNM2KyaPjde+QZa1jE3nifeFgPV14A22g1Ovlcime59NYWy7X05GnrGRqxwH5LGZ849rYYvvkcSPL425ls9bJOsY8b9bxGpOn9yx5OiryfOlLX8Kdd96JpaUlnHnmmU6RZ9u2bahWq3jssccy6/3KV76Cj3zkIzh58iQuuugiPPjgg9iwYYO1/B133IE/+qM/Sm2nP1SzhBAfM+Es9yeiSGyVonXZAhL6UPS4LExhpJmB3ci6oNkrza57IYk3eQQd3/M2G1cA5WafP++k0davddLYXszVOtM0OWvVCggTlkB5xW56WTP7tUvc4a5hvOWUPW8+lTEqGxJJ6EWYZ6YiARcA2+4emnlsG/k+ysebblf18nUXqnFDIOKxd+aMdPC0zSa+8dg8vL64jpyTxnb2a5ubVNGMUta05V0Wl8cUckyxRxI+bIL/t/fenLBUAyCKOxLkxnXFbfdZF3Ukgajo/MgVF1GJ8L0vOl73LhTrhmNzKZL6dbPasGH9ekxOz9jFJNYmBMvxGD81sxWozTvqY1lUrlQuxdayS0eO1DJM2oWOLPcqeB4Hz31mOVe7fNpM4/rk9ExuVzRefrxJ7tW9iIo8BXjmmWcwODiIf/iHf8DP/dzPAYBV5HnllVdw0UUXYdeuXfj93//9zLpffvllvPDCC/jhD3+Iffv24Z/+6Z/wzW9+ExdccIFY3mXJYwZezvty4SOgSPXmFVJ8z9VM6yOfQMI+ghUnr7CRspYxJoL0gukT4d+0GCgCvaiZlkN8G5D/vjRCuyepeeIE5UFXBnuTOMMGEzU4pumxyXxlNu6X9Ylf3QLF9fwzX06zYptIgZmlOs3MVxNjY4kU7bwsBS8GEL/wJoMeB/F9oAmZWXdaPAk8xLL6HeV1UJusE3UgDtjMJ8gwLI3MSWMUWJm7ztUFHUqDzVsf1lqdd2Wwnf3aHBP4d8NpyWNm0eLZtKjuo5Vk+vMuEnpMIVXqR4RrgYqEQKlv837NheB5EhEdsX5cVsGNjDUq9shI871mizw6XncHmVa2jn1xGUGUKZVuz225I8XW5J8p+YJpPURp1m3p28mKSMrKBSTH1fiaIIszWeKLeXweixuXS5irXuvfRdjnskQSt6vIYy8HFXliHnzwQQwNDeG0006Lt73xxhsIggCrVq3Ca6+9Fu974IEHcMstt+C5557zDp7Mefe7342bb74ZO3bs8CqfJ7uWDV+XFZu442sBk3V8q3zKs6x7XKJVHiGlEdEnr3VPO+IdbFk3jPH96cxZLhoV0zo1OTXFnkbboYEcew9zwgjYzZOlfSHqGawWFqqxWfbk9HTixdNmWWC+KCZW+gwkNxSJIDgcB3mnwM882DvVIwVVJ9eT4xtuTQk33B2KMlpx1yfJcsc26Yyuv56efbwmyvA7bGa/kjCtgep9uu5+ZpsQmqIPiVdbzBhKPRB42RR7+PM28R1bHsDc0eQLcULIycIQheaOykJSYUsin3pq5wXSGR3zBDOOhMX094u+M/NGbKih4REEwbJTiPUdo/MuxmUdo0JPfnS87j3i7JIGrnEGbB+5CsfbGrTscY3XifZ5ZOGqLlQTLmI8/ToXZcrlEoB6xkyXYCK2he3PM17nserx3W6S5WZmHieWUZHHXg7dJ/Ks7tSJN2/ejEcffTSx7bd+67fwnve8B5/85CcT4s9f/uVf4ld/9VcLCTwA8OabbyZWCBrF14rF5zjJ6oGXLWrtIR2X50XbJkDZVrhcq+h8nyTwuFbl8ror8fK2VVgbrcgEZjJ3tALkvCbTDN4lDpq4/oatDirJ627ke6f0LuT7zicL5iqXORkpl0sAgN2nlhEcPIGQrcYtLFQxX9mW+VysuxfV3UK2jKzLnCxGz4CK1ZqH4voAlMXvvlhkmhjbjzCsW6zUv8fTWLt0buyysmfTGntMn1q8AhJ46jY+SPxm/puqBgC4FYUh8EQlRq0rlagfmYDSwtdFIzvf3nsztozUJt7hIMLpGQRwH9NJXGOEa+yIrXrWDSMcADAgP79iy53Bw8lzmVY/bFumiNOk7F02SCidm60/l30tOqKxuP73pu/X+Nho7ftonmu2KQJPXlxu9K79itJvTM1sRclwYTIFCkncCamcmc48HISUHcsX0zqfizkk0gCGmEQxeNi2DevXoxrchQ2j+1Gt1usOp2sWhLWycdvDQQSoZlsd18Zrvk2a60h1uLZJ5zXPbRORipwfqFs3BUB8D30tjlYK53mW27BhA0477TRs374d27dvb2mbsuhYdq1zzz0XV155ZeLnnHPOwVvf+lZceeWVcbknn3wS//zP/4zf/u3fFut5z3veg/n5eQCRm9Yf/uEf4hvf+Aa+//3v4/Dhw7j55pvx3HPPYbjgQO2aZEkvGpShyXW8KY5kTTJ4WY6PZZBZ3ib+8N9NAcpWl2/b+e9mhpBWCSsk9vDzZZ2nlQIPreZmZe7i++ne8m38b8N/bNgsrLpVTOnGNimNEQTL0WQoWI4nDoAsWPDMVjtrosjE2Gj8L63+Dw0PJ561lMlLtK4wPtuyenFrHCB6HkhZwei8u68ppayIgmA5kVVsvhJlmOOp2I9vuFW8T+Njo3GweH5fpMm17Xe+zRRwkoGTw5rQFGK+MpuYIPIJJWe+EmXICuNjk+00z7vr4IloAsxM4ndvWpP46Sb4392WTYu22RZn+D76NxxAbBkTDkAWePjvg4fjH1sb4udkIwLP8gC2rBtOWRpxKx4TaXGKf67/HqQstnZvWlMTOCPB0RSNsp79vlZLzRpDdCxSViLV6l1AsBwt0LDttoUFcyziY0AIpGLy5YFi6dF4zYUb24JNqVyqCxW1n6mZrSiVbo+PGR/dX8sAupyyAOJjMJAcE6VrM+cz5njNhRJzISVRF/sJYB+L+TbXos8Eyxpms0bi11NdqCYynvFrHh8btdahpFlaWsJjjz3WcYEH6KAljy/33XcfLr74Ynzwgx8U9//Hf/wHjh07BiBKu/7444/jC1/4An74wx/irW99KzZs2ICDBw/iiiuuaGq7bC/WLqGAVsSy6vA5nzQBscVAsU1CpXJFJzZSnTaTdn6P2pkSthPni89bmzhnWSaZ2W7omLxWXVmWZjqBVTqBK7UqABwo3Y7Np5ZTQR/3bFqDtdiHby/tq2XZiV5u025a0ee52aPYEtStSPhqIg/img7iPBDXPTQ8DNOZmaw2omNews7a9vlKJUqXvvFo5HaCyDKBhPBJ1EWRpSNllMvl+BppIrV2aQ02A1hALTOIERByz6Y12I1IPCHBhMQjPtEsl0sAEIllB09Ekz1KRysYEC0uLiIcTq4Ejo+NIpiOzkwpZqNnV8ispPxWDuN7B2APIvGOUmeXyiU89FDVe4WsHUTfjcMA3BkXzfF2rlIBBtJppoPDAGILnui7Q/OAoYG6FRCNEVuWh2PxpqXZu5iItAVJC1t+D7iwRX3FtjgTiZvrAERuVwGLubOz9r2N+kwQC7ZcOCLxFIiyadHvOw++hCA4nJkFs5Wu6e2KodcL+Mwhv1xbfFV6l6zx2sxQZY4HpjBASQ3yIIk5ZnwfisFTrd6F6kI1ZZmDcBALAIDIEmhyeiZ2xZowAjNT60wLJh+ksVC6N5J4ZjtfHssdDr8m299HEpDE89bi74WouyQpvUHHU6h3Izwmz403XeklDLgyP5grxLTfJsT4TihcK21ZbZWyZzQzKLN0Lom8kycp9oVZh288o1ZAk3VaHTXTpech73VI8Yu6Qcxp1ndLffxXDjywLU9lvrCwkKseMy5PPVAjt745LMb0yUcQx5wBon4nB0yOypbLJWw+tYydNZFmj2HVEsXsqU+syuUo1sGemrAzZ8Tb4XEUSrW6eT1RoGTZRcyMzRMiRIAgdsmaSIg8ERRMOsqoNSNOVN0m6PVPvdSvUzFsWPwaQHZlygpaXHeJyoizw1yzyG3Bxw05D1K8Id4uc79tjMpqU1TPCLPMG4lfKM34GruvKeGK2+5L1NuKoMs+dKsFbDuxzbVM9n/hC7jxppt6ol8rzYFnvCICwOqyRYkUeDYsqaxN1FlYqKaEKO7GxdvFMcUMn/g5WTFuzHp9sI2XLvHGVZbaMmHMCfKen9dF0P5jx4HzzuuuuDOtpv4s8qOb7o2KPAKuwUUSbSSxwSb68M9Eoy5LklDjK27YJmyNIk0EstqUVU66f9LfIG/7ikCBnSkAaxFssQ1cE8m84l83xBVQkUfJi5Slqsh3iISWWMiovRgDyf629957E1m7mgGdU0plLglLezadCyCyWmAlEwLQTub2NR8HNo6maOVyXdwBIosl33sWIIgzagH1SZ8ZsNkUL1JBlDMolUu4bds2FpR6uq0vgz6iiBTLzWbFIwVV5oGXATkAOBdLuHgSuwfWBB3zvEUFHdtik60sIbXRJI+4I0HZ93hQ8rVL+xICJeEz1q4EEabI87DdApWO1ysbycpHQhJK4oULJmTHglBiQSIpIokBmJlLVVZ7strqarvNCiYL133JOsZ1fh/RKKseXoYyah5XkSeTbro3KvIISIOLOdmzCT0caaLoskDhx2WJPlmDdR5BpdUmzi5rHcnUV7wnlrgB3MzdrM+3nUWIs3ctD+TOlkXY/gZZ9ypvm9s1sWv1JFInjSuHRi1r6t/FukjCBRIOWcdIYkyj0Eu7aTkkvTBTWXPfxNgY1i7tiwM3R9SnbdzaZ/OpZRxYPYgN69cn3Dxd/dJ0v6I6S2XKZBaJPJJlEo/zw4/dHd9TYbKZWqk9AaDU8n5tLqy4yCrrEk3434/uvRnbyTa+uyyCfdtuw7ZAZbu+rADLfLzOWsDyFZgIEn5slmSclSDq9CI6Xismtvg8WZYz5XIJABIp0UVLEwqEzAIiQyhvc5Eqah3Jr8tlGWNz3TJdpX2scOhYfk7z/DZrHPNYqY31g5o7XvciKvL0GXxwmZv9gdXdCvCz2DHL8Am/+cLuk1kia8JuQ7Lasb0ANOOF3Rac0RR/8rid2dLR2oJF+poWN1tY8cFl6s4nxpJJv4ltXysnwJKQpyKP0gzoGWmKJJJowoli3SwkPpPwwWPgJM4FbrWSz5JnvlKpuSylj5OCNsfnFCyVALsLLrm2JPcHqYncnk1rDEsgs2y9NIk2XKgplUuJo7hljzRl5BPVcjkSmXaxgNkcMqEnVzyAxrv2iDwcl2uUS1CJj+MxdCxu2NKihek6SOVcLxVZQk+elxLXPEZKE0+4xulWxQ3iL07cFdJERZ7OI30/dLxWJFxCT6lcSsWqyxJLbPjG02k0zbsEidQuscYVo0dyo3K5VPmUtZ3bev6aUJZemFGRJ4tuujcq8gjkNf8G0pMkW9ksK50skcdnQiMJAjarGl+LniwXIpe44kuWNQsXeHjcG76N1yUFq87jxibRqNiT5+8H2C3E8rj3+Vh9ZV1vN0ykddLYP/g+K4F6HB2fY30sgMrlcixeJI6tBRUu+l13iTpZbfONC8TLkfhD2OPuJC1+6lsiyGKHp0YPABZzZzpxFLmJuSac4+ylnNKuU5l6O6L/t6RfO1KLh+FgHAsGsAs5HGk8BWCIVeljze2u8d1lUWO6TNncwrMw+5LUZl8X7lYKPCauuVM3jE0rFRK51y7ti91D6btz8uRJjcmjZMLdunxcunzcmGz1ueIDtRLbNdpiALkscAC3iCPVZytnns+nLIIqVORx0033pmMp1PsFSqfrevFoRjapLSPrGprM8AwW5nZzn7kt68XHFGdc7zpDw+nU6+Zns05i7mgl/qGVVP5jXlczhCfbNZj/mj9Z15LF3OxR64SWXvJs3ze+3efcthVauocuAYh/VxTFhzAcSHyn5maPpgQO/h02X0obEXgAYMP69XHGqHFmbTIxNobFxUUEzmlknYmxMZTLZUyMjcV9gFJvS9dE18JTvdO2LMy07GamoT2b1mDt0j6Uy2Xh6DC+IunKuOA1NT0DnqZ+cno60ccDREGXpXoC1CeMGzdujOPubNy4ESFCzDFhZc+mNfG9awmmwLNcT4keBMvJ79By/W/GLVhobKey/Bjbc4+XMb+nRQSRLSPrEASHMTQ8nLKuyVvf3OxRp8Uq/UhzBP4vfRdNi6BG4gpmIV1rsyyNXeOXbX7UKnppLOVtPb7h1tS264eG2t4mpfeI05izjFjmD4zfiSwxpFuga5RcxgJjm4+YZVrJJs7F/s2Kw2M7t+2+hgCOHSs5WqZ0G2rJI9CMQI5ZFj5ZbjeSSbWvFQjh657kcpdyWdf4xtOxWQ/5kGfS4zIvL2pZ1Igli+t+meWklWFXnCdOOzONSC537UItefoPM1YNULde4K5ZPkII4QoQy62D6Jzjo/vjoK8HVkcrbrYsXhNjY7WsHgsol8tewZptsUtMpIxfvhYblK0ISMYvMLFN+miCZ2YISx4bpI6R6onbxMQiM0bSroMn4rg9t23fhr333tuSfk2BOFMBOcPBhOhEuCxvrMGXHYs7/HvsFZvGYYEkxckx22gjyz1NskQyLYYatSJqJrwtrRqDbHOaXrMcavY98p3rbf7Qh3S8VhrGfIZTBi/AbhXD94nCSQeseUxs18Fxjdfm72YZZJTLcumS6gE0u5YP3XRvVOQR8BlcfC13slwSTKTyvivUNoHAR+zwcenhbbRNBmk/lgdAzZ6v1C1vmiGWSDTqkuRr9dNo+6W/hcvU32Wm7noBKdJmX0GrUy5cKvL0J0n3I/k7ZRN5fF23TBdWqb8PDQ/HljC3bduWECUIijcTxb45IcTJkdtuxhRytdcUBXyQx4jkFC/vKieP3zNf8cukxSeO4wnBaCThAgYgFsdanV2LREISwuYNccd0h8oas7nQ0gqhI2vhiMNFpCLn4ZgZtHzHrXbSTnetbnJV7iakRSkgfZ90vFZaiZmuPcv1if9eLpcSKdk7hRSwmX+2Hoe0qGXu8zo/7KKYGW+PFo00u1Y23XRvVne6Ab2I7YWaJmc+GTIkmjVpcgVptq3A+MRlsbVRmvTNHa1gnl0uCTx5VpWauQKVV7iwWSkVaZOtPG0nmXW+ks5KArgFHNukt1UrnO223lH6HxJB6HtlC7ZM+AaspXqjF3w6ThbM6dxpC54QwLnxp92b1gAHT9QydYUY8ugKvL1Atohf/zwAIPsFPnoGSNcVPVgCBAgBcVUOqF2Twa6DJ+LjAgDhsH1CyKEJYrlcwsZtG2NxJ6wdPTQ8jC3DIwkB6fqhIeCmmzKvsyjzlQrmaroOZU+RMN2qfS1kCgU9dljs2HAlcMhD3QommeVTsoAz5y3tjMNj4lpYsgkyvTBeZYlJ3XYNUlu6qX3KyoCsegB7EGGbBUN1oYoQQrr1NsOvwRRZbKIL2O82gUey5DE/c/fqQDgu8TsLhn3M++qUbkAteQRsKwhF0pi6snD51JV3IpfXtNgWV4CveLssaXysSfJa2XBRxeUSVsSdyla373H0Oz9no5MwH9eyLDN9yZXA1ba8YhvV2Yxr5e3Lg64MKoD9mejzAtpoavYIM5CxfQilNkluaWabTHHLdT1ZQZzHR/fXUp8jTkXN4S5TQCTqAJH1zdKRI6guVGN3Kh9sPvzjwrmTRwX4eAvdteIzMdc3QHYhDg7XAvoLWQ0BiGNiJwUPUxQtWg+QnWiAzwk6dc1JsTRNI9a8Ulleb7cJLd0M3TsNvKy0C1PskUZkq8VKl7huZZHfEjctftnuD3fXlsZrLvqoJU823XRvNPByDooEGiTLHimwqGT1Y+IbS4YHCCQkYcCnvDTxc7mmSfciz0SwiGWMtJInBUmUjnX5lPu0URJ7pPtZpG7bPl6/9L0xP0tiinmPpPIuzHtb9HoVJQ/82ekSN/K+fEovx/OVSiLIsaVFiGxTQhYAUZ6CUZuoTqlevt1nTPERqqZmtsZtkwQeAAmBZ3xsFCFCTE5PY2FhAeNjo3EwVWI8Z7DH0Di3uRKZ34GsGFEsh2SgYPPZNV9JBu/fMrLO+nzr9HPP5lJVpB4bZr3NEUcbw+YaRPOBLGxzBltZacxvB3x87cR3rcg5pTnBd/7f9qa1SVFc8ODNpXIpvR+yK1S3BGr2EZok4SpkP5nnEH43gy9TZk2zPP/sL3Uo3YBa8gi4VhCKpD93Hevj/5+1Qu1jLSStXErY/K19A0dTWZ8VQp+JU9aqXTPi9fhgsyqS2lDEwsg8lw82S54sIYviI5lkreb6+OHnJc8KqVry9A953Fxsx5ArFllpmPFJfM5hy4BlC94skdeSosi125Dav2fTualt9YDSVZTLJWw+tRxvtwWZTvbzkcREOSteAJWh+EXcaggAdh48EQeIfuihakMrgz6Bl82gx1JyAzM2D0d61prbmm3hIsX/kb6XRSx5bMkdODaLpk5hJrMgmmFFq5Y6xTDnF9/ee3P8+6W//X/VkkdRHIThIOYrs9h7771YWKimxCggLVDZsAWjzmyDcB7XOdWSJ5tuujcq8gjkEXmyJoTScdz823W8a+KV111MQnLpcYkXrrhCtuwcjeJyXfIt2yx3qiIrXHnPK5nHm2R9v6x/v3XJtpDQY7NMMvfZXMraNTlWkWdl0Kgrim+QY9/YP1k04i7Takql23Hbtm1YXFzEZC09+tDwCMrlEgsu7WZibAxT0zMIESbi9Ngw4wIAYZyJjLKYEa3OrpWFy8VYWuQwBR5zXG+W2OPKeEWYAoVLiMlaYDLd2VxZxrqFPFlHiSzXY9diTjtpZJGoHbjEnStuuw+AumspSl7GR/fXxlqZLCHHN+iyK0A1h7tvUb2aXSubbro3KvIINGLJYwo3WanQzYmVT3aPIhMuHzcAapsr3oCPICVZDbliwxShmf73eZHEE9MyRvob+4hTWffIN+uKj/iY2m+x8OFtyyO6ZZF3IqsiT3/iilcjQc9AM0YHfb+zRB5bDBybFVCW2MMDPPtiu2bfoNJZdbqff9F0jdKl22KNkbgT1584OqJULqEqpGrn5QHKzrEgisdbRi4AUGp5v5aseagtcrv8LHVMC5NWCiKSJY/vd0WyhLGN9655TKeQ/n7tEkFaMZ/IqrMbhB5XG7PmbiryKEoxeIwhady1Wfu4RCBX9iwpM5l4/mAZwAk0Ml73Iiry9BnHjh3Dj//4jwP4GwDnJPZ98fNPx7/feNNPJT5L22686adSx14/NAQA+PL8fOrcVP6Ln386cawLsw22tplcPzSEL8/PW9uTVQdvK6+ToLqpXr6PlymKVF+7aHa7eX3mPeTbvzw/L36nbOeh46XvknQsP0Zqs+26i/wtvjw/j3/5l3/B1Vdf7XX88ePHcckll+BHP/pRrgcu4erXSmc4dmx94rP5/Zb44uefdn5fzjvvSK42+D5rzbZKSO13HWe2lcrSszPPtRw7tj7xPOf10Lno3u3asQN7//heHLPkyvjy/Dy+8/+246Vf+Ciuvvpq3Dh0E44h7Y8vbeNc83+uwd/8zSHs2rEN5/7rFzDx98+nyrS7X7vGcOk5Z/tu0PeGjvcdrxuBf/eTY8NNOO+8qvM4s318PkLfM6rfpx+2G/M+S/OprHGEz0l8yvL6m42rDeY424m5ju/1m+Xo88lXXsHvfOxjOl4rSkGOHStZ952H+vh7zNgOts0s5+qJUj31DdXaLy8D+D+F+3UvoiJPn/Hss8/ikksu6XQzFEUReOaZZ3DxxRfnPk77taJ0L9qvFaX/0H6tKP1H0X7di7z66qu49NJL8V//9V+ZZdeuXYuLLroIq1atwvbt27F9e2cD0KvII/Dmm2/i+eefx7nnnosgaG78dVq1fOaZZ7pG6fNB291etN1pwjDESy+9hHe84x1YtSp/YkDt12m03e1F251G+3Xz0Xa3F213Gu3XzUfb3V603Wka7de9yquvvorXX389s9zpp5+OM888sw0t8mN1pxvQjaxatarlCuXatWt76qFBaLvbi7Y7SSPmodqv7Wi724u2O4n269ag7W4v2u4k2q9bg7a7vWi7k6wUNy3OmWee2VXijS8rR4ZTFEVRFEVRFEVRFEXpY1TkURRFURRFURRFURRF6QNU5GkzZ5xxBj71qU/hjDPO6HRTcqHtbi/a7t6iV69b291etN29Ra9et7a7vWi7e4tevW5td3vRdiu9jgZeVhRFURRFURRFURRF6QPUkkdRFEVRFEVRFEVRFKUPUJFHURRFURRFURRFURSlD1CRR1EURVEURVEURVEUpQ9QkafFPP3007jllltw6aWX4qyzzsK73vUufOpTn8Lrr7/uPCYIAvGnUql0bbuJxcVF/NIv/RLOOeccrF27Fh/4wAfwyiuvtKHVxdtdKpVS9/r3fu/32tJmoLH7DQBhGOK6665DEAR48MEHW9tYRtF2/+7v/i7e9a534ayzzsLb3/52fPjDH8bjjz/eplY3jvZr7dc+aL/Wft2t7Sa0X+dH+7X2625tN6H9Oj/ar3urXyvZrO50A/qdxx9/HG+++SY++9nP4rLLLsO///u/49Zbb8XLL7+Mu+66SzzmkksuwQsvvJDY9rnPfQ5TU1O47rrr2tHsQu0GooHlV37lV7Bjxw782Z/9GVavXo1HHnkEq1a1R08s2m4AuPXWW/HpT386/nz22We3urkxjbQbAO6++24EQdCGliYp2u6BgQFs3boVP/mTP4n//d//xR133IEPfvCDeOqpp3Daaae18QqKof1a+7UP2q+1X7cD7dfar33Qfq39upvbDWi/LsJK7deKB6HSdiYnJ8NLL7001zFXXXVVePPNN7eoRX74tPt973tfuHPnzja1yA+fdl977bXhxz/+8fY0yBPf78mRI0fCd77zneELL7wQAgjn5+db3zgHRb7fjzzySAggfPLJJ1vUqtaj/bq9aL9uL9qv/dF+XRzt1+1F+7U/2q+Lo/26vazUfq0kUXetDnDs2DGcf/753uUPHz6Mf/u3f8Mtt9zSwlZlk9XuH/zgB/jmN7+JCy64AO9///vxEz/xE7j22mtx6NChNrYyje/93r9/P972trfhyiuvxI4dO3Dy5Mk2tM6OT7tPnjyJG264Affccw8uvPDCNrXMTd7v98svv4z7778fl156KS655JIWtqy1aL9uL9qv24v2az+0XzeG9uv2ov3aD+3XjaH9ur2s1H6tGHRaZVppPPHEE+HatWvDz33uc97HfOxjHwt/5md+poWtysan3YuLiyGA8Pzzzw/vu+++8F//9V/DT3ziE+Hpp58efve7321ja+v43u/Pfvaz4Ve/+tXwW9/6VvjFL34xfOc73xkODQ21qZVpfNv9O7/zO+Ett9wSf0aHVxDyfL/vueee8JxzzgkBhJdffnlPrx5ov24v2q/bi/Zr7dftQPt1e9F+rf26HWi/bi8rtV8raVTkKcgnP/nJEIDz5zvf+U7imGeffTZ817velXgYZHHy5MnwvPPOC++6666ub/fDDz8cAgh37NiR2P7e9743/IM/+IOubbfEgQMHmmK22Mp2P/TQQ+Fll10WvvTSS/G2Zg0u7bjfP/rRj8Lvfve74de+9rXw+uuvD3/hF34hfOWVVxpueyNov06j/bq97dZ+3Xy0X6fRft3edmu/bj7ar9Nov25vu7VfK91MEIZhCCU3L774Iv7nf/7HWWbdunU4/fTTAQDPP/88SqUSfvEXfxGf//znvQOgPfDAA7jlllvw3HPP4e1vf3tXt/upp57CunXr8MADD+DGG2+Mt//Gb/wGVq9ejf3793dluyVefvllrFmzBl/96lfxoQ99qCvb/YlPfAJ79+5NlHnjjTewatUqbNq0CdVqtSvbLfH666/jLW95C/7iL/4Cv/mbv1m43Y2i/TqN9uv2tlv7dfPRfp1G+3V72639uvlov06j/bq97dZ+rXQ1nVaZVgLPPvts+O53vzv8yEc+Ep46dSrXsddee23467/+6y1qmZu87X7zzTfDd7zjHamAb1dddVVqVaGVNHK/iUOHDoUAwkceeaTJrbOTt90vvPBC+OijjyZ+AIR/+qd/Gh49erQNLY5oxv1+9dVXw7POOiu8//77m9u4FqL9Wvu1D9qvtV+3A+3X2q990H6t/bodaL/Wfq10HhV5Wsyzzz4bXnbZZeHmzZvDZ599NnzhhRfiH17m8ssvD7/5zW8mjn3iiSfCIAjCv/u7v2t3swu3e2ZmJly7dm1YqVTCJ554Ity5c2d45plnts3Ps0i7n3zyyfDTn/50uLy8HD711FPhQw89FK5bty78wAc+0JY2F223BJpkJupLkXZ/73vfCz/zmc+Ey8vL4fe///3w4YcfDq+//vrw/PPPD//7v/+7bW1vBO3X2q9b1W4J7dftQfu19utWtVtC+3V70H6t/bpV7ZbQfq10CyrytJj777/f6ktJPPXUUyGAcGFhIXHsjh07wksuuSR844032tzqxtr9x3/8x+HFF18cnn322eHGjRvDgwcPdnW7//M//zP8wAc+EJ5//vnhGWecEV522WXh+Ph4eOzYsa5ut0S7B5ci7X7uuefC6667LrzgggvCH/uxHwsvvvji8IYbbggff/zxtrW7UbRfa79uVbsltF+3B+3X2q9b1W4J7dftQfu19utWtVtC+7XSLWhMHkVRFEVRFEVRFEVRlD4gX1QmRVEURVEURVEURVEUpStRkUdRFEVRFEVRFEVRFKUPUJFHURRFURRFURRFURSlD1CRR1EURVEURVEURVEUpQ9QkUdRFEVRFEVRFEVRFKUPUJFHURRFURRFURRFURSlD1CRR1EURVEURVEURVEUpQ9QkUdRFEVRFEVRFEVRFKUPUJFHURRFURRFURRFURSlD1CRR1EURVEURVEURVEUpQ9QkUdRFEVRFEVRFEVRFKUPUJFH6TtefPFFXHjhhfjMZz4Tb/v617+O008/HQcOHOhgyxRFKYr2a0XpP7RfK0r/of1aUTpPEIZh2OlGKEqz+du//Vv82q/9Gr7+9a/j8ssvx1VXXYUPf/jDmJ6e7nTTFEUpiPZrRek/tF8rSv+h/VpROouKPErfsn37dvzjP/4jBgcH8eijj2JpaQlnnHFGp5ulKEoDaL9WlP5D+7Wi9B/arxWlc6jIo/Qtr7zyCq688ko888wzOHz4MN773vd2ukmKojSI9mtF6T+0XytK/6H9WlE6h8bkUfqW733ve3j++efx5ptv4umnn+50cxRFaQLarxWl/9B+rSj9h/ZrRekcasmj9CWvv/46rr76alx11VW4/PLLcffdd+PRRx/FBRdc0OmmKYpSEO3XitJ/aL9WlP5D+7WidBYVeZS+ZHx8HH/913+NRx55BGvWrMG1116L8847D1/5ylc63TRFUQqi/VpR+g/t14rSf2i/VpTOou5aSt9RrVZx991344EHHsDatWuxatUqPPDAAzh48CD+/M//vNPNUxSlANqvFaX/0H6tKP2H9mtF6TxqyaMoiqIoiqIoiqIoitIHqCWPoiiKoiiKoiiKoihKH6Aij6IoiqIoiqIoiqIoSh+gIo+iKIqiKIqiKIqiKEofoCKPoiiKoiiKoiiKoihKH6Aij6IoiqIoiqIoiqIoSh+gIo+iKIqiKIqiKIqiKEofoCKPoiiKoiiKoiiKoihKH6Aij6IoiqIoiqIoiqIoSh+gIo+iKIqiKIqiKIqiKEofoCKPoiiKoiiKoiiKoihKH6Aij6IoiqIoiqIoiqIoSh+gIo+iKIqiKIqiKIqiKEof8P8D0l3nrbrp2RsAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "\n", + "# plot results\n", + "colors = {\n", + " \"no data\": [0, 0, 0],\n", + " \"saturated/defective\": [255, 0, 0],\n", + " \"dark areas\": [64, 64, 64],\n", + " \"cloud shadows\": [131, 60, 12],\n", + " \"vegetation\": [0, 255, 0],\n", + " \"not vegetated\": [255, 255, 0],\n", + " \"water\": [0, 0, 204],\n", + " \"unclassified\": [117, 113, 113],\n", + " \"cloud medium prob\": [174, 170, 170],\n", + " \"cloud high prob\": [255, 255, 255],\n", + " \"thin cirrus\": [0, 204, 255],\n", + " \"snow\": [255, 102, 255]\n", + "}\n", + "values = list(range(0, 12))\n", + "levels = [x - 0.5 for x in values + [max(values) + 1]]\n", + "colors = list([np.array(x)/255 for x in colors.values()])\n", + "legend = {\"ticks\": [], \"label\": \"colortype\"}\n", + "data.plot(x = \"x\", y = \"y\", col = \"time\", levels = levels, colors = colors, cbar_kwargs = legend);" + ] } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:semantique]", + "display_name": "Python 3", "language": "python", - "name": "conda-env-semantique-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -857,7 +1866,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.4" + "version": "3.10.1" } }, "nbformat": 4, diff --git a/.doctrees/nbsphinx/_notebooks/gallery.ipynb b/.doctrees/nbsphinx/_notebooks/gallery.ipynb index aa7aa48a..0cb00662 100644 --- a/.doctrees/nbsphinx/_notebooks/gallery.ipynb +++ b/.doctrees/nbsphinx/_notebooks/gallery.ipynb @@ -72,8 +72,8 @@ " mapping = sq.mapping.Semantique(json.load(file))\n", "\n", "# Represent an EO data cube.\n", - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")\n", + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")\n", "\n", "# Set the spatio-temporal extent.\n", "space = sq.SpatialExtent(gpd.read_file(\"files/footprint.geojson\"))\n", diff --git a/.doctrees/nbsphinx/_notebooks/mapping.ipynb b/.doctrees/nbsphinx/_notebooks/mapping.ipynb index 96632f2e..575d573d 100644 --- a/.doctrees/nbsphinx/_notebooks/mapping.ipynb +++ b/.doctrees/nbsphinx/_notebooks/mapping.ipynb @@ -231,8 +231,8 @@ "metadata": {}, "outputs": [], "source": [ - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")\n", + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")\n", " \n", "layout = dc.layout" ] @@ -527,8 +527,8 @@ "metadata": {}, "outputs": [], "source": [ - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")" + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")" ] }, { diff --git a/.doctrees/nbsphinx/_notebooks/processor.ipynb b/.doctrees/nbsphinx/_notebooks/processor.ipynb index 2170831b..1fc712db 100644 --- a/.doctrees/nbsphinx/_notebooks/processor.ipynb +++ b/.doctrees/nbsphinx/_notebooks/processor.ipynb @@ -65,7 +65,7 @@ "metadata": {}, "outputs": [], "source": [ - "# Load a mapping.\n", + "# Load a recipe.\n", "with open(\"files/recipe.json\", \"r\") as file:\n", " recipe = sq.QueryRecipe(json.load(file))" ] @@ -90,8 +90,8 @@ " mapping = sq.mapping.Semantique(json.load(file))\n", "\n", "# Represent an EO data cube.\n", - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")\n", + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")\n", "\n", "# Set the spatio-temporal extent.\n", "space = sq.SpatialExtent(gpd.read_file(\"files/footprint.geojson\"))\n", @@ -591,7 +591,7 @@ " long_name: index\n", " _FillValue: nan\n", " value_type: nominal\n", - " value_labels: {1: 'feature_1'}
    • y
      PandasIndex
      PandasIndex(Index([2696250.0, 2694750.0, 2693250.0, 2691750.0], dtype='float64', name='y'))
    • x
      PandasIndex
      PandasIndex(Index([4530750.0, 4532250.0, 4533750.0, 4535250.0], dtype='float64', name='x'))
    • time
      PandasIndex
      PandasIndex(DatetimeIndex(['2019-01-01', '2020-12-31'], dtype='datetime64[ns]', name='time', freq=None))
  • name :
    index
    long_name :
    index
    _FillValue :
    nan
    value_type :
    nominal
    value_labels :
    {1: 'feature_1'}
  • " ], "text/plain": [ "\n", @@ -1188,7 +1188,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -2192,7 +2192,7 @@ " scale_factor: 1.0\n", " add_offset: 0.0\n", " _FillValue: 1.7976931348623157e+308\n", - " value_type: binary
  • AREA_OR_POINT :
    Area
    scale_factor :
    1.0
    add_offset :
    0.0
    _FillValue :
    1.7976931348623157e+308
    value_type :
    binary
  • " ], "text/plain": [ "\n", @@ -2966,6 +2966,92 @@ "Semantique also allow to export an array to either a CSV file or a GeoTIFF file (requires spatial dimensions). To do so, call respectively the [to_csv](https://zgis.github.io/semantique/_generated/semantique.processor.arrays.Array.to_csv.html) or [to_geotiff](https://zgis.github.io/semantique/_generated/semantique.processor.arrays.Array.to_geotiff.html) methods through the [sq-accessor](#Data-structures) of the arrays." ] }, + { + "cell_type": "markdown", + "id": "d3481e84", + "metadata": {}, + "source": [ + "## Caching data layers\n", + "\n", + "The query processor allows to cache retrieved data layers to reduce RAM memory requirements if the same data layer is referenced multiple times in the query recipe or the mapping. RAM memory requirements are proportional to the number of data layers that are stored as intermediate results. Caching data layers in RAM should only be done for those that are needed again when evaluating downstream parts of the recipe. This requires foresight about the execution order of the recipe, which accordingly requires a preview run preceding the actual execution. This preview run is performed by loading the data with drastically reduced spatial resolution (5x5 pixel grid). It resolves the data references and fills a cache by creating a list of the data references in the order in which they are evaluated. This list is then used dynamically during the actual execution of the recipe as a basis for keeping data layers in the cache and reading them from there if they are needed again.\n", + "\n", + "Below the result of the preview run is shown first to demonstrate what the resolved data references look like. You will see that the same data layer is referenced multiple times. The resulting initialised cache can then be fed as an argument to the QueryProcessor in a second step for the actual recipe execution. " + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "0591deae", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[['appearance', 'colortype'],\n", + " ['appearance', 'colortype'],\n", + " ['appearance', 'colortype'],\n", + " ['appearance', 'colortype'],\n", + " ['appearance', 'colortype'],\n", + " ['appearance', 'colortype']]" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Step I: preview run.\n", + "qp = QueryProcessor.parse(recipe, **{**context, \"preview\": True})\n", + "qp.optimize().execute()\n", + "qp.cache.seq" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "61f3b0dd", + "metadata": {}, + "outputs": [], + "source": [ + "# Step II: query processor execution.\n", + "qp = QueryProcessor.parse(recipe, **{**context, \"cache\": qp.cache})\n", + "response = qp.optimize().execute()" + ] + }, + { + "cell_type": "markdown", + "id": "02461c73", + "metadata": {}, + "source": [ + "When executing a query recipe you can directly initiate the entire caching workflow (preview & full resolution recipe execution) by setting the \"cache_data\" argument to `True`:" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "fa4eca40", + "metadata": {}, + "outputs": [], + "source": [ + "# Same as above in a single step.\n", + "response = recipe.execute(**{**context, \"cache_data\": True})" + ] + }, + { + "cell_type": "markdown", + "id": "aca485b4", + "metadata": {}, + "source": [ + "Caching does not always lead to a increase in performance. The effect depends on:\n", + "\n", + "* The resolution in which the query recipe is executed.\n", + "* The redundancy of the data references in the recipe, i.e. if layers are called multiple times loading them from cache will reduce the overall time significantly.\n", + "* The data source (EO data cube) from which they are retrieved.\n", + "\n", + "It should be noted that in our demos only data loaded from locally stored GeoTIFF files are analysed. This is sort of the worst case for demonstrating the benefits of caching since the data is stored locally and is therefore quickly accessible. Also, GeoTIFF files that are not stored in cloud-optimised format (CoGs) require to load the whole data into memory even when running in preview mode just to evaluate the sequence of data layers. Keep in mind, however, that caching is designed for and particularly beneficial in case of STACCubes when loading data over the internet." + ] + }, { "cell_type": "markdown", "id": "bc13ea19", @@ -2978,7 +3064,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 63, "id": "0eda66ec", "metadata": {}, "outputs": [], @@ -2993,7 +3079,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 64, "id": "6983f511", "metadata": {}, "outputs": [], diff --git a/.doctrees/nbsphinx/_notebooks/recipes.ipynb b/.doctrees/nbsphinx/_notebooks/recipes.ipynb index b5956729..8e90cb9c 100644 --- a/.doctrees/nbsphinx/_notebooks/recipes.ipynb +++ b/.doctrees/nbsphinx/_notebooks/recipes.ipynb @@ -224,8 +224,8 @@ "metadata": {}, "outputs": [], "source": [ - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")" + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")" ] }, { diff --git a/.doctrees/nbsphinx/_notebooks/references.ipynb b/.doctrees/nbsphinx/_notebooks/references.ipynb index 312c2477..c176436a 100644 --- a/.doctrees/nbsphinx/_notebooks/references.ipynb +++ b/.doctrees/nbsphinx/_notebooks/references.ipynb @@ -310,8 +310,8 @@ "metadata": {}, "outputs": [], "source": [ - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")" + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")" ] }, { diff --git a/.doctrees/nbsphinx/_notebooks/verbs.ipynb b/.doctrees/nbsphinx/_notebooks/verbs.ipynb index c67a6382..c5df4ed4 100644 --- a/.doctrees/nbsphinx/_notebooks/verbs.ipynb +++ b/.doctrees/nbsphinx/_notebooks/verbs.ipynb @@ -66,8 +66,8 @@ " mapping = sq.mapping.Semantique(json.load(file))\n", "\n", "# Represent an EO data cube.\n", - "with open(\"files/layout.json\", \"r\") as file:\n", - " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers.zip\")\n", + "with open(\"files/layout_gtiff.json\", \"r\") as file:\n", + " dc = sq.datacube.GeotiffArchive(json.load(file), src = \"files/layers_gtiff.zip\")\n", "\n", "# Set the spatio-temporal extent.\n", "space = sq.SpatialExtent(gpd.read_file(\"files/footprint.geojson\"))\n", diff --git a/.doctrees/nbsphinx/_notebooks_datacube_21_1.png b/.doctrees/nbsphinx/_notebooks_datacube_21_1.png index e91960c4..845e0635 100644 Binary files a/.doctrees/nbsphinx/_notebooks_datacube_21_1.png and b/.doctrees/nbsphinx/_notebooks_datacube_21_1.png differ diff --git a/.doctrees/nbsphinx/_notebooks_datacube_25_0.png b/.doctrees/nbsphinx/_notebooks_datacube_25_0.png new file mode 100644 index 00000000..1e8f5a84 Binary files /dev/null and b/.doctrees/nbsphinx/_notebooks_datacube_25_0.png differ diff --git a/.doctrees/reference.doctree b/.doctrees/reference.doctree index 38a1baa6..b8f3c6fe 100644 Binary files a/.doctrees/reference.doctree and b/.doctrees/reference.doctree differ diff --git a/.doctrees/reference_hide.doctree b/.doctrees/reference_hide.doctree index a07e90ba..bdb97adb 100644 Binary files a/.doctrees/reference_hide.doctree and b/.doctrees/reference_hide.doctree differ diff --git a/_generated/semantique.ArrayProxy.apply_custom.html b/_generated/semantique.ArrayProxy.apply_custom.html index 60034a70..8670e87a 100644 --- a/_generated/semantique.ArrayProxy.apply_custom.html +++ b/_generated/semantique.ArrayProxy.apply_custom.html @@ -18,12 +18,12 @@ - - - + + + - + @@ -32,9 +32,9 @@ - - - + + + @@ -59,7 +59,6 @@
    - + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    semantique.datacube.STACCube.config

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    + + + + +
    + +
    +

    semantique.datacube.STACCube.config#

    +
    +
    +property STACCube.config#
    +

    Configuration settings for data retrieval.

    +
    +
    Type:
    +

    dict

    +
    +
    +
    + +
    + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + +
    + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/_generated/semantique.datacube.STACCube.html b/_generated/semantique.datacube.STACCube.html new file mode 100644 index 00000000..9e61aab5 --- /dev/null +++ b/_generated/semantique.datacube.STACCube.html @@ -0,0 +1,853 @@ + + + + + + + + + + + semantique.datacube.STACCube — semantique 0.1.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    semantique.datacube.STACCube

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    + + + + +
    + +
    +

    semantique.datacube.STACCube#

    +
    +
    +class semantique.datacube.STACCube(layout=None, src=None, **config)[source]#
    +

    EO data cube configuration for results from STAC searches.

    +

    STACCube loads data from an item collection and fetches the data into an xarray.

    +
    +
    Parameters:
    +
      +
    • layout (dict) – The layout file describing the EO data cube. If None, an empty +EO data cube is constructed.

    • +
    • src (pystac.item_collection.ItemCollection or :class:list` of :class:`pystac.item.Item) – The item search result from a previous STAC search as a src to build the datacube

    • +
    • **config

      Additional keyword arguments tuning the data retrieval configuration. +Valid options are:

      +
        +
      • trim (bool): Should each retrieved data layer be trimmed? +Trimming means that dimension coordinates for which all values are +missing are removed from the array. The spatial dimensions are trimmed +only at the edges, to maintain their regularity. Defaults to +True.

      • +
      • group_by_solar_day (bool): Should the time dimension be +resampled to the day level, using solar day to keep scenes together? +Defaults to True.

      • +
      • dtype (str): Dtype of the data source. Will be converted to

      • +
      +

      float32/float64 prior to passing it to the semantique processor. +Defaults to float32.

      +
        +
      • na_value (int): NA value as encoded in the original data

      • +
      +

      Defaults to np.nan.

      +
        +
      • dask_params (dict): Parameters passed to the .compute() function

      • +
      +

      when fetching data via the stackstac API. Can be used to control the parallelism +in fetching data. Defaults to None, i.e. to use the threaded scheduler as +set by dask as a default for arrays.

      +
        +
      • value_type_mapping (dict): How do value type encodings in +the layout map to the value types used by semantique? +Defaults to a one-to-one mapping:

        +
        {
        +  "nominal": "nominal",
        +  "ordinal": "ordinal",
        +  "binary": "binary",
        +  "continuous": "continuous",
        +  "discrete": "discrete"
        +}
        +
        +
        +
      • +
      • resamplers (dict): When data need to be resampled to a +different spatial and/or temporal resolution, what resampling technique +should be used? Should be specified separately for each possible value +type in the layout. Valid techniques are:

        +
        'nearest', 'average', 'bilinear', 'cubic', 'cubic_spline',
        +'lanczos', 'mode', 'gauss',  'max', 'min', 'med', 'q1', 'q3'
        +
        +
        +

        Defaults to:

        +
        {
        +  "nominal": "nearest",
        +  "ordinal": "nearest",
        +  "binary": "nearest",
        +  "continuous": "bilinear",
        +  "discrete": "nearest"
        +}
        +
        +
        +
      • +
      +

    • +
    +
    +
    +
    +
    +__init__(layout=None, src=None, **config)[source]#
    +
    + +

    Methods

    + + + + + + + + + + + + +

    __init__([layout, src])

    lookup(*reference)

    Lookup the metadata of a referenced data layer.

    retrieve(*reference, extent)

    Retrieve a data layer from the EO data cube.

    +

    Attributes

    + + + + + + + + + + + + +

    config

    Configuration settings for data retrieval.

    layout

    The layout file of the EO data cube.

    src

    pystac.item_collection.ItemCollection or list of pystac.item.Item: The item search result from a previous STAC search.

    +
    + +
    + + +
    + + + + + + + + +
    + + + +
    + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/_generated/semantique.datacube.STACCube.layout.html b/_generated/semantique.datacube.STACCube.layout.html new file mode 100644 index 00000000..1ee00f5c --- /dev/null +++ b/_generated/semantique.datacube.STACCube.layout.html @@ -0,0 +1,729 @@ + + + + + + + + + + + semantique.datacube.STACCube.layout — semantique 0.1.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    semantique.datacube.STACCube.layout

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    + + + + +
    + +
    +

    semantique.datacube.STACCube.layout#

    +
    +
    +property STACCube.layout#
    +

    The layout file of the EO data cube.

    +
    +
    Type:
    +

    dict

    +
    +
    +
    + +
    + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + +
    + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/_generated/semantique.datacube.STACCube.lookup.html b/_generated/semantique.datacube.STACCube.lookup.html new file mode 100644 index 00000000..c01ab77e --- /dev/null +++ b/_generated/semantique.datacube.STACCube.lookup.html @@ -0,0 +1,733 @@ + + + + + + + + + + + semantique.datacube.STACCube.lookup — semantique 0.1.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    semantique.datacube.STACCube.lookup

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    + + + + +
    + +
    +

    semantique.datacube.STACCube.lookup#

    +
    +
    +STACCube.lookup(*reference)[source]#
    +

    Lookup the metadata of a referenced data layer.

    +
    +
    Parameters:
    +

    *reference – The index of the data layer in the layout of the EO data cube.

    +
    +
    Raises:
    +

    exceptions.UnknownLayerError – If the referenced data layer does not have a metadata object in the + layout of the EO data cube.

    +
    +
    +
    + +
    + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + +
    + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/_generated/semantique.datacube.STACCube.retrieve.html b/_generated/semantique.datacube.STACCube.retrieve.html new file mode 100644 index 00000000..adc39d9c --- /dev/null +++ b/_generated/semantique.datacube.STACCube.retrieve.html @@ -0,0 +1,739 @@ + + + + + + + + + + + semantique.datacube.STACCube.retrieve — semantique 0.1.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    semantique.datacube.STACCube.retrieve

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    + + + + +
    + +
    +

    semantique.datacube.STACCube.retrieve#

    +
    +
    +STACCube.retrieve(*reference, extent)[source]#
    +

    Retrieve a data layer from the EO data cube.

    +
    +
    Parameters:
    +
      +
    • *reference – The index of the data layer in the layout of the EO data cube.

    • +
    • extent (xarray.DataArray) – Spatio-temporal extent in which the data should be retrieved. Should be +given as an array with a temporal dimension and two spatial dimensions, +such as returned by +parse_extent. +The retrieved subset of the EO data cube will have the same extent.

    • +
    +
    +
    Returns:
    +

    xarray.DataArray – The retrieved subset of the EO data cube.

    +
    +
    +
    + +
    + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + +
    + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/_generated/semantique.datacube.STACCube.src.html b/_generated/semantique.datacube.STACCube.src.html new file mode 100644 index 00000000..17fa958d --- /dev/null +++ b/_generated/semantique.datacube.STACCube.src.html @@ -0,0 +1,725 @@ + + + + + + + + + + + semantique.datacube.STACCube.src — semantique 0.1.0 documentation + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + + + +
    +
    +
    +
    +
    + + + + +
    +
    + + + +
    + + + + + + + + + + + + + +
    + +
    + + + +
    + +
    +
    + +
    +
    + +
    + +
    + +
    + + +
    + +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + +
    + +
    +
    + + + +
    +

    semantique.datacube.STACCube.src

    + +
    +
    + +
    +

    Contents

    +
    + +
    +
    +
    + + + + +
    + +
    +

    semantique.datacube.STACCube.src#

    +
    +
    +property STACCube.src#
    +

    pystac.item_collection.ItemCollection or list of pystac.item.Item: +The item search result from a previous STAC search.

    +
    + +
    + + +
    + + + + + + +
    + +
    +
    +
    + +
    + + + +
    + + +
    +
    + + +
    + + +
    +
    +
    + + + + + +
    +
    + + \ No newline at end of file diff --git a/_generated/semantique.dimensions.SPACE.html b/_generated/semantique.dimensions.SPACE.html index cd899d59..6869625b 100644 --- a/_generated/semantique.dimensions.SPACE.html +++ b/_generated/semantique.dimensions.SPACE.html @@ -18,12 +18,12 @@ - - - + + + - + @@ -32,9 +32,9 @@ - - - + + + @@ -59,7 +59,6 @@
    -