-
Notifications
You must be signed in to change notification settings - Fork 132
/
demo_textmonkey.py
136 lines (117 loc) · 4.83 KB
/
demo_textmonkey.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import re
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
from monkey_model.modeling_textmonkey import TextMonkeyLMHeadModel
from monkey_model.tokenization_qwen import QWenTokenizer
from monkey_model.configuration_monkey import MonkeyConfig
from argparse import ArgumentParser
def _get_args():
parser = ArgumentParser()
parser.add_argument("-c", "--checkpoint-path", type=str, default=None,
help="Checkpoint name or path, default to %(default)r")
parser.add_argument("--share", action="store_true", default=True,
help="Create a publicly shareable link for the interface.")
parser.add_argument("--server-port", type=int, default=7680,
help="Demo server port.")
parser.add_argument("--server-name", type=str, default="127.0.0.1",
help="Demo server name.")
args = parser.parse_args()
return args
args = _get_args()
checkpoint_path = args.checkpoint_path
device_map = "cuda"
# Create model
config = MonkeyConfig.from_pretrained(
checkpoint_path,
trust_remote_code=True,
)
model = TextMonkeyLMHeadModel.from_pretrained(checkpoint_path,
config=config,
device_map=device_map, trust_remote_code=True).eval()
tokenizer = QWenTokenizer.from_pretrained(checkpoint_path,
trust_remote_code=True)
tokenizer.padding_side = 'left'
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.IMG_TOKEN_SPAN = config.visual["n_queries"]
title = "TextMonkey : An OCR-Free Large Multimodal Model for Understanding Document"
description = """
<font size=4>
Welcome to TextMonkey
Hello! I'm TextMonkey, a Large Language and Vision Assistant developed by HUST VLRLab and KingSoft.
You can click on the examples below the demo to display them.
## Example prompts for different tasks
You need to replace "Question" with your question.
1.**Read All Text:** Read all the text in the image.
2.**Text Spotting:** OCR with grounding:
3.**Position of Text:** <ref>"Question"</ref>
4.**VQA:** "Question" Answer:
5.**VQA with Grounding:** "Question" Provide the location coordinates of the answer when answering the question.
6.**Output Json**: Convert the chart in this image to json format. Answer:(Convert the document in this image to json format. Answer:)(Convert the table in this image to json format. Answer:)
</font>
"""
def inference(input_str, input_image):
input_str = f"<img>{input_image}</img> {input_str}"
input_ids = tokenizer(input_str, return_tensors='pt', padding='longest')
attention_mask = input_ids.attention_mask
input_ids = input_ids.input_ids
pred = model.generate(
input_ids=input_ids.cuda(),
attention_mask=attention_mask.cuda(),
do_sample=False,
num_beams=1,
max_new_tokens=2048,
min_new_tokens=1,
length_penalty=1,
num_return_sequences=1,
output_hidden_states=True,
use_cache=True,
pad_token_id=tokenizer.eod_id,
eos_token_id=tokenizer.eod_id,
)
response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=False).strip()
image = Image.open(input_image).convert("RGB").resize((1000,1000))
font = ImageFont.truetype('NimbusRoman-Regular.otf', 22)
bboxes = re.findall(r'<box>(.*?)</box>', response, re.DOTALL)
refs = re.findall(r'<ref>(.*?)</ref>', response, re.DOTALL)
if len(refs)!=0:
num = min(len(bboxes), len(refs))
else:
num = len(bboxes)
for box_id in range(num):
bbox = bboxes[box_id]
matches = re.findall( r"\((\d+),(\d+)\)", bbox)
draw = ImageDraw.Draw(image)
point_x = (int(matches[0][0])+int(matches[1][0]))/2
point_y = (int(matches[0][1])+int(matches[1][1]))/2
point_size = 8
point_bbox = (point_x - point_size, point_y - point_size, point_x + point_size, point_y + point_size)
draw.ellipse(point_bbox, fill=(255, 0, 0))
if len(refs)!=0:
text = refs[box_id]
text_width, text_height = font.getsize(text)
draw.text((point_x-text_width//2, point_y+8), text, font=font, fill=(255, 0, 0))
response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
output_str = response
output_image = image
print(f"{input_str} {response}")
return output_image, output_str
demo = gr.Interface(
inference,
inputs=[
gr.Textbox(lines=1, placeholder=None, label="Question"),
gr.Image(type="filepath", label="Input Image"),
],
outputs=[
gr.Image(type="pil", label="Output Image"),
gr.Textbox(lines=1, placeholder=None, label="TextMonkey's response"),
],
title=title,
description=description,
allow_flagging="auto",
)
demo.queue()
demo.launch(
server_name=args.server_name,
server_port=args.server_port,
share=args.share
)