-
Notifications
You must be signed in to change notification settings - Fork 0
/
lstm_seq2seq.py
226 lines (198 loc) · 9.3 KB
/
lstm_seq2seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
'''Sequence to sequence example in Keras (character-level).
This script demonstrates how to implement a basic character-level
sequence-to-sequence model. We apply it to translating
short English sentences into short French sentences,
character-by-character. Note that it is fairly unusual to
do character-level machine translation, as word-level
models are more common in this domain.
# Summary of the algorithm
- We start with input sequences from a domain (e.g. English sentences)
and correspding target sequences from another domain
(e.g. French sentences).
- An encoder LSTM turns input sequences to 2 state vectors
(we keep the last LSTM state and discard the outputs).
- A decoder LSTM is trained to turn the target sequences into
the same sequence but offset by one timestep in the future,
a training process called "teacher forcing" in this context.
Is uses as initial state the state vectors from the encoder.
Effectively, the decoder learns to generate `targets[t+1...]`
given `targets[...t]`, conditioned on the input sequence.
- In inference mode, when we want to decode unknown input sequences, we:
- Encode the input sequence into state vectors
- Start with a target sequence of size 1
(just the start-of-sequence character)
- Feed the state vectors and 1-char target sequence
to the decoder to produce predictions for the next character
- Sample the next character using these predictions
(we simply use argmax).
- Append the sampled character to the target sequence
- Repeat until we generate the end-of-sequence character or we
hit the character limit.
# Data download
English to French sentence pairs.
http://www.manythings.org/anki/fra-eng.zip
Lots of neat sentence pairs datasets can be found at:
http://www.manythings.org/anki/
# References
- Sequence to Sequence Learning with Neural Networks
https://arxiv.org/abs/1409.3215
- Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation
https://arxiv.org/abs/1406.1078
'''
from __future__ import print_function
from keras.models import Model
from keras.layers import Input, LSTM, Dense
import numpy as np
import io
batch_size = 64 # Batch size for training.
epochs = 100 # Number of epochs to train for.
latent_dim = 256 # Latent dimensionality of the encoding space.
num_samples = 10000 # Number of samples to train on.
# Path to the data txt file on disk.
# data_path = 'fra-eng/fra.txt'
data_path = 'fra.txt' # what is "fra.txt"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Vectorize the data.
input_texts = []
target_texts = []
input_characters = set()
target_characters = set()
with io.open(data_path, 'r', encoding='utf-8') as f:
# with open(data_path, 'r') as f:
lines = f.read().split('\n')
for line in lines[: min(num_samples, len(lines) - 1)]:
input_text, target_text = line.split('\t')
# We use "tab" as the "start sequence" character
# for the targets, and "\n" as "end sequence" character.
target_text = '\t' + target_text + '\n'
input_texts.append(input_text)
target_texts.append(target_text)
for char in input_text:
if char not in input_characters:
input_characters.add(char)
for char in target_text:
if char not in target_characters:
target_characters.add(char)
# input_characters = sorted(list(input_characters))
# target_characters = sorted(list(target_characters))
# num_encoder_tokens = len(input_characters)
# num_decoder_tokens = len(target_characters)
# max_encoder_seq_length = max([len(txt) for txt in input_texts])
# max_decoder_seq_length = max([len(txt) for txt in target_texts])
# print('Number of samples:', len(input_texts))
# print('Number of unique input tokens:', num_encoder_tokens)
# print('Number of unique output tokens:', num_decoder_tokens)
# print('Max sequence length for inputs:', max_encoder_seq_length)
# print('Max sequence length for outputs:', max_decoder_seq_length)
# input_token_index = dict(
# [(char, i) for i, char in enumerate(input_characters)])
# target_token_index = dict(
# [(char, i) for i, char in enumerate(target_characters)])
# encoder_input_data = np.zeros(
# (len(input_texts), max_encoder_seq_length, num_encoder_tokens),
# dtype='float32')
# decoder_input_data = np.zeros(
# (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
# dtype='float32')
# decoder_target_data = np.zeros(
# (len(input_texts), max_decoder_seq_length, num_decoder_tokens),
# dtype='float32')
# for i, (input_text, target_text) in enumerate(zip(input_texts, target_texts)):
# for t, char in enumerate(input_text):
# encoder_input_data[i, t, input_token_index[char]] = 1.
# for t, char in enumerate(target_text):
# # decoder_target_data is ahead of decoder_input_data by one timestep
# decoder_input_data[i, t, target_token_index[char]] = 1.
# if t > 0:
# # decoder_target_data will be ahead by one timestep
# # and will not include the start character.
# decoder_target_data[i, t - 1, target_token_index[char]] = 1.
# # Define an input sequence and process it.
# encoder_inputs = Input(shape=(None, num_encoder_tokens)) #tensor
# encoder = LSTM(latent_dim, return_state=True)
# encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# # We discard `encoder_outputs` and only keep the states.
# encoder_states = [state_h, state_c]
# # Set up the decoder, using `encoder_states` as initial state.
# decoder_inputs = Input(shape=(None, num_decoder_tokens))
# # We set up our decoder to return full output sequences,
# # and to return internal states as well. We don't use the
# # return states in the training model, but we will use them in inference.
# decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
# decoder_outputs, _, _ = decoder_lstm(decoder_inputs,
# initial_state=encoder_states)
# decoder_dense = Dense(num_decoder_tokens, activation='softmax')
# decoder_outputs = decoder_dense(decoder_outputs)
# # Define the model that will turn
# # `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
# model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
# # Run training
# model.compile(optimizer='rmsprop', loss='categorical_crossentropy') #loss, optimization
# model.fit([encoder_input_data, decoder_input_data], decoder_target_data, #training
# batch_size=batch_size,
# epochs=epochs,
# validation_split=0.2)
# # Save model
# model.save('s2s.h5')
# # Next: inference mode (sampling).
# # Here's the drill:
# # 1) encode input and retrieve initial decoder state
# # 2) run one step of decoder with this initial state
# # and a "start of sequence" token as target.
# # Output will be the next target token
# # 3) Repeat with the current target token and current states
# # Define sampling models
# encoder_model = Model(encoder_inputs, encoder_states)
# decoder_state_input_h = Input(shape=(latent_dim,))
# decoder_state_input_c = Input(shape=(latent_dim,))
# decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
# decoder_outputs, state_h, state_c = decoder_lstm(
# decoder_inputs, initial_state=decoder_states_inputs)
# decoder_states = [state_h, state_c]
# decoder_outputs = decoder_dense(decoder_outputs)
# decoder_model = Model(
# [decoder_inputs] + decoder_states_inputs,
# [decoder_outputs] + decoder_states)
# # Reverse-lookup token index to decode sequences back to
# # something readable.
# reverse_input_char_index = dict(
# (i, char) for char, i in input_token_index.items())
# reverse_target_char_index = dict(
# (i, char) for char, i in target_token_index.items())
# def decode_sequence(input_seq):
# # Encode the input as state vectors.
# states_value = encoder_model.predict(input_seq)
# # Generate empty target sequence of length 1.
# target_seq = np.zeros((1, 1, num_decoder_tokens))
# # Populate the first character of target sequence with the start character.
# target_seq[0, 0, target_token_index['\t']] = 1.
# # Sampling loop for a batch of sequences
# # (to simplify, here we assume a batch of size 1).
# stop_condition = False
# decoded_sentence = ''
# while not stop_condition:
# output_tokens, h, c = decoder_model.predict(
# [target_seq] + states_value)
# # Sample a token
# sampled_token_index = np.argmax(output_tokens[0, -1, :])
# sampled_char = reverse_target_char_index[sampled_token_index]
# decoded_sentence += sampled_char
# # Exit condition: either hit max length
# # or find stop character.
# if (sampled_char == '\n' or
# len(decoded_sentence) > max_decoder_seq_length):
# stop_condition = True
# # Update the target sequence (of length 1).
# target_seq = np.zeros((1, 1, num_decoder_tokens))
# target_seq[0, 0, sampled_token_index] = 1.
# # Update states
# states_value = [h, c]
# return decoded_sentence
# for seq_index in range(100):
# # Take one sequence (part of the training set)
# # for trying out decoding.
# input_seq = encoder_input_data[seq_index: seq_index + 1]
# decoded_sentence = decode_sequence(input_seq)
# print('-')
# print('Input sentence:', input_texts[seq_index])
# print('Decoded sentence:', decoded_sentence)