-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
882 lines (783 loc) · 29.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
import os
import time
import requests
import sys
import json
import gradio as gr
import numpy as np
import torch
import torchvision
import pims
from export_onnx_model import run_export
from onnxruntime.quantization import QuantType
from onnxruntime.quantization.quantize import quantize_dynamic
sys.path.append(sys.path[0] + "/tracker")
sys.path.append(sys.path[0] + "/tracker/model")
from track_anything import TrackingAnything
from track_anything import parse_argument
from utils.painter import mask_painter
from utils.blur import blur_frames_and_write
# download checkpoints
def download_checkpoint(url, folder, filename):
os.makedirs(folder, exist_ok=True)
filepath = os.path.join(folder, filename)
if not os.path.exists(filepath):
print("Downloading checkpoints...")
response = requests.get(url, stream=True)
with open(filepath, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
print("Download successful.")
return filepath
# convert points input to prompt state
def get_prompt(click_state, click_input):
inputs = json.loads(click_input)
points = click_state[0]
labels = click_state[1]
for input in inputs:
points.append(input[:2])
labels.append(input[2])
click_state[0] = points
click_state[1] = labels
prompt = {
"prompt_type": ["click"],
"input_point": click_state[0],
"input_label": click_state[1],
"multimask_output": "False",
}
return prompt
# extract frames from upload video
def get_frames_from_video(video_input, video_state):
"""
Args:
video_path:str
timestamp:float64
Return
[[0:nearest_frame], [nearest_frame:], nearest_frame]
"""
video_path = video_input
frames = []
user_name = time.time()
operation_log = [
("", ""),
(
"Video uploaded. Click the image for adding targets to track and blur.",
"Normal",
),
]
try:
frames = pims.Video(video_path)
fps = frames.frame_rate
image_size = (frames.shape[1], frames.shape[2])
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
# initialize video_state
video_state = {
"user_name": user_name,
"video_name": os.path.split(video_path)[-1],
"origin_images": frames,
"painted_images": [0] * len(frames),
"masks": [0] * len(frames),
"logits": [None] * len(frames),
"select_frame_number": 0,
"fps": fps,
}
video_info = "Video Name: {}, FPS: {}, Total Frames: {}, Image Size:{}".format(
video_state["video_name"], video_state["fps"], len(frames), image_size
)
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
return (
video_state,
video_info,
video_state["origin_images"][0],
gr.update(visible=True, maximum=len(frames), value=1),
gr.update(visible=True, maximum=len(frames), value=len(frames)),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True, value=operation_log),
)
def run_example(example):
return video_input
# get the select frame from gradio slider
def select_template(image_selection_slider, video_state, interactive_state):
# images = video_state[1]
image_selection_slider -= 1
video_state["select_frame_number"] = image_selection_slider
# once select a new template frame, set the image in sam
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(
video_state["origin_images"][image_selection_slider]
)
# update the masks when select a new template frame
operation_log = [
("", ""),
(
"Select frame {}. Try click image and add mask for tracking.".format(
image_selection_slider
),
"Normal",
),
]
return (
video_state["painted_images"][image_selection_slider],
video_state,
interactive_state,
operation_log,
)
# set the tracking end frame
def set_end_number(track_pause_number_slider, video_state, interactive_state):
interactive_state["track_end_number"] = track_pause_number_slider
operation_log = [
("", ""),
(
"Set the tracking finish at frame {}".format(track_pause_number_slider),
"Normal",
),
]
return (
interactive_state,
operation_log,
)
def get_resize_ratio(resize_ratio_slider, interactive_state):
interactive_state["resize_ratio"] = resize_ratio_slider
return interactive_state
def get_blur_strength(blur_strength_slider, interactive_state):
interactive_state["blur_strength"] = blur_strength_slider
return interactive_state
# use sam to get the mask
def sam_refine(
video_state, point_prompt, click_state, interactive_state, evt: gr.SelectData
):
"""
Args:
template_frame: PIL.Image
point_prompt: flag for positive or negative button click
click_state: [[points], [labels]]
"""
if point_prompt == "Positive":
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
interactive_state["positive_click_times"] += 1
else:
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
interactive_state["negative_click_times"] += 1
# prompt for sam model
model.samcontroler.sam_controler.reset_image()
model.samcontroler.sam_controler.set_image(
video_state["origin_images"][video_state["select_frame_number"]]
)
prompt = get_prompt(click_state=click_state, click_input=coordinate)
mask, logit, painted_image = model.first_frame_click(
image=video_state["origin_images"][video_state["select_frame_number"]],
points=np.array(prompt["input_point"]),
labels=np.array(prompt["input_label"]),
multimask=prompt["multimask_output"],
)
video_state["masks"][video_state["select_frame_number"]] = mask
video_state["logits"][video_state["select_frame_number"]] = logit
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
operation_log = [
("", ""),
(
"Use SAM for segment. You can try add positive and negative points by clicking. Or press Clear clicks button to refresh the image. Press Add mask button when you are satisfied with the segment",
"Normal",
),
]
return painted_image, video_state, interactive_state, operation_log
def add_multi_mask(video_state, interactive_state, mask_dropdown):
try:
mask = video_state["masks"][video_state["select_frame_number"]]
interactive_state["multi_mask"]["masks"].append(mask)
interactive_state["multi_mask"]["mask_names"].append(
"mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))
)
mask_dropdown.append(
"mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))
)
select_frame, run_status = show_mask(
video_state, interactive_state, mask_dropdown
)
operation_log = [
("", ""),
(
"Added a mask, use the mask select for target tracking or blurring.",
"Normal",
),
]
except Exception:
operation_log = [
("Please click the left image to generate mask.", "Error"),
("", ""),
]
return (
interactive_state,
gr.update(
choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown
),
select_frame,
[[], []],
operation_log,
)
def clear_click(video_state, click_state):
click_state = [[], []]
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
operation_log = [
("", ""),
("Clear points history and refresh the image.", "Normal"),
]
return template_frame, click_state, operation_log
def remove_multi_mask(interactive_state, mask_dropdown):
interactive_state["multi_mask"]["mask_names"] = []
interactive_state["multi_mask"]["masks"] = []
operation_log = [("", ""), ("Remove all mask, please add new masks", "Normal")]
return interactive_state, gr.update(choices=[], value=[]), operation_log
def show_mask(video_state, interactive_state, mask_dropdown):
mask_dropdown.sort()
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
for i in range(len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
mask = interactive_state["multi_mask"]["masks"][mask_number]
select_frame = mask_painter(
select_frame, mask.astype("uint8"), mask_color=mask_number + 2
)
operation_log = [
("", ""),
("Select {} for tracking or blurring".format(mask_dropdown), "Normal"),
]
return select_frame, operation_log
# tracking vos
def vos_tracking_video(video_state, interactive_state, mask_dropdown):
operation_log = [
("", ""),
(
"Track the selected masks, and then you can select the masks for blurring.",
"Normal",
),
]
model.xmem.clear_memory()
if interactive_state["track_end_number"]:
following_frames = video_state["origin_images"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
]
else:
following_frames = video_state["origin_images"][
video_state["select_frame_number"]:
]
if interactive_state["multi_mask"]["masks"]:
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
template_mask = interactive_state["multi_mask"]["masks"][
int(mask_dropdown[0].split("_")[1]) - 1
] * (int(mask_dropdown[0].split("_")[1]))
for i in range(1, len(mask_dropdown)):
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
template_mask = np.clip(
template_mask
+ interactive_state["multi_mask"]["masks"][mask_number]
* (mask_number + 1),
0,
mask_number + 1,
)
video_state["masks"][video_state["select_frame_number"]] = template_mask
else:
template_mask = video_state["masks"][video_state["select_frame_number"]]
# operation error
if len(np.unique(template_mask)) == 1:
template_mask[0][0] = 1
operation_log = [
(
"Error! Please add at least one mask to track by clicking the left image.",
"Error",
),
("", ""),
]
# return video_output, video_state, interactive_state, operation_error
output_path = "./output/track/{}".format(video_state["video_name"])
fps = video_state["fps"]
masks, logits, painted_images = model.generator(
images=following_frames, template_mask=template_mask, write=True, fps=fps, output_path=output_path
)
# clear GPU memory
model.xmem.clear_memory()
if interactive_state["track_end_number"]:
video_state["masks"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
] = masks
video_state["logits"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
] = logits
video_state["painted_images"][
video_state["select_frame_number"]: interactive_state["track_end_number"]
] = painted_images
else:
video_state["masks"][video_state["select_frame_number"]:] = masks
video_state["logits"][video_state["select_frame_number"]:] = logits
video_state["painted_images"][
video_state["select_frame_number"]:
] = painted_images
interactive_state["inference_times"] += 1
print(
"For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(
interactive_state["inference_times"],
interactive_state["positive_click_times"]
+ interactive_state["negative_click_times"],
interactive_state["positive_click_times"],
interactive_state["negative_click_times"],
)
)
return output_path, video_state, interactive_state, operation_log
def blur_video(video_state, interactive_state, mask_dropdown):
operation_log = [("", ""), ("Removed the selected masks.", "Normal")]
frames = np.asarray(video_state["origin_images"])[
video_state["select_frame_number"]:interactive_state["track_end_number"]
]
fps = video_state["fps"]
output_path = "./output/blur/{}".format(video_state["video_name"])
blur_masks = np.asarray(video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]])
if len(mask_dropdown) == 0:
mask_dropdown = ["mask_001"]
mask_dropdown.sort()
# convert mask_dropdown to mask numbers
blur_mask_numbers = [
int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))
]
# interate through all masks and remove the masks that are not in mask_dropdown
unique_masks = np.unique(blur_masks)
num_masks = len(unique_masks) - 1
for i in range(1, num_masks + 1):
if i in blur_mask_numbers:
continue
blur_masks[blur_masks == i] = 0
# blur video
try:
blur_frames_and_write(
frames,
blur_masks,
ratio=interactive_state["resize_ratio"],
strength=interactive_state["blur_strength"],
fps=fps,
output_path=output_path
)
except Exception as e:
print("Exception ", e)
operation_log = [
(
"Error! You are trying to blur without masks input. Please track the selected mask first, and then press blur. To speed up, please use the resize ratio to scale down the image size.",
"Error",
),
("", ""),
]
return output_path, video_state, interactive_state, operation_log
# generate video after vos inference
def generate_video_from_frames(frames, output_path, fps=30):
"""
Generates a video from a list of frames.
Args:
frames (list of numpy arrays): The frames to include in the video.
output_path (str): The path to save the generated video.
fps (int, optional): The frame rate of the output video. Defaults to 30.
"""
frames = torch.from_numpy(np.asarray(frames))
if not os.path.exists(os.path.dirname(output_path)):
os.makedirs(os.path.dirname(output_path))
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264")
return output_path
# convert to onnx quantized model
def convert_to_onnx(args, checkpoint, quantized=True):
"""
Convert the model to onnx format.
Args:
model (nn.Module): The model to convert.
output_path (str): The path to save the onnx model.
input_shape (tuple): The input shape of the model.
quantized (bool, optional): Whether to quantize the model. Defaults to True.
"""
onnx_output_path = f"{checkpoint.split('.')[-2]}.onnx"
quant_output_path = f"{checkpoint.split('.')[-2]}_quant.onnx"
print("Converting to ONNX quantized model...")
if not (os.path.exists(onnx_output_path)):
run_export(
model_type=args.sam_model_type,
checkpoint=checkpoint,
opset=16,
output=onnx_output_path,
return_single_mask=True
)
if quantized and not (os.path.exists(quant_output_path)):
quantize_dynamic(
model_input=onnx_output_path,
model_output=quant_output_path,
optimize_model=True,
per_channel=False,
reduce_range=False,
weight_type=QuantType.QUInt8,
)
return quant_output_path if quantized else onnx_output_path
# args, defined in track_anything.py
args = parse_argument()
# check and download checkpoints if needed
SAM_checkpoint_dict = {
"vit_h": "sam_vit_h_4b8939.pth",
"vit_l": "sam_vit_l_0b3195.pth",
"vit_b": "sam_vit_b_01ec64.pth",
"vit_t": "mobile_sam.pt",
}
SAM_checkpoint_url_dict = {
"vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
"vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
"vit_t": "https://github.com/ChaoningZhang/MobileSAM/raw/master/weights/mobile_sam.pt",
}
sam_checkpoint = SAM_checkpoint_dict[args.sam_model_type]
sam_checkpoint_url = SAM_checkpoint_url_dict[args.sam_model_type]
xmem_checkpoint = "XMem-s012.pth"
xmem_checkpoint_url = (
"https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth"
)
# initialize SAM, XMem
folder = "checkpoints"
sam_pt_checkpoint = download_checkpoint(sam_checkpoint_url, folder, sam_checkpoint)
xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint)
if args.sam_model_type == "vit_t":
if args.backend not in ("", "onnx", "openvino"):
print("vit_t only supports `onnx` and `openvino` backends. Falling back to `onnx`")
sam_onnx_checkpoint = convert_to_onnx(args, sam_pt_checkpoint, quantized=True)
else:
sam_onnx_checkpoint = ""
model = TrackingAnything(sam_pt_checkpoint, sam_onnx_checkpoint, xmem_checkpoint, args)
title = """<p><h1 align="center">Blur-Anything</h1></p>
"""
description = """<p>Gradio demo for Blur Anything, a flexible and interactive
tool for video object tracking, segmentation, and blurring. To
use it, simply upload your video, or click one of the examples to
load them. Code: <a
href="https://github.com/Y-T-G/Blur-Anything">https://github.com/Y-T-G/Blur-Anything</a>
<a
href="https://huggingface.co/spaces/Y-T-G/Blur-Anything?duplicate=true"><img
style="display: inline; margin-top: 0em; margin-bottom: 0em"
src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>"""
with gr.Blocks() as iface:
"""
state for
"""
click_state = gr.State([[], []])
interactive_state = gr.State(
{
"inference_times": 0,
"negative_click_times": 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {"mask_names": [], "masks": []},
"track_end_number": None,
"resize_ratio": 1,
"blur_strength": 3,
}
)
video_state = gr.State(
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"blur_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30,
}
)
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
# for user video input
with gr.Column():
with gr.Row():
video_input = gr.Video()
with gr.Column():
video_info = gr.Textbox(label="Video Info")
resize_info = gr.Textbox(
value="You can use the resize ratio slider to scale down the original image to around 360P resolution for faster processing.",
label="Tips for running this demo.",
)
resize_ratio_slider = gr.Slider(
minimum=0.02,
maximum=1,
step=0.02,
value=1,
label="Resize ratio",
visible=True,
)
with gr.Row():
# put the template frame under the radio button
with gr.Column():
# extract frames
with gr.Column():
extract_frames_button = gr.Button(
value="Get video info", interactive=True, variant="primary"
)
# click points settins, negative or positive, mode continuous or single
with gr.Row():
with gr.Row():
point_prompt = gr.Radio(
choices=["Positive", "Negative"],
value="Positive",
label="Point Prompt",
interactive=True,
visible=False,
)
remove_mask_button = gr.Button(
value="Remove mask", interactive=True, visible=False
)
clear_button_click = gr.Button(
value="Clear Clicks", interactive=True, visible=False
)
Add_mask_button = gr.Button(
value="Add mask", interactive=True, visible=False
)
template_frame = gr.Image(
type="pil",
interactive=True,
elem_id="template_frame",
visible=False,
)
image_selection_slider = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=1,
label="Image Selection",
visible=False,
)
track_pause_number_slider = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=1,
label="Track end frames",
visible=False,
)
with gr.Column():
run_status = gr.HighlightedText(
value=[
("Text", "Error"),
("to be", "Label 2"),
("highlighted", "Label 3"),
],
visible=False,
)
mask_dropdown = gr.Dropdown(
multiselect=True,
value=[],
label="Mask selection",
info=".",
visible=False,
)
video_output = gr.Video(visible=False)
with gr.Row():
tracking_video_predict_button = gr.Button(
value="Tracking", visible=False
)
blur_video_predict_button = gr.Button(
value="Blur", visible=False
)
with gr.Row():
blur_strength_slider = gr.Slider(
minimum=3,
maximum=30,
step=2,
value=3,
label="Blur Strength",
visible=False,
)
# first step: get the video information
extract_frames_button.click(
fn=get_frames_from_video,
inputs=[video_input, video_state],
outputs=[
video_state,
video_info,
template_frame,
image_selection_slider,
track_pause_number_slider,
point_prompt,
clear_button_click,
Add_mask_button,
template_frame,
tracking_video_predict_button,
video_output,
mask_dropdown,
remove_mask_button,
blur_video_predict_button,
blur_strength_slider,
run_status,
],
)
# second step: select images from slider
image_selection_slider.release(
fn=select_template,
inputs=[image_selection_slider, video_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status],
api_name="select_image",
)
track_pause_number_slider.release(
fn=set_end_number,
inputs=[track_pause_number_slider, video_state, interactive_state],
outputs=[interactive_state, run_status],
api_name="end_image",
)
resize_ratio_slider.release(
fn=get_resize_ratio,
inputs=[resize_ratio_slider, interactive_state],
outputs=[interactive_state],
api_name="resize_ratio",
)
blur_strength_slider.release(
fn=get_blur_strength,
inputs=[blur_strength_slider, interactive_state],
outputs=[interactive_state],
api_name="blur_strength",
)
# click select image to get mask using sam
template_frame.select(
fn=sam_refine,
inputs=[video_state, point_prompt, click_state, interactive_state],
outputs=[template_frame, video_state, interactive_state, run_status],
)
# add different mask
Add_mask_button.click(
fn=add_multi_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[
interactive_state,
mask_dropdown,
template_frame,
click_state,
run_status,
],
)
remove_mask_button.click(
fn=remove_multi_mask,
inputs=[interactive_state, mask_dropdown],
outputs=[interactive_state, mask_dropdown, run_status],
)
# tracking video from select image and mask
tracking_video_predict_button.click(
fn=vos_tracking_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output, video_state, interactive_state, run_status],
)
# tracking video from select image and mask
blur_video_predict_button.click(
fn=blur_video,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[video_output, video_state, interactive_state, run_status],
)
# click to get mask
mask_dropdown.change(
fn=show_mask,
inputs=[video_state, interactive_state, mask_dropdown],
outputs=[template_frame, run_status],
)
# clear input
video_input.clear(
lambda: (
{
"user_name": "",
"video_name": "",
"origin_images": None,
"painted_images": None,
"masks": None,
"blur_masks": None,
"logits": None,
"select_frame_number": 0,
"fps": 30,
},
{
"inference_times": 0,
"negative_click_times": 0,
"positive_click_times": 0,
"mask_save": args.mask_save,
"multi_mask": {"mask_names": [], "masks": []},
"track_end_number": 0,
"resize_ratio": 1,
"blur_strength": 3,
},
[[], []],
None,
None,
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False, value=[]),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
),
[],
[
video_state,
interactive_state,
click_state,
video_output,
template_frame,
tracking_video_predict_button,
image_selection_slider,
track_pause_number_slider,
point_prompt,
clear_button_click,
Add_mask_button,
template_frame,
tracking_video_predict_button,
video_output,
mask_dropdown,
remove_mask_button,
blur_video_predict_button,
blur_strength_slider,
run_status,
],
queue=False,
show_progress=False,
)
# points clear
clear_button_click.click(
fn=clear_click,
inputs=[
video_state,
click_state,
],
outputs=[template_frame, click_state, run_status],
)
# set example
gr.Markdown("## Examples")
gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "./data/", test_sample)
for test_sample in [
"sample-1.mp4",
"sample-2.mp4",
]
],
fn=run_example,
inputs=[video_input],
outputs=[video_input],
)
iface.queue(concurrency_count=1)
iface.launch(
debug=True, enable_queue=True
)