-
Notifications
You must be signed in to change notification settings - Fork 3
/
main_no_aff_spline.py
executable file
·163 lines (148 loc) · 7.92 KB
/
main_no_aff_spline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import argparse
import os
import numpy as np
from utils import loader, processor_no_aff_spline as processor
from utils.visualizations import display_animations
import torch
from torchlight.torchlight import ngpu
import warnings
warnings.filterwarnings("ignore")
base_path = os.path.dirname(os.path.realpath(__file__))
data_path = os.path.join(base_path, '../data')
dataset = 'edin'
spline_dim = 5
if dataset == 'edin':
joints_to_model = [0,
2, 3, 4, 5,
7, 8, 9, 10,
12, 13,
15, 16,
18, 19, 20, 21,
23, 24, 25, 26]
elif dataset == 'cmu':
joints_to_model = [0,
2, 3, 4, 5,
7, 8, 9, 10,
12, 13,
15, 16,
18, 19, 20, 21,
25, 26, 27, 28]
joint_offsets = None
num_labels = [4, 3, 3]
model_path = os.path.join(base_path, 'models')
os.makedirs(model_path, exist_ok=True)
parser = argparse.ArgumentParser(description='Gait Gen')
parser.add_argument('--frame-drop', type=int, default=4, metavar='FD',
help='frame down-sample rate (default: 2)')
parser.add_argument('--add-mirrored', type=bool, default=False, metavar='AM',
help='perform data augmentation by mirroring all the sequences (default: False)')
parser.add_argument('--train', type=bool, default=True, metavar='T',
help='train the model (default: True)')
parser.add_argument('--load_last_best', type=bool, default=True, metavar='LB',
help='load the most recent best model (default: True)')
parser.add_argument('--batch-size', type=int, default=16, metavar='B',
help='input batch size for training (default: 32)')
parser.add_argument('--num-worker', type=int, default=4, metavar='W',
help='input batch size for training (default: 4)')
parser.add_argument('--start_epoch', type=int, default=0, metavar='SE',
help='starting epoch of training (default: 0)')
parser.add_argument('--num_epoch', type=int, default=5000, metavar='NE',
help='number of epochs to train (default: 1000)')
parser.add_argument('--optimizer', type=str, default='Adam', metavar='O',
help='optimizer (default: Adam)')
parser.add_argument('--base-lr', type=float, default=1e-3, metavar='LR',
help='base learning rate (default: 1e-3)')
parser.add_argument('--base-tr', type=float, default=1., metavar='TR',
help='base teacher rate (default: 1.0)')
parser.add_argument('--step', type=list, default=0.05 * np.arange(20), metavar='[S]',
help='fraction of steps when learning rate will be decreased (default: [0.5, 0.75, 0.875])')
parser.add_argument('--lr-decay', type=float, default=0.999, metavar='LRD',
help='learning rate decay (default: 0.999)')
parser.add_argument('--tf-decay', type=float, default=0.995, metavar='TFD',
help='teacher forcing ratio decay (default: 0.995)')
parser.add_argument('--gradient_clip', type=float, default=0.5, metavar='GC',
help='gradient clip threshold (default: 0.1)')
parser.add_argument('--nesterov', action='store_true', default=True,
help='use nesterov')
parser.add_argument('--momentum', type=float, default=0.9, metavar='M',
help='momentum (default: 0.9)')
parser.add_argument('--weight-decay', type=float, default=5e-4, metavar='D',
help='Weight decay (default: 5e-4)')
parser.add_argument('--quat-norm-reg', type=float, default=0.1, metavar='QNR',
help='regularization for unit norm constraint (default: 0.01)')
parser.add_argument('--quat-reg', type=float, default=1.2, metavar='QR',
help='regularization for quaternion loss (default: 0.01)')
parser.add_argument('--spline-reg', type=float, default=1.2, metavar='SR',
help='regularization for spline loss (default: 0.01)')
parser.add_argument('--recons-reg', type=float, default=0.1, metavar='RCR',
help='regularization for reconstruction loss (default: 1.2)')
parser.add_argument('--eval-interval', type=int, default=1, metavar='EI',
help='interval after which model is evaluated (default: 1)')
parser.add_argument('--log-interval', type=int, default=100, metavar='LI',
help='interval after which log is printed (default: 100)')
parser.add_argument('--save-interval', type=int, default=10, metavar='SI',
help='interval after which model is saved (default: 10)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--pavi-log', action='store_true', default=False,
help='pavi log')
parser.add_argument('--print-log', action='store_true', default=True,
help='print log')
parser.add_argument('--save-log', action='store_true', default=True,
help='save log')
# TO ADD: save_result
args = parser.parse_args()
device = 'cuda:0'
randomized = False
model_data_path = os.path.join(model_path, dataset + '_drop_' + str(args.frame_drop) + '_no_aff_spline')
if not os.path.exists(model_data_path):
os.mkdir(model_data_path)
args.work_dir = model_data_path
# if dataset == 'edin':
data_dict, [data_dict_train, data_dict_valid] = \
loader.load_edin_data(data_path, num_labels,
frame_drop=args.frame_drop, add_mirrored=args.add_mirrored, randomized=randomized)
# data_dict['affective_features'], affs_max, affs_min = loader.scale_data(data_dict['affective_features'])
print('Data points for training:\t{}'.format(len(data_dict_train)))
print('Data points for validation:\t{}'.format(len(data_dict_valid)))
print('Total:\t\t\t\t\t\t{}'.format(len(data_dict)))
num_frames = data_dict['0']['positions'].shape[0]
joints_dict = data_dict['0']['joints_dict']
joint_names = joints_dict['joint_names']
joint_offsets = joints_dict['joint_offsets_all']
joint_parents = joints_dict['joint_parents']
num_joints = len(joint_parents)
coords = data_dict['0']['positions'].shape[-1]
data_loader = dict(train=data_dict_train, test=data_dict)
# elif dataset == 'cmu':
# data_dict, num_frames = loader.load_cmu_data(data_path,
# joints_to_model=joints_to_model,
# frame_drop=args.frame_drop,
# add_mirrored=args.add_mirrored)
# joint_offsets = np.zeros_like(data_dict['0']['offsets'])
# joint_offsets = np.tile(joint_offsets, (len(data_dict), 1, 1))
# for d in range(len(data_dict)):
# joint_offsets[d] = data_dict[str(d)]['offsets']
# joint_offsets = np.mean(joint_offsets, axis=0)
# data_loader = dict(train=data_dict, test=data_dict)
prefix_length = int(0.3 * num_frames)
target_length = int(num_frames - prefix_length)
rots_dim = data_dict['0']['rotations'].shape[-1]
affs_dim = data_dict['0']['affective_features'].shape[-1]
pr = processor.Processor(args, dataset, data_loader, num_frames, num_joints, coords,
rots_dim, affs_dim, spline_dim,
joints_dict, joint_names, joint_offsets, joint_parents,
num_labels, prefix_length, target_length, generate_while_train=False,
save_path=base_path, device=device)
# idx = 1302
# display_animations(np.swapaxes(np.reshape(
# np.expand_dims(data_dict[str(idx)]['positions_world'], axis=0),
# (1, num_frames, -1)), 2, 1), num_joints, coords, joint_parents,
# save=True,
# dataset_name=dataset, subset_name='test',
# save_file_names=[str(idx)],
# overwrite=True)
if args.train:
pr.train()
# pr.generate_motion(data_dict_valid['0']['spline'], data_dict_valid['0'])
pr.generate_motion(randomized=randomized)