-
Notifications
You must be signed in to change notification settings - Fork 6
/
evaluate_med.py
executable file
·151 lines (143 loc) · 7.2 KB
/
evaluate_med.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from sklearn.decomposition import PCA
import numpy as np
import torch
import math
import gin
import os
import json
def write_text(result_dict,file):
with open(file,'w+') as f:
json.dump(result_dict,f)
def encode_data(data, model, latent_encoder):
im_code = model.encode(data)
old_shape = im_code.shape
im_emb, _ = model.emb(im_code.detach())
im_code_new = im_emb.view(im_code.shape[0],im_code.shape[1],-1).permute(0,2,1)
my_latents = latent_encoder(im_code_new)
return my_latents, old_shape
def enc_func(test_loader, model, perceiver_enc):
latents_list = []
from tqdm import tqdm
with torch.no_grad():
for x_curr, _ in tqdm(test_loader):
x_curr = x_curr.cuda()
my_latents, _ = encode_data(x_curr, model, perceiver_enc)
latents_list.append(my_latents.detach().cpu())
del x_curr, my_latents
latents = torch.cat(latents_list, dim=0)
return latents
def eval_func(eval_dataset, data_tensor, metric_folder, it, preflix=""):
pca_rep = np.reshape(data_tensor, (data_tensor.shape[0],-1))
MED_score = True
beta_VAE_score = False
dci_score = False
factor_VAE_score = False
MIG_score = False
total_results_dict = {}
def _representation(x):
return pca_rep[x]
if MED_score:
with gin.unlock_config():
from evaluation.metrics.med import compute_med
from evaluation.metrics.utils import _histogram_discretize
gin.bind_parameter("med.num_train", 10000)
gin.bind_parameter("med.num_test", 10000)
gin.bind_parameter("med.topk", 2)
gin.bind_parameter("discretizer.discretizer_fn", _histogram_discretize)
gin.bind_parameter("discretizer.num_bins", 20)
result_dict = compute_med(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("MED score:" + str(result_dict))
total_results_dict["MED" + preflix] = result_dict
if beta_VAE_score:
with gin.unlock_config():
from evaluation.metrics.beta_vae import compute_beta_vae_sklearn
gin.bind_parameter("beta_vae_sklearn.batch_size", 64)
gin.bind_parameter("beta_vae_sklearn.num_train", 10000)
gin.bind_parameter("beta_vae_sklearn.num_eval", 5000)
result_dict = compute_beta_vae_sklearn(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("beta VAE score:" + str(result_dict))
total_results_dict["beta_VAE" + preflix] = result_dict
if dci_score:
from evaluation.metrics.dci import compute_dci
with gin.unlock_config():
gin.bind_parameter("dci.num_train", 10000)
gin.bind_parameter("dci.num_test", 5000)
result_dict = compute_dci(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("dci score:" + str(result_dict))
total_results_dict["dci" + preflix] = result_dict
if MIG_score:
with gin.unlock_config():
from evaluation.metrics.mig import compute_mig
from evaluation.metrics.utils import _histogram_discretize
gin.bind_parameter("mig.num_train",10000)
gin.bind_parameter("discretizer.discretizer_fn",_histogram_discretize)
gin.bind_parameter("discretizer.num_bins",20)
result_dict = compute_mig(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("MIG score:" + str(result_dict))
total_results_dict["MIG" + preflix] = result_dict
if factor_VAE_score:
with gin.unlock_config():
from evaluation.metrics.factor_vae import compute_factor_vae
gin.bind_parameter("factor_vae_score.num_variance_estimate",10000)
gin.bind_parameter("factor_vae_score.num_train",10000)
gin.bind_parameter("factor_vae_score.num_eval",5000)
gin.bind_parameter("factor_vae_score.batch_size",64)
gin.bind_parameter("prune_dims.threshold",0.05)
result_dict = compute_factor_vae(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("factor VAE score:" + str(result_dict))
total_results_dict["factor_VAE" + preflix] = result_dict
write_text(total_results_dict,metric_folder + f"/{it}.json")
return total_results_dict
def eval_func_test(eval_dataset, data_list, metric_folder, it):
pca_list = []
for i in range(data_list[0].shape[1]):
pca = PCA(n_components=1)
pca_result = pca.fit_transform(torch.cat([data_tensor[:,i,:] for data_tensor in data_list], dim=0).numpy())
pca_list.append(pca_result)
pca_rep = np.concatenate(pca_list, axis=1)
beta_VAE_score = True
dci_score = True
factor_VAE_score = True
MIG_score = True
total_results_dict = {}
def _representation(x):
return pca_rep[x]
if beta_VAE_score:
with gin.unlock_config():
from evaluation.metrics.beta_vae import compute_beta_vae_sklearn
gin.bind_parameter("beta_vae_sklearn.batch_size", 64)
gin.bind_parameter("beta_vae_sklearn.num_train", 10000)
gin.bind_parameter("beta_vae_sklearn.num_eval", 5000)
result_dict = compute_beta_vae_sklearn(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("beta VAE score:" + str(result_dict))
total_results_dict["beta_VAE_score"] = result_dict
if dci_score:
from evaluation.metrics.dci import compute_dci
with gin.unlock_config():
gin.bind_parameter("dci.num_train", 10000)
gin.bind_parameter("dci.num_test", 5000)
result_dict = compute_dci(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("dci score:" + str(result_dict))
total_results_dict["dci_score"] = result_dict
if MIG_score:
with gin.unlock_config():
from evaluation.metrics.mig import compute_mig
from evaluation.metrics.utils import _histogram_discretize
gin.bind_parameter("mig.num_train",10000)
gin.bind_parameter("discretizer.discretizer_fn",_histogram_discretize)
gin.bind_parameter("discretizer.num_bins",20)
result_dict = compute_mig(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("MIG score:" + str(result_dict))
total_results_dict["MIG_score"] = result_dict
if factor_VAE_score:
with gin.unlock_config():
from evaluation.metrics.factor_vae import compute_factor_vae
gin.bind_parameter("factor_vae_score.num_variance_estimate",10000)
gin.bind_parameter("factor_vae_score.num_train",10000)
gin.bind_parameter("factor_vae_score.num_eval",5000)
gin.bind_parameter("factor_vae_score.batch_size",64)
gin.bind_parameter("prune_dims.threshold",0.05)
result_dict = compute_factor_vae(eval_dataset,_representation,random_state=np.random.RandomState(0),artifact_dir=None)
print("factor VAE score:" + str(result_dict))
total_results_dict["factor_VAE_score"] = result_dict
write_text(total_results_dict,metric_folder + f"/{it}.json")