-
Notifications
You must be signed in to change notification settings - Fork 98
/
transformer_defaults.py
executable file
·336 lines (289 loc) · 16 KB
/
transformer_defaults.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# coding=utf-8
# -*- encoding: utf-8 -*-
'''
@File : transformer_defaults.py
@Time : 2022/06/01 21:44:17
@Author : Ming Ding
@Contact : [email protected]
'''
import math
import torch
import torch.nn.functional as F
from sat import mpu
from sat.mpu.utils import split_tensor_along_last_dim
import contextlib
def standard_attention(query_layer, key_layer, value_layer, attention_mask,
attention_dropout=None, log_attention_weights=None, scaling_attention_score=True, **kwargs):
# We disable the PB-relax-Attention and only changes the order of computation, because it is enough for most of training.
# The implementation in the paper can be done very easily, if you really need it to train very deep transformers.
if scaling_attention_score:
query_layer = query_layer / math.sqrt(query_layer.shape[-1])
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if log_attention_weights is not None:
attention_scores += log_attention_weights
if not (attention_mask.shape[-2] == 1 and (attention_mask > 0).all()):
# if auto-regressive, skip
attention_scores = torch.mul(attention_scores, attention_mask) - \
10000.0 * (1.0 - attention_mask)
attention_probs = F.softmax(attention_scores, dim=-1)
if attention_dropout is not None:
if mpu.get_cuda_rng_tracker is not None:
with mpu.get_cuda_rng_tracker().fork():
attention_probs = attention_dropout(attention_probs)
else:
attention_probs = attention_dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
return context_layer
def attention_fn_default(query_layer, key_layer, value_layer, attention_mask,
attention_dropout=None, log_attention_weights=None, scaling_attention_score=True, **kwargs):
# expand head dim to query dim, if necessary
# only useful for multi-query attention
batch_size, num_query_heads = query_layer.shape[:2] # [b, np, s, hn]
num_kv_heads = key_layer.shape[1] # [b, np, s, hn]
key_layer = key_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *key_layer.shape[2:])
value_layer = value_layer.unsqueeze(2).expand(-1, -1, num_query_heads//num_kv_heads, -1, -1).contiguous().view(batch_size, num_query_heads, *value_layer.shape[2:])
is_low_triangle = (attention_mask == torch.ones_like(attention_mask, dtype=torch.float).tril()).all()
is_full = (attention_mask is None) or (attention_mask > 0).all()
if int(torch.__version__.split('.')[0]) >= 2 and scaling_attention_score and (is_full or is_low_triangle):
# Pytorch 2.0 attention uses very much memory if attention_mask is float, and has NaN bug if attention_mask is None.
dropout_p = 0. if attention_dropout is None or not attention_dropout.training else attention_dropout.p
if dropout_p > 0 and mpu.get_cuda_rng_tracker is not None:
context = mpu.get_cuda_rng_tracker().fork()
else:
context = contextlib.nullcontext()
with context:
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer, key_layer, value_layer,
attn_mask=None,
dropout_p=dropout_p,
is_causal=not is_full
)
return attn_output
else:
return standard_attention(
query_layer, key_layer, value_layer, attention_mask,
attention_dropout=attention_dropout, log_attention_weights=log_attention_weights,
scaling_attention_score=scaling_attention_score, **kwargs
)
def attention_forward_default(self, hidden_states, mask, **kw_args):
self = self.transformer.layers[kw_args['layer_id']].attention
attention_fn = attention_fn_default
if 'attention_fn' in self.hooks:
attention_fn = self.hooks['attention_fn']
mixed_raw_layer = self.query_key_value(hidden_states)
(mixed_query_layer,
mixed_key_layer,
mixed_value_layer) = split_tensor_along_last_dim(mixed_raw_layer, self.stride)
dropout_fn = self.attention_dropout if self.training else None
query_layer = self._transpose_for_scores(mixed_query_layer)
key_layer = self._transpose_for_scores(mixed_key_layer)
value_layer = self._transpose_for_scores(mixed_value_layer)
# rotary position embedding
if self.transformer.is_rotary_emb:
query_layer, key_layer = self.transformer.position_embeddings(
query_layer, key_layer, kw_args['position_ids'],max_seqlen=kw_args['position_ids'].max()+1,
layer_id=kw_args['layer_id']
)
context_layer = attention_fn(query_layer, key_layer, value_layer, mask, dropout_fn, **kw_args)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
context_layer = context_layer.view(*new_context_layer_shape)
output = self.dense(context_layer)
if self.training:
output = self.output_dropout(output)
return output
def cross_attention_forward_default(self, hidden_states, cross_attention_mask, encoder_outputs, **kw_args):
self = self.transformer.layers[kw_args['layer_id']].cross_attention
attention_fn = attention_fn_default
if 'attention_fn' in self.hooks:
attention_fn = self.hooks['attention_fn']
mixed_query_layer = self.query(hidden_states)
query_layer = self._transpose_for_scores(mixed_query_layer)
dropout_fn = self.attention_dropout if self.training else None
if isinstance(encoder_outputs, torch.Tensor):
mixed_x_layer = self.key_value(encoder_outputs)
(mixed_key_layer, mixed_value_layer) = split_tensor_along_last_dim(mixed_x_layer, 2)
# Reshape and transpose [b, np, s, hn]
key_layer = self._transpose_for_scores(mixed_key_layer)
value_layer = self._transpose_for_scores(mixed_value_layer)
mem_cross = (key_layer, value_layer)
else:
key_layer, value_layer = encoder_outputs[kw_args['layer_id']]
mem_cross = (key_layer, value_layer)
context_layer = attention_fn(query_layer, key_layer, value_layer, cross_attention_mask, dropout_fn, cross_attention=True, mem_cross=mem_cross, **kw_args)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
# [b, s, hp]
context_layer = context_layer.view(*new_context_layer_shape)
# Output. [b, s, h]
output = self.dense(context_layer)
if self.training:
output = self.output_dropout(output)
return output
def routing_forward_default(self, hidden_states, **kw_args):
num_experts = self.transformer.num_experts
# This is just an example that select 2 experts randomly.
batch_size, sequence_length, hidden_dim = hidden_states.shape
# router_logits: (batch * sequence_length, n_experts)
router_logits = torch.randn((batch_size*sequence_length, num_experts), device=hidden_states.device, dtype=hidden_states.dtype)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, 2, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
return routing_weights, selected_experts
from functools import partial
def mlp_forward_default(self, hidden_states, expert_id=-1, **kw_args):
if self.transformer.num_experts == 1 or expert_id > -1:
self = self.transformer.layers[kw_args['layer_id']].mlp
suffix = f"_{expert_id}" if expert_id > 0 else ""
if self.is_gated_mlp:
intermediate_parallel = getattr(self, "dense_h_to_4h"+suffix)(hidden_states)
gated_intermediate_parallel = getattr(self, "dense_h_to_4h_gate"+suffix)(hidden_states)
intermediate_parallel = self.activation_func(gated_intermediate_parallel) * intermediate_parallel
output = getattr(self, "dense_4h_to_h"+suffix)(intermediate_parallel)
else:
intermediate_parallel = getattr(self, "dense_h_to_4h"+suffix)(hidden_states)
intermediate_parallel = self.activation_func(intermediate_parallel)
output = getattr(self, "dense_4h_to_h"+suffix)(intermediate_parallel)
return output
else:
mlp_forward = self.hooks.get('mlp_forward', partial(mlp_forward_default, self))
routing_forward = self.hooks.get('routing_forward', partial(routing_forward_default, self))
self = self.transformer.layers[kw_args['layer_id']].mlp
fwd_weight, fwd_idx = routing_forward(hidden_states, **kw_args)
# Adapted from mixtral-8x7b https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py
batch_size, sequence_length, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(fwd_idx, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
idx, top_x = torch.where(expert_mask[expert_idx])
if top_x.shape[0] == 0:
continue
# in torch it is faster to index using lists than torch tensors
top_x_list = top_x.tolist()
idx_list = idx.tolist()
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[top_x_list] # I don't know why using hidden_states[None, top_x_list].reshape(-1, hidden_dim)
current_hidden_states = mlp_forward(current_state, expert_id=expert_idx, **kw_args) * fwd_weight[top_x_list, idx_list, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
output = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return output
def word_embedding_forward_default(self, input_ids, output_cross_layer, **kw_args):
return self.transformer.word_embeddings(input_ids)
def position_embedding_forward_default(self, position_ids, output_cross_layer, **kw_args):
if not self.transformer.is_rotary_emb:
return self.transformer.position_embeddings(position_ids)
return None
from sat.mpu import gather_from_model_parallel_region
def final_forward_default(self, logits, **kw_args):
logits_parallel = F.linear(logits, self.transformer.word_embeddings.weight)
if not kw_args['parallel_output']:
logits_parallel = gather_from_model_parallel_region(logits_parallel)
return logits_parallel
def layer_forward_default(self, hidden_states, mask, *args, **kw_args):
'''
hidden_states: [batch, seq_len, hidden_size]
mask: [(1, 1), seq_len, seq_len]
'''
self = self.transformer.layers[kw_args['layer_id']]
# Layer norm at the begining of the transformer layer.
attention_input = self.input_layernorm(hidden_states)
# Self attention.
attention_output = self.attention(attention_input, mask, **kw_args)
# Third LayerNorm
if self.layernorm_order == 'sandwich':
attention_output = self.third_layernorm(attention_output)
# DropPath for attention
if self.training and self.drop_path > 0.:
# drop_path percentage 0, others 1/(1-p)
random_tensor = (1-self.drop_path
+ torch.rand((attention_output.shape[0],), dtype=attention_output.dtype, device=attention_output.device)).floor_() / (1-self.drop_path)
attention_output = random_tensor.view(-1, 1, 1) * attention_output
# Residual connection.
if self.layernorm_order == 'post':
hidden_states = attention_input + attention_output
mlp_input = self.post_attention_layernorm(hidden_states)
else:
hidden_states = hidden_states + attention_output
if self.is_decoder:
encoder_outputs = kw_args['encoder_outputs']
if encoder_outputs is not None:
assert 'cross_attention_mask' in kw_args
# Cross attention
if self.layernorm_order == 'post':
attention_output = self.cross_attention(mlp_input, **kw_args)
# Residual connection.
hidden_states = mlp_input + attention_output
# Layer norm post the cross attention
mlp_input = self.post_cross_attention_layernorm(hidden_states)
else:
cross_input = self.post_cross_attention_layernorm(hidden_states)
attention_output = self.cross_attention(cross_input, **kw_args)
hidden_states = hidden_states + attention_output
if self.layernorm_order != 'post':
mlp_input = self.post_attention_layernorm(hidden_states)
# MLP.
mlp_output = self.mlp(mlp_input, **kw_args)
# Fourth LayerNorm
if self.layernorm_order == 'sandwich':
mlp_output = self.fourth_layernorm(mlp_output)
# DropPath for mlp
if self.training and self.drop_path > 0.:
random_tensor = (1-self.drop_path
+ torch.rand((mlp_output.shape[0],), dtype=mlp_output.dtype, device=mlp_output.device)).floor_() / (1-self.drop_path)
mlp_output = random_tensor.view(-1, 1, 1) * mlp_output
# Second residual connection.
if self.layernorm_order == 'post':
output = mlp_input + mlp_output
else:
output = hidden_states + mlp_output
return output
HOOKS_DEFAULT = {
'attention_fn': attention_fn_default,
'attention_forward': attention_forward_default,
'cross_attention_forward': cross_attention_forward_default,
'routing_forward': routing_forward_default,
'mlp_forward': mlp_forward_default,
'word_embedding_forward': word_embedding_forward_default,
'position_embedding_forward': position_embedding_forward_default,
'final_forward': final_forward_default,
'layer_forward': layer_forward_default
}
ARGS_DEFAULT = {
'embedding_dropout_prob': ('hidden_dropout', 0),
'attention_dropout_prob': ('attention_dropout', 0),
'output_dropout_prob': ('hidden_dropout', 0),
'inner_hidden_size': ('inner_hidden_size', None),
'hidden_size_per_attention_head': ('hidden_size_per_attention_head', None),
'cross_hidden_size_per_attention_head': ('cross_hidden_size_per_attention_head', None),
'checkpoint_activations': ('checkpoint_activations', False),
'checkpoint_num_layers': ('checkpoint_num_layers', 1),
'checkpoint_skip_layers': ('checkpoint_skip_layers', 0),
'is_decoder': ('is_decoder', False),
'cross_attn_hidden_size': ('cross_attn_hidden_size', None),
'use_final_layernorm': ('use_final_layernorm', True),
'layernorm_epsilon': ('layernorm_epsilon', 1e-5),
'use_bias': ('use_bias', True),
'use_qkv_bias': ('use_qkv_bias', False),
'num_multi_query_heads': ('num_multi_query_heads', 0),
'cross_num_multi_query_heads': ('cross_num_multi_query_heads', 0),
'drop_path': ('drop_path', 0.),
'row_parallel_linear_final_bias': ('row_parallel_linear_final_bias', True),
'is_gated_mlp': ('is_gated_mlp', False),
'is_rotary_emb': ('is_rotary_emb', False),
'parallel_output': ('parallel_output', False),
'num_experts': ('num_experts', 1),
}
from sat.ops.layernorm import LayerNorm, RMSNorm
NO_WD_MODULES = [LayerNorm, torch.nn.LayerNorm, RMSNorm]