-
Notifications
You must be signed in to change notification settings - Fork 7
/
RetinaNet.py
669 lines (606 loc) · 31.6 KB
/
RetinaNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import os
import sys
import numpy as np
import math
class RetinaNet:
def __init__(self, config, data_provider):
assert len(config['data_shape']) == 3
assert config['mode'] in ['train', 'test']
assert config['data_format'] in ['channels_first', 'channels_last']
self.config = config
self.data_provider = data_provider
self.init_conv_kernel_size = 7
self.init_conv_strides = 2 # must be 2 for construct pyramid
self.init_pooling_pool_size = 3
self.init_pooling_strides = 2 # must be 2 for construct pyramid
self.is_bottleneck = config['is_bottleneck']
self.block_list = config['residual_block_list']
self.filters_list = [self.init_conv_kernel_size * (2 ** i) for i in range(len(config['residual_block_list']))]
self.is_pretraining = config['is_pretraining']
self.data_shape = config['data_shape']
self.num_classes = config['num_classes'] + 1
self.weight_decay = config['weight_decay']
self.prob = 1. - config['keep_prob']
self.data_format = config['data_format']
self.mode = config['mode']
self.batch_size = config['batch_size'] if config['mode'] == 'train' else 1
self.gamma = config['gamma']
self.alpha = config['alpha']
self.anchors = [32, 64, 128, 256, 512]
self.aspect_ratios = [1, 1/2, 2]
self.anchor_size = [2**0, 2**(1/3), 2**(2/3)]
self.num_anchors = len(self.aspect_ratios) * len(self.anchor_size)
self.nms_score_threshold = config['nms_score_threshold']
self.nms_max_boxes = config['nms_max_boxes']
self.nms_iou_threshold = config['nms_iou_threshold']
# pi for initialize final conv layer for classifier
self.pi = 0.01
if self.mode == 'train':
self.num_train = data_provider['num_train']
self.num_val = data_provider['num_val']
self.train_generator = data_provider['train_generator']
self.train_initializer, self.train_iterator = self.train_generator
if data_provider['val_generator'] is not None:
self.val_generator = data_provider['val_generator']
self.val_initializer, self.val_iterator = self.val_generator
self.global_step = tf.get_variable(name='global_step', initializer=tf.constant(0), trainable=False)
if self.is_pretraining:
self._define_pretraining_inputs()
self._build_pretraining_graph()
self._create_pretraining_saver()
self.save_weight = self._save_pretraining_weight
self.train_one_epoch = self._train_pretraining_epoch
self.test_one_image = self._test_one_pretraining_image
if self.mode == 'train':
self._create_pretraining_summary()
else:
self._define_detection_inputs()
self._build_detection_graph()
self._create_detection_saver()
self.save_weight = self._save_detection_weight
self.train_one_epoch = self._train_detection_epoch
self.test_one_image = self._test_one_detection_image
if self.mode == 'train':
self._create_detection_summary()
self._init_session()
def _define_pretraining_inputs(self):
shape = [self.batch_size]
shape.extend(self.data_shape)
mean = tf.convert_to_tensor([123.68, 116.779, 103.979], dtype=tf.float32)
if self.data_format == 'channels_last':
mean = tf.reshape(mean, [1, 1, 1, 3])
else:
mean = tf.reshape(mean, [1, 3, 1, 1])
if self.mode == 'train':
self.images, self.labels = self.train_iterator.get_next()
self.images.set_shape(shape)
self.images = self.images - mean
self.labels = tf.cast(self.labels, tf.int32)
else:
self.images = tf.placeholder(tf.float32, shape, name='images')
self.images = self.images - mean
self.labels = tf.placeholder(tf.int32, [self.batch_size, 1], name='labels')
self.lr = tf.placeholder(dtype=tf.float32, shape=[], name='lr')
self.is_training = tf.placeholder(dtype=tf.bool, shape=[], name='is_training')
def _define_detection_inputs(self):
shape = [self.batch_size]
shape.extend(self.data_shape)
mean = tf.convert_to_tensor([123.68, 116.779, 103.979], dtype=tf.float32)
if self.data_format == 'channels_last':
mean = tf.reshape(mean, [1, 1, 1, 3])
else:
mean = tf.reshape(mean, [1, 3, 1, 1])
if self.mode == 'train':
self.images, self.ground_truth = self.train_iterator.get_next()
self.images.set_shape(shape)
self.images = self.images - mean
else:
self.images = tf.placeholder(tf.float32, shape, name='images')
self.images = self.images - mean
self.ground_truth = tf.placeholder(tf.float32, [self.batch_size, None, 5], name='labels')
self.lr = tf.placeholder(dtype=tf.float32, shape=[], name='lr')
self.is_training = tf.placeholder(dtype=tf.bool, shape=[], name='is_training')
def _build_pretraining_graph(self):
with tf.variable_scope('feature_extractor'):
_, _, features = self._feature_extractor(self.images)
with tf.variable_scope('pretraining'):
axes = [1, 2] if self.data_format == 'channels_last' else [2, 3]
global_pool = tf.reduce_mean(features, axis=axes, name='global_pool')
loss = tf.losses.sparse_softmax_cross_entropy(self.labels, global_pool, reduction=tf.losses.Reduction.MEAN)
self.pred = tf.argmax(global_pool, 1)
self.accuracy = tf.reduce_mean(
tf.cast(tf.equal(self.pred, self.labels), tf.float32), name='accuracy'
)
self.loss = loss + self.weight_decay * tf.add_n(
[tf.nn.l2_loss(var) for var in tf.trainable_variables('feature_extractor')]
)
optimizer = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=0.9)
self.train_op = optimizer.minimize(self.loss, global_step=self.global_step)
def _build_detection_graph(self):
with tf.variable_scope('feature_extractor'):
feat1, feat2, feat3 = self._feature_extractor(self.images)
p5 = self._get_pyramid(feat3, 256)
p4, top_down = self._get_pyramid(feat2, 256, p5)
p3, _ = self._get_pyramid(feat1, 256, top_down)
p6 = self._bn_activation_conv(p5, 256, 3, 2)
p7 = self._bn_activation_conv(p6, 256, 3, 2)
with tf.variable_scope('regressor'):
pred3c = self._classification_subnet(p3, 256)
pred3r = self._regression_subnet(p3, 256)
pred4c = self._classification_subnet(p4, 256)
pred4r = self._regression_subnet(p4, 256)
pred5c = self._classification_subnet(p5, 256)
pred5r = self._regression_subnet(p5, 256)
pred6c = self._classification_subnet(p6, 256)
pred6r = self._regression_subnet(p6, 256)
pred7c = self._classification_subnet(p7, 256)
pred7r = self._regression_subnet(p7, 256)
if self.data_format == 'channels_first':
pred3c = tf.transpose(pred3c, [0, 2, 3, 1])
pred3r = tf.transpose(pred3r, [0, 2, 3, 1])
pred4c = tf.transpose(pred4c, [0, 2, 3, 1])
pred4r = tf.transpose(pred4r, [0, 2, 3, 1])
pred5c = tf.transpose(pred5c, [0, 2, 3, 1])
pred5r = tf.transpose(pred5r, [0, 2, 3, 1])
pred6c = tf.transpose(pred6c, [0, 2, 3, 1])
pred6r = tf.transpose(pred6r, [0, 2, 3, 1])
pred7c = tf.transpose(pred7c, [0, 2, 3, 1])
pred7r = tf.transpose(pred7r, [0, 2, 3, 1])
p3shape = tf.shape(pred3c)
p4shape = tf.shape(pred4c)
p5shape = tf.shape(pred5c)
p6shape = tf.shape(pred6c)
p7shape = tf.shape(pred7c)
with tf.variable_scope('inference'):
p3bbox_yx, p3bbox_hw, p3conf = self._get_pbbox(pred3c, pred3r)
p4bbox_yx, p4bbox_hw, p4conf = self._get_pbbox(pred4c, pred4r)
p5bbox_yx, p5bbox_hw, p5conf = self._get_pbbox(pred5c, pred5r)
p6bbox_yx, p6bbox_hw, p6conf = self._get_pbbox(pred6c, pred6r)
p7bbox_yx, p7bbox_hw, p7conf = self._get_pbbox(pred7c, pred7r)
a3bbox_y1x1, a3bbox_y2x2, a3bbox_yx, a3bbox_hw = self._get_abbox(self.anchors[0], p3shape)
a4bbox_y1x1, a4bbox_y2x2, a4bbox_yx, a4bbox_hw = self._get_abbox(self.anchors[1], p4shape)
a5bbox_y1x1, a5bbox_y2x2, a5bbox_yx, a5bbox_hw = self._get_abbox(self.anchors[2], p5shape)
a6bbox_y1x1, a6bbox_y2x2, a6bbox_yx, a6bbox_hw = self._get_abbox(self.anchors[3], p6shape)
a7bbox_y1x1, a7bbox_y2x2, a7bbox_yx, a7bbox_hw = self._get_abbox(self.anchors[4], p7shape)
pbbox_yx = tf.concat([p3bbox_yx, p4bbox_yx, p5bbox_yx, p6bbox_yx, p7bbox_yx], axis=1)
pbbox_hw = tf.concat([p3bbox_hw, p4bbox_hw, p5bbox_hw, p6bbox_hw, p7bbox_hw], axis=1)
pconf = tf.concat([p3conf, p4conf, p5conf, p6conf, p7conf], axis=1)
abbox_y1x1 = tf.concat([a3bbox_y1x1, a4bbox_y1x1, a5bbox_y1x1, a6bbox_y1x1, a7bbox_y1x1], axis=0)
abbox_y2x2 = tf.concat([a3bbox_y2x2, a4bbox_y2x2, a5bbox_y2x2, a6bbox_y2x2, a7bbox_y2x2], axis=0)
abbox_yx = tf.concat([a3bbox_yx, a4bbox_yx, a5bbox_yx, a6bbox_yx, a7bbox_yx], axis=0)
abbox_hw = tf.concat([a3bbox_hw, a4bbox_hw, a5bbox_hw, a6bbox_hw, a7bbox_hw], axis=0)
if self.mode == 'train':
i = 0.
loss = 0.
cond = lambda loss, i: tf.less(i, tf.cast(self.batch_size, tf.float32))
body = lambda loss, i: (
tf.add(loss, self._compute_one_image_loss(
tf.squeeze(tf.gather(pbbox_yx, tf.cast(i, tf.int32))),
tf.squeeze(tf.gather(pbbox_hw, tf.cast(i, tf.int32))),
abbox_y1x1,
abbox_y2x2,
abbox_yx,
abbox_hw,
tf.squeeze(tf.gather(pconf, tf.cast(i, tf.int32))),
tf.squeeze(tf.gather(self.ground_truth, tf.cast(i, tf.int32))),
)),
tf.add(i, 1.)
)
init_state = (loss, i)
state = tf.while_loop(cond, body, init_state)
total_loss, _ = state
total_loss = total_loss / self.batch_size
optimizer = tf.train.MomentumOptimizer(learning_rate=self.lr, momentum=.9)
self.loss = total_loss + self.weight_decay * tf.add_n(
[tf.nn.l2_loss(var) for var in tf.trainable_variables('feature_extractor')]
) + self.weight_decay * tf.add_n(
[tf.nn.l2_loss(var) for var in tf.trainable_variables('regressor')]
)
self.train_op = optimizer.minimize(self.loss, global_step=self.global_step)
else:
pbbox_yxt = pbbox_yx[0, ...]
pbbox_hwt = pbbox_hw[0, ...]
confidence = tf.nn.softmax(pconf[0, ...])
class_id = tf.argmax(confidence, axis=-1)
conf_mask = tf.less(class_id, self.num_classes - 1)
pbbox_yxt = tf.boolean_mask(pbbox_yxt, conf_mask)
pbbox_hwt = tf.boolean_mask(pbbox_hwt, conf_mask)
confidence = tf.boolean_mask(confidence, conf_mask)[:, :self.num_classes - 1]
abbox_yxt = tf.boolean_mask(abbox_yx, conf_mask)
abbox_hwt = tf.boolean_mask(abbox_hw, conf_mask)
dpbbox_yxt = pbbox_yxt * abbox_hwt + abbox_yxt
dpbbox_hwt = abbox_hwt * tf.exp(pbbox_hwt)
dpbbox_y1x1 = dpbbox_yxt - dpbbox_hwt / 2.
dpbbox_y2x2 = dpbbox_yxt + dpbbox_hwt / 2.
dpbbox_y1x1y2x2 = tf.concat([dpbbox_y1x1, dpbbox_y2x2], axis=-1)
filter_mask = tf.greater_equal(confidence, self.nms_score_threshold)
scores = []
class_id = []
bbox = []
for i in range(self.num_classes - 1):
scoresi = tf.boolean_mask(confidence[:, i], filter_mask[:, i])
bboxi = tf.boolean_mask(dpbbox_y1x1y2x2, filter_mask[:, i])
selected_indices = tf.image.non_max_suppression(
bboxi, scoresi, self.nms_max_boxes, self.nms_iou_threshold,
)
scores.append(tf.gather(scoresi, selected_indices))
bbox.append(tf.gather(bboxi, selected_indices))
class_id.append(tf.ones_like(tf.gather(scoresi, selected_indices), tf.int32) * i)
bbox = tf.concat(bbox, axis=0)
scores = tf.concat(scores, axis=0)
class_id = tf.concat(class_id, axis=0)
self.detection_pred = [scores, bbox, class_id]
def _feature_extractor(self, image):
endpoints = []
conv1_1 = self._conv_bn_activation(
bottom=image,
filters=self.config['init_conv_filters'],
kernel_size=self.init_conv_kernel_size,
strides=self.init_conv_strides,
)
pool1 = self._max_pooling(
bottom=conv1_1,
pool_size=self.init_pooling_pool_size,
strides=self.init_pooling_strides,
name='pool1'
)
if self.is_bottleneck:
stack_residual_unit_fn = self._residual_bottleneck
else:
stack_residual_unit_fn = self._residual_block
residual_block = pool1
for i in range(self.block_list[0]):
residual_block = stack_residual_unit_fn(residual_block, self.filters_list[0], 1, 'block1_unit'+str(i+1))
endpoints.append(residual_block)
for i in range(1, len(self.block_list)):
residual_block = stack_residual_unit_fn(residual_block, self.filters_list[i], 2, 'block'+str(i+1)+'_unit'+str(1))
for j in range(1, self.block_list[i]):
residual_block = stack_residual_unit_fn(residual_block, self.filters_list[i], 1, 'block'+str(i+1)+'_unit'+str(j+1))
endpoints.append(residual_block)
return endpoints[-3], endpoints[-2], endpoints[-1]
def _classification_subnet(self, bottom, filters):
conv1 = self._bn_activation_conv(bottom, filters, 3, 1)
conv2 = self._bn_activation_conv(conv1, filters, 3, 1)
conv3 = self._bn_activation_conv(conv2, filters, 3, 1)
conv4 = self._bn_activation_conv(conv3, filters, 3, 1)
pred = self._bn_activation_conv(conv4, self.num_classes * self.num_anchors, 3, 1, pi_init=True)
return pred
def _regression_subnet(self, bottom, filters):
conv1 = self._bn_activation_conv(bottom, filters, 3, 1)
conv2 = self._bn_activation_conv(conv1, filters, 3, 1)
conv3 = self._bn_activation_conv(conv2, filters, 3, 1)
conv4 = self._bn_activation_conv(conv3, filters, 3, 1)
pred = self._bn_activation_conv(conv4, 4 * self.num_anchors, 3, 1)
return pred
def _get_pyramid(self, feat, feature_size, top_feat=None):
if top_feat is None:
return self._bn_activation_conv(feat, feature_size, 3, 1)
else:
if self.data_format == 'channels_last':
feat = self._bn_activation_conv(feat, feature_size, 1, 1)
top_feat = tf.image.resize_bilinear(top_feat, [tf.shape(feat)[1], tf.shape(feat)[2]])
total_feat = feat + top_feat
return self._bn_activation_conv(total_feat, feature_size, 3, 1), total_feat
else:
feat = self._bn_activation_conv(feat, feature_size, 1, 1)
feat = tf.transpose(feat, [0, 2, 3, 1])
top_feat = tf.transpose(top_feat, [0, 2, 3, 1])
top_feat = tf.image.resize_bilinear(top_feat, [tf.shape(feat)[1], tf.shape(feat)[2]])
total_feat = feat + top_feat
total_feat = tf.transpose(total_feat, [0, 3, 1, 2])
return self._bn_activation_conv(total_feat, feature_size, 3, 1), total_feat
def _get_pbbox(self, predc, predr):
pconf = tf.reshape(predc, [self.batch_size, -1, self.num_classes])
pbbox = tf.reshape(predr, [self.batch_size, -1, 4])
pbbox_yx = pbbox[..., :2]
pbbox_hw = pbbox[..., 2:]
return pbbox_yx, pbbox_hw, pconf
def _get_abbox(self, size, pshape):
if self.data_format == 'channels_last':
input_h = self.data_shape[1]
downsampling_rate = tf.cast(input_h, tf.float32) / tf.cast(pshape[1], tf.float32)
else:
input_h = self.data_shape[2]
downsampling_rate = tf.cast(input_h, tf.float32) / tf.cast(pshape[1], tf.float32)
topleft_y = tf.range(0., tf.cast(pshape[1], tf.float32), dtype=tf.float32)
topleft_x = tf.range(0., tf.cast(pshape[2], tf.float32), dtype=tf.float32)
topleft_y = tf.reshape(topleft_y, [-1, 1, 1, 1]) + 0.5
topleft_x = tf.reshape(topleft_x, [1, -1, 1, 1]) + 0.5
topleft_y = tf.tile(topleft_y, [1, pshape[2], 1, 1]) * downsampling_rate
topleft_x = tf.tile(topleft_x, [pshape[1], 1, 1, 1]) * downsampling_rate
topleft_yx = tf.concat([topleft_y, topleft_x], -1)
topleft_yx = tf.tile(topleft_yx, [1, 1, self.num_anchors, 1])
priors = []
for r in self.aspect_ratios:
for s in self.anchor_size:
priors.append([s*size*(r**0.5), s*size/(r**0.5)])
priors = tf.convert_to_tensor(priors, tf.float32)
priors = tf.reshape(priors, [1, 1, -1, 2])
abbox_y1x1 = tf.reshape(topleft_yx - priors / 2., [-1, 2])
abbox_y2x2 = tf.reshape(topleft_yx + priors / 2., [-1, 2])
abbox_yx = abbox_y1x1 / 2. + abbox_y2x2 / 2.
abbox_hw = abbox_y2x2 - abbox_y1x1
return abbox_y1x1, abbox_y2x2, abbox_yx, abbox_hw
def _compute_one_image_loss(self, pbbox_yx, pbbox_hw, abbox_y1x1, abbox_y2x2,
abbox_yx, abbox_hw, pconf, ground_truth):
slice_index = tf.argmin(ground_truth, axis=0)[0]
ground_truth = tf.gather(ground_truth, tf.range(0, slice_index, dtype=tf.int64))
gbbox_yx = ground_truth[..., 0:2]
gbbox_hw = ground_truth[..., 2:4]
gbbox_y1x1 = gbbox_yx - gbbox_hw / 2.
gbbox_y2x2 = gbbox_yx + gbbox_hw / 2.
class_id = tf.cast(ground_truth[..., 4:5], dtype=tf.int32)
label = class_id
abbox_hwti = tf.reshape(abbox_hw, [1, -1, 2])
abbox_y1x1ti = tf.reshape(abbox_y1x1, [1, -1, 2])
abbox_y2x2ti = tf.reshape(abbox_y2x2, [1, -1, 2])
gbbox_hwti = tf.reshape(gbbox_hw, [-1, 1, 2])
gbbox_y1x1ti = tf.reshape(gbbox_y1x1, [-1, 1, 2])
gbbox_y2x2ti = tf.reshape(gbbox_y2x2, [-1, 1, 2])
ashape = tf.shape(abbox_hwti)
gshape = tf.shape(gbbox_hwti)
abbox_hwti = tf.tile(abbox_hwti, [gshape[0], 1, 1])
abbox_y1x1ti = tf.tile(abbox_y1x1ti, [gshape[0], 1, 1])
abbox_y2x2ti = tf.tile(abbox_y2x2ti, [gshape[0], 1, 1])
gbbox_hwti = tf.tile(gbbox_hwti, [1, ashape[1], 1])
gbbox_y1x1ti = tf.tile(gbbox_y1x1ti, [1, ashape[1], 1])
gbbox_y2x2ti = tf.tile(gbbox_y2x2ti, [1, ashape[1], 1])
gaiou_y1x1ti = tf.maximum(abbox_y1x1ti, gbbox_y1x1ti)
gaiou_y2x2ti = tf.minimum(abbox_y2x2ti, gbbox_y2x2ti)
gaiou_area = tf.reduce_prod(tf.maximum(gaiou_y2x2ti - gaiou_y1x1ti, 0), axis=-1)
aarea = tf.reduce_prod(abbox_hwti, axis=-1)
garea = tf.reduce_prod(gbbox_hwti, axis=-1)
gaiou_rate = gaiou_area / (aarea + garea - gaiou_area)
best_raindex = tf.argmax(gaiou_rate, axis=1)
best_pbbox_yx = tf.gather(pbbox_yx, best_raindex)
best_pbbox_hw = tf.gather(pbbox_hw, best_raindex)
best_pconf = tf.gather(pconf, best_raindex)
best_abbox_yx = tf.gather(abbox_yx, best_raindex)
best_abbox_hw = tf.gather(abbox_hw, best_raindex)
bestmask, _ = tf.unique(best_raindex)
bestmask = tf.contrib.framework.sort(bestmask)
bestmask = tf.reshape(bestmask, [-1, 1])
bestmask = tf.sparse.SparseTensor(tf.concat([bestmask, tf.zeros_like(bestmask)], axis=-1),
tf.squeeze(tf.ones_like(bestmask)), dense_shape=[ashape[1], 1])
bestmask = tf.reshape(tf.cast(tf.sparse.to_dense(bestmask), tf.float32), [-1])
othermask = 1. - bestmask
othermask = othermask > 0.
other_pbbox_yx = tf.boolean_mask(pbbox_yx, othermask)
other_pbbox_hw = tf.boolean_mask(pbbox_hw, othermask)
other_pconf = tf.boolean_mask(pconf, othermask)
other_abbox_yx = tf.boolean_mask(abbox_yx, othermask)
other_abbox_hw = tf.boolean_mask(abbox_hw, othermask)
agiou_rate = tf.transpose(gaiou_rate)
other_agiou_rate = tf.boolean_mask(agiou_rate, othermask)
best_agiou_rate = tf.reduce_max(other_agiou_rate, axis=1)
pos_agiou_mask = best_agiou_rate > 0.5
neg_agiou_mask = best_agiou_rate < 0.4
rgindex = tf.argmax(other_agiou_rate, axis=1)
pos_rgindex = tf.boolean_mask(rgindex, pos_agiou_mask)
pos_ppox_yx = tf.boolean_mask(other_pbbox_yx, pos_agiou_mask)
pos_ppox_hw = tf.boolean_mask(other_pbbox_hw, pos_agiou_mask)
pos_pconf = tf.boolean_mask(other_pconf, pos_agiou_mask)
pos_abbox_yx = tf.boolean_mask(other_abbox_yx, pos_agiou_mask)
pos_abbox_hw = tf.boolean_mask(other_abbox_hw, pos_agiou_mask)
pos_label = tf.gather(label, pos_rgindex)
pos_gbbox_yx = tf.gather(gbbox_yx, pos_rgindex)
pos_gbbox_hw = tf.gather(gbbox_hw, pos_rgindex)
neg_pconf = tf.boolean_mask(other_pconf, neg_agiou_mask)
neg_shape = tf.shape(neg_pconf)
num_neg = neg_shape[0]
neg_class_id = tf.constant([self.num_classes-1])
neg_label = tf.tile(neg_class_id, [num_neg])
pos_pbbox_yx = tf.concat([best_pbbox_yx, pos_ppox_yx], axis=0)
pos_pbbox_hw = tf.concat([best_pbbox_hw, pos_ppox_hw], axis=0)
pos_pconf = tf.concat([best_pconf, pos_pconf], axis=0)
pos_label = tf.concat([label, pos_label], axis=0)
pos_gbbox_yx = tf.concat([gbbox_yx, pos_gbbox_yx], axis=0)
pos_gbbox_hw = tf.concat([gbbox_hw, pos_gbbox_hw], axis=0)
pos_abbox_yx = tf.concat([best_abbox_yx, pos_abbox_yx], axis=0)
pos_abbox_hw = tf.concat([best_abbox_hw, pos_abbox_hw], axis=0)
conf_loss = self._focal_loss(pos_label, pos_pconf, neg_label, neg_pconf)
pos_truth_pbbox_yx = (pos_gbbox_yx - pos_abbox_yx) / pos_abbox_hw
pos_truth_pbbox_hw = tf.log(pos_gbbox_hw / pos_abbox_hw)
pos_yx_loss = tf.reduce_sum(self._smooth_l1_loss(pos_pbbox_yx - pos_truth_pbbox_yx), axis=-1)
pos_hw_loss = tf.reduce_sum(self._smooth_l1_loss(pos_pbbox_hw - pos_truth_pbbox_hw), axis=-1)
pos_coord_loss = tf.reduce_mean(pos_yx_loss + pos_hw_loss)
total_loss = conf_loss + pos_coord_loss
return total_loss
def _smooth_l1_loss(self, x):
return tf.where(tf.abs(x) < 1., 0.5*x*x, tf.abs(x)-0.5)
def _focal_loss(self, poslabel, posprob, neglabel, negprob):
posprob = tf.nn.softmax(posprob)
negprob = tf.nn.softmax(negprob)
pos_index = tf.concat([
tf.expand_dims(tf.range(0, tf.shape(posprob)[0], dtype=tf.int32), axis=-1),
tf.reshape(poslabel, [-1, 1])
], axis=-1)
neg_index = tf.concat([
tf.expand_dims(tf.range(0, tf.shape(negprob)[0], dtype=tf.int32), axis=-1),
tf.reshape(neglabel, [-1, 1])
], axis=-1)
posprob = tf.clip_by_value(tf.gather_nd(posprob, pos_index), 1e-8, 1.)
negprob = tf.clip_by_value(tf.gather_nd(negprob, neg_index), 1e-8, 1.)
posloss = - self.alpha * tf.pow(1. - posprob, self.gamma) * tf.log(posprob)
negloss = - self.alpha * tf.pow(1. - negprob, self.gamma) * tf.log(negprob)
total_loss = tf.concat([posloss, negloss], axis=0)
loss = tf.reduce_sum(total_loss) / tf.cast(tf.shape(posloss)[0], tf.float32)
return loss
def _train_pretraining_epoch(self, lr):
self.sess.run(self.train_initializer)
mean_loss = []
mean_acc = []
for i in range(self.num_train // self.batch_size):
_, loss, acc = self.sess.run([self.train_op, self.loss, self.accuracy], feed_dict={self.lr: lr, self.is_traning:True})
mean_loss.append(loss)
mean_acc.append(acc)
mean_loss = np.mean(mean_loss)
mean_acc = np.mean(mean_acc)
return mean_loss, mean_acc
def _train_detection_epoch(self, lr):
self.sess.run(self.train_initializer)
mean_loss = []
num_iters = self.num_train // self.batch_size
for i in range(num_iters):
_, loss = self.sess.run([self.train_op, self.loss], feed_dict={self.lr: lr, self.is_traning:True})
sys.stdout.write('\r>> ' + 'iters '+str(i+1)+str('/')+str(num_iters)+' loss '+str(loss))
sys.stdout.flush()
mean_loss.append(loss)
sys.stdout.write('\n')
mean_loss = np.mean(mean_loss)
return mean_loss
def _test_one_pretraining_image(self, images):
pred = self.sess.run(self.pred, feed_dict={self.images: images, self.is_traning:False})
return pred
def _test_one_detection_image(self, images):
pred = self.sess.run(self.detection_pred, feed_dict={self.images: images, self.is_traning:False})
return pred
def _save_pretraining_weight(self, mode, path):
assert(mode in ['latest', 'best'])
if mode == 'latest':
saver = self.saver
else:
saver = self.best_saver
if not tf.gfile.Exists(os.path.dirname(path)):
tf.gfile.MakeDirs(os.path.dirname(path))
print(os.path.dirname(path), 'does not exist, create it done')
saver.save(self.sess, path, global_step=self.global_step)
print('>> save', mode, 'model in', path, 'successfully')
def _save_detection_weight(self, mode, path):
assert(mode in ['latest', 'best'])
if mode == 'latest':
saver = self.saver
else:
saver = self.best_saver
if not tf.gfile.Exists(os.path.dirname(path)):
tf.gfile.MakeDirs(os.path.dirname(path))
print(os.path.dirname(path), 'does not exist, create it done')
saver.save(self.sess, path, global_step=self.global_step)
print('>> save', mode, 'model in', path, 'successfully')
def load_weight(self, path):
self.saver.restore(self.sess, path)
print('>> load weight', path, 'successfully')
def load_pretraining_weight(self, path):
self.pretraining_weight_saver.restore(self.sess, path)
print('>> load pretraining weight', path, 'successfully')
def _init_session(self):
self.sess = tf.InteractiveSession()
self.sess.run(tf.global_variables_initializer())
if self.mode == 'train':
if self.train_initializer is not None:
self.sess.run(self.train_initializer)
def _create_pretraining_saver(self):
weights = tf.trainable_variables(scope='feature_extractor')
self.saver = tf.train.Saver(weights)
self.best_saver = tf.train.Saver(weights)
def _create_detection_saver(self):
weights = tf.trainable_variables(scope='feature_extractor')
self.pretraining_weight_saver = tf.train.Saver(weights)
self.saver = tf.train.Saver()
self.best_saver = tf.train.Saver()
def _create_pretraining_summary(self):
with tf.variable_scope('summaries'):
tf.summary.scalar('loss', self.loss)
tf.summary.scalar('accuracy', self.accuracy)
self.summary_op = tf.summary.merge_all()
def _create_detection_summary(self):
with tf.variable_scope('summaries'):
tf.summary.scalar('loss', self.loss)
self.summary_op = tf.summary.merge_all()
def _bn(self, bottom):
bn = tf.layers.batch_normalization(
inputs=bottom,
axis=3 if self.data_format == 'channels_last' else 1,
training=self.is_training
)
return bn
def _conv_bn_activation(self, bottom, filters, kernel_size, strides, activation=tf.nn.relu):
conv = tf.layers.conv2d(
inputs=bottom,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format=self.data_format,
kernel_initializer=tf.contrib.layers.variance_scaling_initializer()
)
bn = self._bn(conv)
if activation is not None:
return activation(bn)
else:
return bn
def _bn_activation_conv(self, bottom, filters, kernel_size, strides, activation=tf.nn.relu, pi_init=False):
bn = self._bn(bottom)
if activation is not None:
bn = activation(bn)
if not pi_init:
conv = tf.layers.conv2d(
inputs=bn,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format=self.data_format,
kernel_initializer=tf.contrib.layers.variance_scaling_initializer()
)
else:
conv = tf.layers.conv2d(
inputs=bn,
filters=filters,
kernel_size=kernel_size,
strides=strides,
padding='same',
data_format=self.data_format,
kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),
bias_initializer=tf.constant_initializer(-math.log((1 - self.pi) / self.pi))
)
return conv
def _residual_block(self, bottom, filters, strides, scope):
with tf.variable_scope(scope):
with tf.variable_scope('conv_branch'):
conv = self._bn_activation_conv(bottom, filters, 3, strides)
conv = self._bn_activation_conv(conv, filters, 3, 1)
with tf.variable_scope('identity_branch'):
if strides != 1:
shutcut = self._bn_activation_conv(bottom, filters, 3, strides)
else:
shutcut = bottom
return conv + shutcut
def _residual_bottleneck(self, bottom, filters, strides, scope):
with tf.variable_scope(scope):
with tf.variable_scope('conv_branch'):
conv = self._bn_activation_conv(bottom, filters, 1, 1)
conv = self._bn_activation_conv(conv, filters, 3, strides)
conv = self._bn_activation_conv(conv, filters*4, 1, 1)
with tf.variable_scope('identity_branch'):
shutcut = self._bn_activation_conv(bottom, filters*4, 3, strides)
return conv + shutcut
def _max_pooling(self, bottom, pool_size, strides, name):
return tf.layers.max_pooling2d(
inputs=bottom,
pool_size=pool_size,
strides=strides,
padding='same',
data_format=self.data_format,
name=name
)
def _avg_pooling(self, bottom, pool_size, strides, name):
return tf.layers.average_pooling2d(
inputs=bottom,
pool_size=pool_size,
strides=strides,
padding='same',
data_format=self.data_format,
name=name
)
def _dropout(self, bottom, name):
return tf.layers.dropout(
inputs=bottom,
rate=self.prob,
training=self.is_training,
name=name
)