-
Notifications
You must be signed in to change notification settings - Fork 5
/
generate_domain_scores.py
executable file
·404 lines (295 loc) · 19.1 KB
/
generate_domain_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
#!/usr/bin/python
"""
Using the previously computed per-sequence "uniqueness" scores (evaluate_uniqueness.py), along with the
per-PDB-sequence binding information from the previously computed FASTA files (create_fasta.py), calculate
per domain-position binding potential weights with respect to each type of ligand that domain can bind to.
Contact Shilpa Nadimpalli Kobren ([email protected]) with questions
"""
import os
import sys
import gzip
import argparse
from subprocess import call
from evaluate_uniqueness import ligand_groups, translate_ligand, normalize_scores
########################################################################################################
# CONSTANTS
########################################################################################################
# path to where this script is currently located (and to where all data should be stored) -- this can
# be updated
DATAPATH = os.path.dirname(os.path.abspath(__file__))+'/'
DISTANCE_CUTOFF = 20. # cutoff (in Angstroms) to consider values for the "mindist" score
PROXIMITY_CUTOFF = 3.6 # cutoff (in Angstroms) to consider an atom-to-atom distance as "close"
# full path to a tab-delimited file with columns PDB ID-PDB Chain, Domain Name (unique), and
# comma-delimited list of (1-indexed domain match state : 0-indexed sequence position : amino acid value)
DOMAINS = DATAPATH+'processed_data/domains/BioLiP_2018-09-12-domains-pfam_v31.tsv.gz'
########################################################################################################
# DISTRIBUTION SUMMARY FUNCTIONS
########################################################################################################
def check_and_renormalize_distribution(distribution):
"""
:param distribution: list of (value, weight) tuples such that the weights sum to 1
:return: a renormalized distribution such that weights sum to 1
"""
if not abs(1. - sum([weight for (_, weight) in distribution])) < 1e-6:
normalized_weights = normalize_scores([weight for (_, weight) in distribution])
return [(distribution[i][0], normalized_weights[i]) for i in xrange(len(distribution))]
return distribution # if the original weights were fine, return the original distribution
########################################################################################################
def weighted_sum(distribution):
"""
:param distribution: list of (value, weight) tuples such that the weights sum to 1
:return: the weighted sum of the distribution
"""
fixed_dist = check_and_renormalize_distribution(distribution)
return sum([weight * value for (value, weight) in fixed_dist])
########################################################################################################
def weighted_median(distribution):
"""
:param distribution: list of (value, weight) tuples such that the weights sum to 1
:return: the weighted median of the distribution
"""
fixed_dist = check_and_renormalize_distribution(distribution)
sorted_scores = sorted(fixed_dist) # sorted by values first
total_weight = 0. # keep track of the total weight seen so far; the 0.5 mark will be the center
for (value, weight) in sorted_scores:
total_weight += weight
if total_weight >= 0.5:
return value # value in the center
# if we didn't exit the loop properly, simply return the unweighted median
return sorted_scores[len(fixed_dist) / 2][0]
########################################################################################################
def weighted_fraction(distribution, max_cutoff=PROXIMITY_CUTOFF):
"""
:param distribution: list of (value, weight) tuples such that the weights sum to 1
:param max_cutoff: the maximum cutoff to consider an element in the distribution
:return: the weighted fraction of the distribution that was <= the specified maximum cutoff
"""
fixed_dist = check_and_renormalize_distribution(distribution)
return sum([weight for (value, weight) in fixed_dist if value <= max_cutoff])
########################################################################################################
def choose_summary_function(distance):
"""
:param distance: string corresponding to the distance metric to be used
:return: a function that takes in a list of pair tuples with (value, relative weight) and returns a
single score AND the name of the function
"""
# set the default way by which to "flatten" per-position score distributions into a single positional score
if distance == 'mindist':
return weighted_fraction, 'weighted_fraction_within_'+str(PROXIMITY_CUTOFF)+'A'
elif distance in ['sumstd', 'sumvdw']:
# the "sum" values range from 0 -> infinity, so we store the median
return weighted_median, 'weighted_median'
else:
# the "mean", "max", and "fracin4" values range from 0->1, and, as the relative uniqueness scores sum to 1,
# taking the weighted sum makes sense (resulting positional score must also range from 0 to 1)
return weighted_sum, 'weighted_sum'
########################################################################################################
# PROCESS REQUIRED INPUT FILES
########################################################################################################
def process_uniqueness_file(uniqueness_file):
"""
:param uniqueness_file: full path to a tab-delimited file with columns domain name, ligand type, and
comma-separated list of sequence ID: relative uniqueness weight
:return: dictionary of domain_name -> ligand_type -> pddID-pdbChain_start_end -> relative_uniqueness
"""
uniqueness = {} # domain -> ligand type -> pdbID_start_end -> relative_uniqueness
uniqueness_handle = gzip.open(uniqueness_file) if uniqueness_file.endswith('gz') else open(uniqueness_file)
for weight_line in uniqueness_handle:
if weight_line.startswith('#'):
continue
domain_name, ligand_type, number_instances, seq_to_uniqueness = weight_line[:-1].split('\t')[:4]
if float(number_instances) < 1:
continue
if domain_name not in uniqueness:
uniqueness[domain_name] = {}
if ligand_type not in uniqueness[domain_name]:
uniqueness[domain_name][ligand_type] = {}
# format of these entries is 'pdbID_start_end:relative_uniqueness,...'
seq_to_uniqueness = [entry.split(':') for entry in seq_to_uniqueness.split(',')]
uniqueness[domain_name][ligand_type] = {seqid: float(rel_wt) for (seqid, rel_wt) in seq_to_uniqueness}
uniqueness_handle.close()
return uniqueness
########################################################################################################
def process_fasta_file(fasta_file, pdbid_pdbchain_subset, ligand_to_group, binding_positions, distance):
"""
:param fasta_file: full path to a FASTA-formatted file as generated by create_fasta.py
:param pdbid_pdbchain_subset: subset of pdbID-pdbChain identifiers to consider
:param ligand_to_group: get the mapping from ligand type to super group
:param binding_positions: existing dictionary to be updated (if need be) of ligand_type -> pdbID-pdbChain ->
1-index AA position -> binding_score
:return: None, but update the input binding_positions data structure
"""
fasta_handle = gzip.open(fasta_file) if fasta_file.endswith('gz') else open(fasta_file)
for fasta_line in fasta_handle:
if fasta_line.startswith('>'):
# format of these entries is pdbID-pdbChain bindingSiteRes=1-index AA position : ligand_type : score,...;
pdbid_pdbchain = fasta_line[1:-1].split()[0]
# only consider those sequences that had a domain match
if pdbid_pdbchain not in pdbid_pdbchain_subset:
continue
curr_bind_pos = fasta_line[fasta_line.find('bindingSiteRes=') + 15:fasta_line.rfind(';')].split(',')
curr_bind_pos = [entry.split('-') for entry in curr_bind_pos]
for (aapos, current_ligand, binding_score) in curr_bind_pos:
super_groups = ['ALL_', current_ligand] + ligand_to_group.get(current_ligand, [])
if not ('NUCACID_' in super_groups or 'ION_' in super_groups or 'III' in super_groups):
super_groups.append('SM_')
# translate all names of the ligands (if need be):
super_groups = [translate_ligand(orig_ligand_name) for orig_ligand_name in super_groups]
for ligand_type in super_groups:
if ligand_type not in binding_positions:
binding_positions[ligand_type] = {}
if pdbid_pdbchain not in binding_positions[ligand_type]:
binding_positions[ligand_type][pdbid_pdbchain] = {}
if aapos not in binding_positions[ligand_type][pdbid_pdbchain]:
binding_positions[ligand_type][pdbid_pdbchain][aapos] = float(binding_score)
if distance in ['mindist', 'meandist']:
binding_positions[ligand_type][pdbid_pdbchain][aapos] = min(float(binding_score),
binding_positions[ligand_type][pdbid_pdbchain][
aapos])
else:
binding_positions[ligand_type][pdbid_pdbchain][aapos] = max(float(binding_score),
binding_positions[ligand_type][pdbid_pdbchain][
aapos])
fasta_handle.close()
########################################################################################################
def process_alignment_file(align_file, uniqueness_weights, lig_binding_positions, default_score):
"""
:param align_file: full path to an alignment file, where we are interested in headers of the format
'pdbID-pdbChain_start_end \t matchstate : 1-index AA position,...'
:param uniqueness_weights: relative (i.e., sum to 1) weights for each pdbID-pdbChain_start_end domain identifier
:param lig_binding_positions: dictionary of pdbid_pdbchain -> binding potential score
:param default_score: if a binding potential score is unavailable, what is the default value?
:return: dictionary of match state -> [(value, weight), ]
"""
local_mstate_values = {} # match state -> pdbID-pdbChain -> (value, weight)
aln_handle = gzip.open(align_file) if align_file.endswith('gz') else open(align_file)
for aln_line in aln_handle:
if aln_line.startswith('>'):
# format of these entries is 'pdbID-pdbChain_start_end \t matchstate : 1-index AA position,...'
seqid = aln_line[1:-1].split()[0]
if seqid not in uniqueness_weights: # do we have a uniqueness score for this sequence ID?
continue
relative_uniqueness = uniqueness_weights[seqid]
pdbid_pdbchain = seqid.split('_')[0] # pdbID-pdbChain (needed to index into binding positions)
# store the binding potential weights for each match state in the domain
mstates = [entry.split(':') for entry in aln_line[:-1].split('\t')[1].split(',')]
for (matchstate, aapos) in mstates:
if matchstate not in local_mstate_values:
local_mstate_values[matchstate] = {}
if pdbid_pdbchain not in lig_binding_positions or aapos not in lig_binding_positions[pdbid_pdbchain]:
current_binding_weight = default_score
else:
current_binding_weight = lig_binding_positions[pdbid_pdbchain][aapos]
local_mstate_values[matchstate][seqid] = (current_binding_weight, relative_uniqueness)
aln_handle.close()
return local_mstate_values
########################################################################################################
# POSITIONAL BINDING SCORES
########################################################################################################
def create_binding_scores(uniqueness_file, fasta_dir, alignment_dir, binding_score_dir, distance):
"""
:param uniqueness_file: full path to a tab-delimited file with columns domain name, ligand type, and
comma-separated list of sequence ID: relative uniqueness weight
:param fasta_dir: full path to a directory containing per-PDB-ID sequences and their positional scores
:param alignment_dir: full path to a directory containing precomputed (domain, ligand) FASTA alignments
:param binding_score_dir: full path to a directory to store output files
:param distance: type of scoring metric to be used (e.g., mindist, fracin4, etc.) -- needed for naming
:return: None, but print success message for the number of binding scores processed
"""
# set the default way by which to "flatten" per-position score distributions into a single positional score
summarize_position_func, column_name = choose_summary_function(distance)
# all domain--ligand pairs to process are found in the uniqueness file:
# domain -> ligand type -> pdbID_start_end -> relative_uniqueness
uniqueness = process_uniqueness_file(uniqueness_file)
total_processed_domains = 0
progress_bars = [(str(rank * 10) + '%', int(rank * (len(uniqueness.keys()) / 10.))) for rank in range(1, 10)][::-1]
# get the corresponding binding scores for all PDB files that matched each domain
for domain_name in uniqueness.keys():
for progress_percent, progress_value in progress_bars:
if total_processed_domains > progress_value:
progress_bars = progress_bars[:-1] # remove the last value to not reprint
sys.stderr.write('Processed ' + progress_percent + ' (' + "{:,}".format(total_processed_domains) + '/' +
"{:,}".format(len(uniqueness.keys())) + ') of interaction domains.\n')
break
# all unique pdbID-pdbChain identifiers with 1+ domain matches
all_matching_pdbids = set([seqid.split('_')[0] for seqdict in uniqueness[domain_name].values()
for seqid in seqdict.keys()])
# ligand_type -> pdbID-pdbChain -> 1-index AA position -> binding score
binding_positions = {}
ligand_mapping = ligand_groups()
for pdbid in [pdbid_pdbchain[:4] for pdbid_pdbchain in all_matching_pdbids]:
fasta_file = fasta_dir + pdbid[0] + '/' + pdbid[:2] + '/' + pdbid + '_' + distance + '.fa.gz'
if not os.path.isfile(fasta_file):
sys.stderr.write('No such file: '+fasta_file+'\n')
continue
# update the binding_positions dictionary
process_fasta_file(fasta_file, all_matching_pdbids, ligand_mapping, binding_positions, distance)
# store per-position, per ligand-binding type binding scores to an outfile:
out_file = binding_score_dir + domain_name + '_binding-scores_' + distance + '.txt.gz'
out_handle = gzip.open(out_file, 'w') if out_file.endswith('gz') else open(out_file, 'w')
out_handle.write('# Continuous positional weights, calculated according to the '+distance+' statistic,' +
' for '+domain_name+'\n')
out_handle.write('\t'.join(['#ligand_type', 'match_state', column_name,
'distribution (pdbID-pdbChain_start_end : relative uniqueness weight : ' +
'positional score),...'])+'\n')
# for each type of ligand-binding in this domain, obtain overall binding score distributions for each match state
for ligand_type, seqid_to_uniqueness in uniqueness[domain_name].items():
# read in the match state information:
aln_file = alignment_dir + domain_name + '_' + ligand_type + '_' + distance + '.aln.fa'
if not os.path.isfile(aln_file):
sys.stderr.write('No such file: '+aln_file+'\n')
continue
# match state -> pdbID-pdbChain_start_end -> (binding score/value, relative uniqueness/weight)
match_state_distributions = process_alignment_file(aln_file, seqid_to_uniqueness,
binding_positions[ligand_type],
DISTANCE_CUTOFF if distance == 'mindist' else 0.)
# print the scores to file:
for matchstate, distribution in match_state_distributions.items():
flattened_score = summarize_position_func(distribution.values())
if flattened_score > 0.:
# write out the ligand type, match state, positional score, and complete distribution (worth recording)
out_handle.write('\t'.join([ligand_type, str(matchstate), str(flattened_score),
','.join([seqid+':'+str(rel_wt)+':'+str(value) for
seqid, (value, rel_wt) in sorted(distribution.items())
if rel_wt > 0. and
((distance in ['mindist', 'meandist'] and value < DISTANCE_CUTOFF) or
(distance not in ['mindist', 'meandist'] and value > 0.))])])+'\n')
out_handle.close()
total_processed_domains += 1
sys.stderr.write('Successfully wrote positional scores for '+"{:,}".format(total_processed_domains)+' domains to ' +
binding_score_dir+'\n')
########################################################################################################
if __name__ == "__main__":
# Parse the command-line arguments
parser = argparse.ArgumentParser(description='Generate per-position binding potential scores for each ' +
'domain with respect to each type of ligand it can bind to.')
parser.add_argument('--distance', type=str,
help='How to record the distance between receptor and ligand?',
default='mindist',
choices={'fracin4', 'mindist', 'meandist', 'maxstd', 'meanstd', 'sumstd',
'maxvdw', 'meanvdw', 'sumstd'})
args = parser.parse_args()
# Make sure that all input files are present:
uniqueness_scores_file = DATAPATH+'processed_data/domains/uniqueness-scores_'+args.distance+'.txt.gz'
fasta_file_directory = DATAPATH+'processed_data/fasta/' # subdirectory example: 2/2m/
alignments_directory = DATAPATH+'processed_data/domains/alignments/'+args.distance+'/'
if not os.path.isfile(uniqueness_scores_file):
sys.stderr.write('Could not read uniqueness scores from '+uniqueness_scores_file+'\'n')
sys.stderr.write('Please run python evaluate_uniqueness.py --distance '+args.distance+'\n')
sys.exit(1)
if not os.path.isdir(fasta_file_directory):
sys.stderr.write('Could not find FASTA files in '+fasta_file_directory+'\n')
sys.stderr.write('Please run python create_fasta.py --distance '+args.distance+'\n')
sys.exit(1)
if not os.path.isdir(alignments_directory):
sys.stderr.write('Could not read per-domain alignments from '+alignments_directory+'\n')
sys.stderr.write('Please run python evaluate_uniqueness.py --create_alignments --distance '+args.distance+'\n')
sys.exit(1)
# Create the new binding scores output directory if needed
output_directory = DATAPATH+'processed_data/domains/binding_scores/'
for subdir in ['', args.distance]:
if not os.path.isdir(output_directory+subdir):
call(['mkdir', output_directory+subdir])
# Generate the binding scores:
create_binding_scores(uniqueness_scores_file, fasta_file_directory, alignments_directory,
output_directory+args.distance+'/', args.distance)