-
Notifications
You must be signed in to change notification settings - Fork 2
/
LinearAlgebra.h
190 lines (166 loc) · 4.11 KB
/
LinearAlgebra.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//
// Created by Ryan.Zurrin001 on 12/16/2021.
//
#ifndef PHYSICSFORMULA_LINEARALGEBRA_H
#define PHYSICSFORMULA_LINEARALGEBRA_H
#include <iostream>
#include "Constants.h"
class LinearAlgebra {
public:
LinearAlgebra() = default;
template<typename VECTOR>
static auto dotV(VECTOR& v, VECTOR& u)
{
auto sum = 0;
for (auto i = 0; i < v.size(); i++)
{
sum += v[i] * u[i];
}
return sum;
}
template<typename MATRIX>
static auto dotM(MATRIX& m, MATRIX& n)
{
auto sum = 0;
for (auto i = 0; i < m.size(); i++)
{
for (auto j = 0; j < m[i].size(); j++)
{
sum += m[i][j] * n[i][j];
}
}
return sum;
}
template<typename VECTOR>
static VECTOR crossV(VECTOR& v, VECTOR& u)
{
VECTOR w;
w[0] = v[1] * u[2] - v[2] * u[1];
w[1] = v[2] * u[0] - v[0] * u[2];
w[2] = v[0] * u[1] - v[1] * u[0];
return w;
}
template<typename MATRIX>
static double determinant(MATRIX& m)
{
double det = 0;
if (m.size() == 1)
{
return m[0][0];
}
else if (m.size() == 2)
{
return m[0][0] * m[1][1] - m[0][1] * m[1][0];
}
else
{
for (auto i = 0; i < m.size(); i++)
{
det += m[0][i] * cofactor(m, 0, i);
}
}
return det;
}
template<typename MATRIX>
static double cofactor(MATRIX& m, int row, int col)
{
auto sign = 1;
if ((row + col) % 2 == 1)
{
sign = -1;
}
return sign * determinant(minor(m, row, col));
}
template<typename MATRIX>
static MATRIX minor(MATRIX& m, int row, int col)
{
MATRIX minor;
for (auto i = 0; i < m.size(); i++)
{
if (i != row)
{
vector<double> temp;
for (auto j = 0; j < m[i].size(); j++)
{
if (j != col)
{
temp.push_back(m[i][j]);
}
}
minor.push_back(temp);
}
}
return minor;
}
template<typename MATRIX>
static MATRIX crossM(MATRIX& m, MATRIX& n)
{
MATRIX o;
for (auto i = 0; i < m.size(); i++)
{
for (auto j = 0; j < m[i].size(); j++)
{
o[i][j] = m[i][j] * n[i][j];
}
}
return o;
}
template<typename MATRIX>
static bool isSquare(MATRIX& m)
{
for (auto i = 0; i < m.size(); i++)
{
if (m[i].size() != m.size())
{
return false;
}
}
return true;
}
template<typename MATRIX>
static bool isDiagonal(MATRIX& m)
{
for (auto i = 0; i < m.size(); i++)
{
for (auto j = 0; j < m[i].size(); j++)
{
if (i != j && m[i][j] != 0)
{
return false;
}
}
}
return true;
}
template<typename MATRIX>
static bool isUpperTriangular(MATRIX& m)
{
for (auto i = 0; i < m.size(); i++)
{
for (auto j = 0; j < m[i].size(); j++)
{
if (i > j && m[i][j] != 0)
{
return false;
}
}
}
return true;
}
template<typename MATRIX>
static bool isLowerTriangular(MATRIX& m)
{
for (auto i = 0; i < m.size(); i++)
{
for (auto j = 0; j < m[i].size(); j++)
{
if (i < j && m[i][j] != 0)
{
return false;
}
}
}
return true;
}
};
#endif //PHYSICSFORMULA_LINEARALGEBRA_H